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Introduction

Introduction 1/2

Generally accepted view: continuous description of spacetime
should break down at distance of the order of the Planck length λP

Analysis of [Doplicher, Fredenhagen, Roberts ’95]: QM + GR⇒
accuracies ∆qµ on spacetime coordinates of an event in
Minkowski satisfy Spacetime Uncertainty Relations (STUR),
implemented by commutation relations between the qµ’s (more
later)
Minkowski spacetime replaced by a Quantum (noncommutative)
Spacetime E (C*-algebra generated by qµ’s)
QFT on QST has interesting properties (more later)
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Introduction

Introduction 2/2

Problems with DFR argument:
it works only on Minkowski spacetime
it uses GR in linearized approximation
it relies on a rough criterion for formation of trapped surfaces
it employs the notion of energy, ill-defined on curved backgrounds

Questions

1 Is it possible to generalize DFR argument to (some) curved
spacetime, in a more rigourous way?

2 Is it possible to define QFT on the resulting model of curved
Quantum Spacetime?

3 Does it have interesting physical consequences?

Here: positive answer to 1, and partially to 2 and 3
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DFR Minkowskian QST

Operational limitations to localizability of events

QM: need energy E ' 1/L to prepare a quantum state localized in a
small region of size L
GR: large energy E creates a trapped surface of radius r ' E around
localization region

⇓

localization has operational meaning only if L ≥ r i.e. L & 1 = λP (in
natural units)

Principle of gravitational stability against localization
The gravitational field generated by the concentration of energy
required by the Heisenberg Uncertainty Principle to localize an event in
spacetime should not be so strong to hide the event itself to any distant
observer
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DFR Minkowskian QST

Spacetime Uncertainty Relations
If only one coordinate is localized with high precision, TS will not form:
transferred energy density goes to zero
[DFR] analysis:

quantum state localized in region of sizes ∆qµ, µ = 0, . . . ,3, has
energy E ' 1/minµ{∆qµ} =⇒ energy density ρ
solution of linearized Einstein equations with source ρ given by
retarded potential
condition of non formation of TS: g00 > 0

Spacetime Uncertainty Relations (STURs)

∆q0
3∑

j=1

∆qj ≥ λ2
P ,

3∑
i<j=1

∆qi∆qj ≥ λ2
P

Necessary conditions imposed by the principle of gravitational stability
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DFR Minkowskian QST

Quantum Spacetime
STURs can be realized by assuming that ∆qµ’s are indeterminacies of
quantum operators qµ satisfying suitable commutation relations, as for
Heisenberg uncertainty relations

Quantum Conditions

[qµ,qν ] = iλ2
PQµν , [qρ,Qµν ] = 0,

QµνQµν = 0,
(

1
4

Qµν(∗Q)µν

)2

= 1

Noncommutative C*-algebra E of Quantum Spacetime (QST)
generated by qµ’s replaces algebra of functions on Minkowski
It is equipped with action of the Poincaré group qµ → Λµνqν + aν

E has nontrivial center Z (E) = functions on a manifold
Σ ' TS2 × Z2 and E ' C0(Σ,K), K = compact operators
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DFR Minkowskian QST

Optimal localization on QST

In an irreducible representation qµ is a Lorentz transform of
Schroedinger’s (x1, x2,p1,p2)

⇓

There exists states of optimal localization ω on E, minimizing∑
µ

(∆qµ)2 = (∆x1)2 + (∆x2)2 + (∆p1)2 + (∆p2)2

given by translates of the harmonic oscillator ground states
They are the best approximation of points on QST
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QFT on Minkowskian QST

Free quantum fields on QST

φ free (scalar) field on Minkowski can be defined on QST through
Weyl-von Neumann-Moyal quantizazion

φ(q) =

∫
d4k φ̌(k)⊗ eikq

(formal) element of F⊗ E, F field algebra
it satisfies Klein-Gordon equation (derivatives on E defined by
∂µφ(q) := ∂

∂xµφ(q + x1) )
ωx , ωy optimally localized states around x , y =⇒
[id⊗ ωx (φ(q)), id⊗ ωy (φ(q))] falls off as a Gaussian of width λP for
large spacelike x − y

Locality is lost at distances small w.r.t. λP , but recovered as λP → 0
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QFT on Minkowskian QST

(Perturbative) interacting fields on QST
Several (inequivalent) possibilities of defining perturbative interacting
fields

Hamiltonian approach (interaction picture) with interaction
Lagrangian defined by : φ(q)n : [DFR]
Yang-Feldman equation and quasi-planar Wick products [Bahns,
Doplicher, Fredenhagen, Piacitelli ’02 & ’04]
Hamiltonian approach with interaction defined by quantum Wick
product : φn(q) :Q, which yields UV-finite (IR-cutoff) theory to all
orders [Bahns, Doplicher, Fredenhagen, Piacitelli ’03]

: φn(q) :Q defined by generalizing point-splitting to QST:
e.g., for n = 2

: φ2 : (x) := lim
y→x

φ(x)φ(y)− 〈Ω, φ(x)φ(y)Ω〉

limit y → x has to be performed in a way compatible with the STURs
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QFT on Minkowskian QST

Quantum Wick product
Introduce quantum coordinates of independent events

qµ1 := qµ ⊗ 1, qµ2 := 1⊗ qµ

and identify commutators [qµ1 ,q
ν
1 ] = iλ2

PQµν = [qµ2 ,q
ν
2 ]

introduce center of mass and relative coordinates

q̄µ :=
1
2

(qµ1 + qµ2 ), ξµ :=
1
λP

(qµ1 − qµ2 )

identification of commutators =⇒ [q̄µ, ξν ] = 0
evaluating optimally localized state on ξµ yields a map
E (2) : E⊗Z E→ E ' C∗(q̄µ)

Quantum Wick product

: φ2(q̄) :Q := E (2)(: φ(q1)φ(q2) :)

=

∫
d4k1d4k2 : φ̌(k1)φ̌(k2) : e−

λ2
P
4 |k1−k2|2ei(k1+k2)q̄
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Localizability in a spherically symmetric spacetime

Overview

Aim: produce a rigorous version of DFR argument on curved
spacetime
Strategy:

1 prepare a localized state ωf of (scalar massless) free quantum
field φ in equilibrium with background

2 evaluate change to expectation value of Tµν after localization
(CCR of φ as substitute for energy and Heisenberg principle)

3 estimate backreaction on metric and formation of TS by
Raychauduri equation (no linearization of gravity and more
precise criterion than g00 > 0)

4 impose principle of gravitational stability
Step 3 (and 4) only under assumption of spherical symmetry of
background metric
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Localizability in a spherically symmetric spacetime

Change of ω(Tµν) under localization
φ field on curved background (M,gµν) and ω quasifree Hadamard
state of φ (positive linear expectation functional on *-algebra A

generated by Wick monomials in φ and its derivatives) satisfying

2φ = 0, Gµν = 8πω(Tµν)

f ∈ C∞c (M), state ωf after localization (measurement of φ(f ))

ωf (A) :=
ω(φ(f )Aφ(f ))

ω(φ(f )φ(f ))
, A ∈ A

Proposition
If µ is a lightlike direction and ∆ the causal propagator of φ,

〈Tµµ(x)〉f ,0 := (ωf − ω)(Tµµ(x)) ≥ 1
2
|∂µ∆(f )(x)|2

ω(φ(f )φ(f ))

Gerardo Morsella (Roma 2) Curved QST and Cosmology PAFT12 17 / 28
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Localizability in a spherically symmetric spacetime

Spherical symmetry
To evaluate backreaction, we should solve

Gµν = 8π ωf (Tµν)

It is very difficult. Assume spherical symmetry
Spacetime is R2 × S2, retarded coordinates:
spanned by future null geodesic emanated from
the center of the sphere

I u proper time on the worldline γ of center
I s retarded distance: affine parameter along the

null geodesics with s(0) = 0 and ṡ(0) = 1

The general spherically symmetric metric is

ds2 := −A(u, s)du2 − 2ds du + r(u, s)2dS2

Fix u, the family of null geodesics forms a cone
Cu
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Localizability in a spherically symmetric spacetime

Expansion of null geodesics
For every Cu consider the expansion parameter θ of that family
θ measures the rate of change of 4πr2

along Cu

I θ > 0 expansion

I θ = 0 trapped surface

I θ < 0 contraction
Its evolution along Cu is governed by the Raychaudhuri equation

θ̇ = −θ
2

2
− Rss, lim

s→0+
sθ = 2

We solve this equation semiclassically, namely:

Rss = 8π ωf (Tss) = 8π ω(Tss) + 8π〈Tss〉f ,0 = R(0)
ss + 8π〈Tss〉f ,0

R(0)
µν is the “curvature” without the influence of the measurement.
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Localizability in a spherically symmetric spacetime

Backreaction and trapped surfaces
Theorem
M spherically symmetric and ω as before. Assume:

1 semiclassical Einstein equations are satisfied by ω and M
2 R(0)

ss = 8πω(Tss) is positive on C0

3 for every f supported in J+(C0)

|ω(φ(f )φ(f ))| ≤ C‖s∆(f )‖L2(C0)‖∂s(s∆(f ))‖L2(C0)

Consider f as in figure with

s1 < s2 <
3
2

s1, (s2)2 < s2 , s2 :=
1

6 C

Hence θ vanishes in C0 and thus J+(C0)
contains a trapped surface.

C0

O ⊃ supp f

s1

s2
supp ∆(f ) ∩ J−(O)
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Localizability in a spherically symmetric spacetime

Comments

Solutions of the semiclassical Einstein equation do exists at least
in cosmology [Pinamonti ’11]

R(0)
ss ≥ 0 is realized in every reasonable cosmological model

The required continuity for ω occurs in many concrete examples
(Minkowski vacuum, many other Hadamard states of interest
[Dappiaggi, Pinamonti, Porrmann ’11])

If we impose principle of gravitational stability:

Extension of DFR result
On a spherically symmetric spacetime, it has no operational meaning
to localize an event in a spherical region of size smaller than some
minimal length λP

For a full set of STURs in curved spacetime, one would need to treat
the non-symmetric case
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Backreaction on (curved) QST and Cosmology

Overview

Question
Does the quantum structure of spacetime have consequences of
cosmological interest?

General strategy: evaluate ω(Tµν) on QST modeled on cosmological
(FRW) spacetime and solve Einstein equation
Obvious (big) problems:

no general definition of curved QST
no extension of QFT to it

Our (more modest) strategy here:
evaluate ω(T00) on Minkowski QST E

make an ansatz for ω(T00) on flat FRW QST using conformal
embedding in Minkowski
solve Einstein (Friedmann) equation

Gerardo Morsella (Roma 2) Curved QST and Cosmology PAFT12 23 / 28



Backreaction on (curved) QST and Cosmology

Overview

Question
Does the quantum structure of spacetime have consequences of
cosmological interest?

General strategy: evaluate ω(Tµν) on QST modeled on cosmological
(FRW) spacetime and solve Einstein equation
Obvious (big) problems:

no general definition of curved QST
no extension of QFT to it

Our (more modest) strategy here:
evaluate ω(T00) on Minkowski QST E

make an ansatz for ω(T00) on flat FRW QST using conformal
embedding in Minkowski
solve Einstein (Friedmann) equation

Gerardo Morsella (Roma 2) Curved QST and Cosmology PAFT12 23 / 28



Backreaction on (curved) QST and Cosmology

Overview

Question
Does the quantum structure of spacetime have consequences of
cosmological interest?

General strategy: evaluate ω(Tµν) on QST modeled on cosmological
(FRW) spacetime and solve Einstein equation
Obvious (big) problems:

no general definition of curved QST
no extension of QFT to it

Our (more modest) strategy here:
evaluate ω(T00) on Minkowski QST E

make an ansatz for ω(T00) on flat FRW QST using conformal
embedding in Minkowski
solve Einstein (Friedmann) equation

Gerardo Morsella (Roma 2) Curved QST and Cosmology PAFT12 23 / 28



Backreaction on (curved) QST and Cosmology

Energy density on Minkowski QST

On Minkowski QST:
energy density defined by the quantum Wick product:

: ρ(q̄) :Q := E (2)
(

: ∂0φ(q1)∂0φ(q2)− 1
2
ηµν∂µφ(q1)∂νφ(q2) :

)
KMS state ωβ (β inverse temperature) modeling the CMB

ωβ(φ̌(k1)φ̌(k2)) = δ(k1 + k2)δ(k2
1 )

ε(k0
1 )

1− e−βk0
1
.

Result:

ωβ(: ρ :Q) = 4π
∫ +∞

0
k3 e−λ

2
Pk2

eβk − 1
dk ∼ C

βλ3
P
,

λ

β
>> 1
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eβk − 1
dk ∼ C

βλ3
P
,

λ

β
>> 1
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Backreaction on (curved) QST and Cosmology

Energy density on flat FRW QST
On flat FRW spacetime, with metric

ds2 = −dt2 + a(t)2dx2 = a(τ)2[−dτ2 + dx2]

consider conformally coulpled massless scalar field φ
consider ωM

β conformal KMS state for φ
temperature scales with a: β = β0a(t)
the length scale λP is scale invariant

A “reasonable expression” for the expectation value of the energy
density is then

ρβ(t) := ωM
β (: ρ :Q) = 4π

∫ +∞

0
dk k3 e−λ

2
Pk2

eβ(t)k − 1
∼ C
β0a(t)λ3

P

λP

β
>> 1

less divergent for a→ 0 than classical matter
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Backreaction on (curved) QST and Cosmology

Solution of Friedmann equation near BB
Friedmann equation for small a becomes

H2(t) =
C

a(t)
.

Solution in terms of conformal time

τ0 − τ =

∫ t0

t

1
a(t ′)

dt ′ =

∫ a0

a

1
a′2H(a′)

da′ =
2√
C

( 1√
a
− 1
√

a0

)
Classical solution (radiation
dominated): τ → τ0 for a→ a0
Horizon problem
Quantum NC Corrections:
τ → −∞ for a→ 0
Singularity is light like, no Horizon
Problem
Power law inflation with Null Big
Bang I− ∪ i−
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Summary and Outlook

Summary and Outlook
Summary:

Using
I free field CCR instead of Heisenberg principle
I semiclassical backreaction instead of linearized Einstein equations
I Raychauduri equation instead of g00 > 0
I spherical symmetry

it is possible to find a generalization to curved spacetime of the
case of STURs in which ∆q0 ' ∆q1 ' . . .∆q3, yielding a minimal
localization length λP
Using this we can estimate the influence of non commutativity on
the curvature
In a cosmological model the Horizon problem disappears

Open questions:
Can we extend the argument to non-symmetric spacetimes
obtaining a generalization of the full set of STURs?
Can we implement these STURs through a noncommutative
spacetime E and construct a full fledged QFT on it?
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