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1. Motivations

A great deal of information about short distance

properties of QFT is obtained through the RG.

RG formulted in terms of unobservable fields: con-

ceptually unsatisfactory, fields are just a “coordina-

tization” of observables (Borchers classes, Schwinger

model, Seiberg-Witten dualities in SUSY YM).

Prominent example: confinement. Based on attaching

a physical interpretation to unobservable degrees of

freedom in the lagrangian (e.g. quark and gluon fields

in QCD).

Algebraic approach to QFT provides a framework for

an intrinsic description of the ultraviolet behaviour:

scaling algebras allow to compute the scaling (short

distance) limit of a theory entirely in terms of observ-

ables.
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Analysis of charges and particles of the scaling limit

theory, through DHR theory of superselection sectors,

gives the ultracharges and ultraparticles described by

the given theory at short distances.

Unambiguous notion of confinement obtained through

comparison of charge and ultracharge content of the

theory.

Necessary to find a canonical way of comparing the

two charge structures. Identify ultracharges which are

short distance remnants of (finite scales) charges.

Leads to a generalization of scaling algebras to charge

carrying (unobservable) fields.
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2. The algebraic approach to QFT

Theory completely characterized by assignment

O → A(O)

O ⊂ R4 open double cone, A(O) ⊂ B(H ) C∗-algebra

generated by observables measurable in O.

Assumptions:

• isotony : O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2);

• locality : O1 ⊂ O ′
2 =⇒ A(O1) ⊂ A(O2)′;

• covariance: ∃ U : P↑
+ → U (H ) unitary repn

such that

U(Λ, x)A(O)U(Λ, x)∗ = A(ΛO+x), (Λ, x) ∈ P↑
+,

and SpU( , ·) ⊆ V +;

• existence of vacuum: ∃! Ω ∈ H translation

invariant unit vector, AΩ = H .

A :=
⋃

O A(O) quasi-local algebra.

Notation. α(Λ,x)(A) := U(Λ, x)AU(Λ, x)∗.
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3. Scaling algebras and scaling limits

Conventional RG transformations defined by

Rλ(φ(x)) = Zλφ(λx), λ > 0,

lim
λ→0

〈Ω, Rλ(φ(x))Rλ(φ(y))Ω〉 finite.

Characteristic feature: scale length by λ and 4-

momentum by λ−1 =⇒ phase space occupation

of orbits is fixed.

Momentum scaling equivalent to:

lim
(Λ,x)→( ,0)

sup
λ>0

‖α(Λ,λx)(Rλ(A)) − Rλ(A)‖ = 0.

For A : R+ → A bounded function:

‖A‖ := sup
λ>0

‖A(λ)‖,

α(Λ,x)(A)(λ) := α(Λ,λx)(A(λ)).

Definition.[BV95] The local scaling algebra of O is

A(O) := {λ ∈ R+ → A(λ) ∈ A(λO) :

lim
(Λ,x)→( ,0)

‖α(Λ,x)(A) − A‖ = 0}.
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Morally A(λ) = Rλ(A) =⇒ A orbits of observables

under all possible RG transformations.

If ϕ (locally normal) state on A:

ϕ
λ
(A) := ϕ(A(λ))

SLA(ϕ) :=
{
weak* limit pts of

(
ϕ

λ

)
λ>0

}
.

Theorem.[BV95] SLA(ϕ) is independent of ϕ. For

(π0,Ω0) the GNS representation of ω0 ∈ SLA, O →

A0(O) := π0(A(O)) is a covariant local net of observ-

ables with vacumm Ω0 (if d = 2 the vacuum may not

be pure).

A0 scaling limit net of A. Possibilities:

• degenerate scaling limit : the various A0 non-

isomorphic;

• unique (quantum) scaling limit: the various A0

isomorphic and non-trivial;

• classical scaling limit : each A0(O) = C .
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4. Examples and applications

• Examples of unique scaling limit:

Theorem.[BV98] Each scaling limit theory of the

free scalar field in d = 3, 4 spacetime dimensions,

is isomorphic to the massless free scalar field.

• Example of classical scaling limit [Lutz, Diploma

(1997)]: φ generalized free field with constant

mass measure, A(O) generated by !n(O)φ(x),

x ∈ O, n(O) → +∞ as radius O → 0.

• Schwinger model (massless QED2): A(O) = mas-

sive free scalar field in d = 2 =⇒ no charged

states =⇒ conventional interpretation: confined

electrons.

Intrinsic? Scaling limit has nontrivial charged

states [Buc96, BV98] =⇒ A has ultracharges,

intrinsically confined.
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φ field on (M, g) globally hyperbolic. Φ satisfies local

stability at p ∈ M if (x normal coordinates at p):

lim
λ→0

〈Φ, Rλ(φ(x1)) . . . Rλ(φ(xn))Φ〉

= 〈Ω0,φ0(x1) . . .φ0(xn)Ω0〉,

φ0 field on R4 [HNS, CMP 94 (1984)].

• substitute for spectrum condition (no symmetries

on M);

• drawback: depends on φ.

Algebraic approach:

• local net R ⊂ M → A(R);

• F : R × Σ → M Cauchy foliation; propagator

family : α(F )
t,s ∈ Aut(A), t ≥ s,

α(F )
t,s α

(F )
s,u = α(F )

t,u , α(F )
t,t = idA,

α(F )
t,s (A(F ({s}× G)′′)) = A(F ({t}× G)′′), G ⊂ Σ.

Dynamics at p: {α(F )}F with {∂tF (p)}F = V +
p .

Exists for linear models [Kay, CMP 71 (1980)].
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Scaling algebra at p ∈ M , Ap(O), O ⊂ TpM : bounded

functions λ ∈ R+ → A(λ) ∈ A with

• A(λ) ∈ A(expp(λO));

• limt,s→0 lim supλ→0‖α
(F )
λt,λs(A(λ)) − A(λ)‖ = 0

∀α(F ).

SLA(ϕ) defined as before.

Proposition.[Verch, PhD (1996)] Let ω0 ∈ SLA(ϕ)

and π0 its GNS representation. Then O → Ap,0(O) :=

π0(Ap(O)) is a local net on R4, and in favourable cases

∃ α(F,0)
t,s propagator family such that

α(F,0)
t,s ◦ π0 = π0 ◦α(F )

t,s .

Algebraic version of local stability: ϕ state on A

satisfies local stability at p if ∀ω0 ∈ SLA(ϕ), π0 is

irreducible, and ∃ x ∈ R4 → α(0)
x ∈ Aut(Ap,0) which

satisfies the spectrum condition and such that

α(0)
(t−s)v ◦π0 = π0 ◦α(F )

t,s , v = ∂tF (p).
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5. Superselection charges and

reconstruction of fields

Interesting states in particle physics describe localized

excitations of the vacuum =⇒ criteria needed to

select the relevant states.

Superselection sectors: equivalence classes of corre-

sponding irreducible representations.

Two main criteria:

• a representation π is DHR (or describes a localiz-

able charge) if

π ! A(O ′) ∼= ι ! A(O ′), ∀O,

ι vacuum representation [DHR, CMP 23 (1971)];

• a representation π is BF (or describes a topological

charge) if

π ! A(C ′) ∼= ι ! A(C ′)

for all spacelike cones C [BF, CMP 84 (1982)].
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Theorem. π describes massive particles =⇒ π ∈

BF.

DHR (resp. BF) charges can be described by classes

of localized endomorphisms: ρ : A → A,

ρ(A) = A, A ∈ A(O ′)

(resp. A ∈ A(C ′)).

Global intertwiners between ρ,σ:

(ρ : σ) := {T ∈ A : Tρ(A) = σ(A)T, A ∈ A}

Local intertwiners, (ρ : σ)O , defined by Tρ(A) =

σ(A)T , A ∈ A(O).

Mathematical structure of ∆ := {ρ} encodes physical

properties of charges:

• composition law;

• exchange statistics (Bose-Fermi alternative);

• conjugates.
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In models:

{charges} ←→
{ irreducible representations

of global gauge group G

}
.

More precisely:

• O → F(O) ⊂ B(HF) generated by (unobservable)

fields;

• V : G → U(HF) unitary representation of G

(compact), V (g)F(O)V (g)∗ = F(O);

• A(O) = F(O)G := {F ∈ F(O) : V (g)FV (g)∗ =

F ∀ g ∈ G}, observables.

Correspondence defined by:

HF =
⊕

ξ

Hξ,

V (g) ! Hξ = vξ(g) ⊗ H mult
ξ

, A ! Hξ = dξ ⊗ πξ(A),

vξ dξ-dimensional irreducible G-representation, πξ ∈

DHR.

Notation. βg(F ) := V (g)FV (g)∗.
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This is already encoded in observables:

Theorem.[DR, CMP 131 (1990)] Given A,∆ there

exist unique F, V as above, such that:

• F has normal commutation relations;

• ∀ρ ∈ ∆(O) irreducible ∃ψ1, . . . ,ψd ∈ F(O) and

v[ρ] d-dimensional irreducible G-representation

such that

ψ∗
i ψj = δij ,

d∑

j=1

ψjψ
∗
j = ,

βg(ψi) =
d∑

j=1

v[ρ](g)ijψj ,

ρ(A) =
d∑

j=1

ψjAψ
∗
j , A ∈ A;

• F(O) is generated by A(O) and the multiplets ψj.

Analogous result for BF charges, with net C → F(C ),

i.e. fields localized in cones.
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5. Scaling algebras for fields and

scaling limit of charges

Reference [DMV04].

O → F(O) field net. Construction parallel to the

observable case. For F : R+ → F bounded:

βg(F )(λ) := βg(F (λ)), g ∈ G.

Scaling field algebra F(O): bounded functions F :

R+ → F such that

• F (λ) ∈ F(λO);

• lim(Λ,x)→( ,0)‖α(Λ,x)(F ) − F‖ = 0;

• limg→e‖βg(F ) − F‖ = 0.

=⇒ We restrict to “dimensionless” charges.

Clearly: A(O) ⊂ F(O).

ϕ state on F:
(
ϕ

λ

)
λ>0

and SLF(ϕ) defined as for

observables.
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Theorem. SLF(ϕ) is independent of ϕ. For (π0,Ω0)

the GNS representation of ω0 ∈ SLF, O → F0(O) :=

π0(F(O)) is a covariant normal field net with an

action V0 of G0 := G/N0 such that

A0(O) := π0(A(O)) = F0(O)G.

General situation:

A
SL

!!!!
!!

!!
!

DR

""""
""

""
"

A0

DR
###

##
##

# F

SL
$$$$

$$
$$

F0 ⊇ F0

F0 ! F0 =⇒ A has confined ultracharges [Buc96]:

charges appearing at short distances but not at finite

distances.

Intrinsic: everything fixed by the observable net.

Example. Schwinger model: F = A =⇒ F0 = A0 !

F0.
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“Converse” problem: which charges survive to the

scaling limit.

Some may disappear: if scaling limit classical, G0 =

{e} (canonical DR gauge group of A0) =⇒ all charges

disappear.

Conditions needed to select preserved charges.

Physical picture: “pointlike” objects survive.

ψj(λ) ∈ F(λO) of class ξ =⇒ ψj(λ)Ω charge ξ

localized in λO. If ξ pointlike, Heisenberg =⇒
energy(ψj(λ)Ω) ∼ λ−1.

Note: ψj(·) 3∈ F(O). But

αhψj(λ) :=
∫

P̃↑
+

dΛd4x h(Λ, x)α(Λ,λx)(ψj(λ)),

h ∈ L1(P̃↑
+). Then αhψj(λ) ∈ F(O1), O1 ⊃ O.

Requirement above equivalent to:

lim sup
λ→0

‖[ψj(λ) − αhψj(λ)]Ω‖+

‖[ψj(λ) − αhψj(λ)]∗Ω‖ < ε,

for small supph.
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Theorem. With ξ and ψj(λ) as above, there exists

ψj = ∗s –lim
h→δ

π0(αhψj) ∈ F0(O1)′′

for each O1 ⊃ O, and ψj is a G0-multiplet of class

ξ, with v(0)
ξ (gN0) := vξ(g) a well-defined irrep of G0.

Furthermore,

ρ(a) :=
d∑

j=1

ψjaψ∗
j , a ∈ A0,

is a localized irreducible DHR endomorphism of A0.

Example. Majorana free field φ: ψ(λ) = φ(fλ).

If all sectors are preserved, much of the superselection

structure can be determined locally.

Theorem. If all the F(O) are factors, F(O)∩F(O)′ =

C , and each sector is preserved in some scaling limit,

then

(ρ : σ) = (ρ : σ)O , ∀O.

Generalization of result of Roberts for dilation invari-

ant theories [Rob, CMP 37 (1974)], useful on curved

spacetimes.
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BF charges expected in nonabelian gauge theories

(cone ↔ flux string), which also exhibit confinement

=⇒ above analysis too narrow: if quarks are non-

confined, they are localized in cones.

Problem: spacelike cones not affected by rescaling

=⇒ how to implement RG phase space?

In asymptotically free theories charges in cones should

become localized in the scaling limit (flux string van-

ishes) =⇒ phase space recovered asymptotically.

Define F(C , O), O ⊂ C : bounded functions F : R+ →

F such that:

• F (λ) ∈ F(λC );

• lim(Λ,x)→( ,0)‖α(Λ,x)(F ) − F‖ = 0;

• limg→e‖βg(F ) − F‖ = 0;

• limλ→0 supA∈A(O′)1‖[F (λ), A(λ)]‖ = 0.

F C∗-algebra generated by all F(C , O).
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ϕ normal state on B(HF): states
(
ϕ

λ

)
λ>0

on F and

SLF(ϕ) defined as above.

Theorem. SLF(ϕ) is independent of ϕ. For (π0,Ω0)

the GNS representation of ω0 ∈ SLF,

O → F0(O) :=
⋂

C⊃O

π0(F(C , O))′′

is a covariant normal field net with an action V0 of

G0 := G/N0.

We obtain a net indexed by double cones in the scaling

limit, as expected in the asymptotically free case.

Study of preservation similar to DHR case: fix ψj(λ) ∈
F(λC ); if ∀ Ĉ ⊃ O, ∃ ψ̂j(λ) ∈ F(λĈ ) asymptotically

localized in O, and such that for small supph

lim sup
λ→0

‖[ψj(λ) − αhψ̂j(λ)]Ω‖ + ‖[. . . ]∗Ω‖ < ε,

then

ψj = ∗s –lim
h→δ

π0(αhψ̂j) ∈ F0(O1)′′

is independent of ψ̂j , and is a multiplet inducing a

DHR charge.
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To summarize:

A
SL %%

&&

A0

&&
BF(A) BF0(A)! "'' %%%%% DHR(A0)

Provides another confinement notion:

ξ ∈ DHR(A0) \BF0(A) is a confined ultracharge of A.
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7. Conclusions and outlook

AQFT provides tools for model-independent, intrin-

sic analysis of short-distance properties of QFT and

classification of possible ultra-violet behaviour.

It makes also possible the formulation of unambiguous

confinement criteria, as illustrated by the Schwinger

model example.

It has also applications to the problem of selecting

physical states in curved spacetime.

Scaling algerba methods can be generalized to charge

carrying fields, in order to analyse the short-distance

properties of superselection charges, and in particular

to characterize their preservation.

Future developments:

• study of models (non-preserved charges, preserved

BF charges);

• anomalous charge scaling;

• scaling of charges without DR theorem.
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