Asymptotic Morphisms and Scaling Limit of Quantum Field Theories

Gerardo Morsella

Tor Vergata University, Roma

work in progress with R. Conti

GDRE GREFI-GENCO Meeting

Paris, Institut Henri Poincaré, May 30 - June 1, 2011

Asymptotic Morphisms and Scaling of QFT GREFI-GENCO Paris 2011 1 / 30

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

- 2 Superselection Theory
- 3 Scaling Limit of QFT
- Asymptotic Morphisms and Scaling Limit Superselection Theory
- 5 Conclusions and Outlook

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

1/3

Notion of aysmptotic morphism of C*-algebras introduced by [Connes-Higson '90] in connection with KK-theory and Baum-Connes conjecture.

Definition

 $\mathfrak{A}, \mathfrak{B}$ C*-algebras. An asymptotic morphism from \mathfrak{A} to \mathfrak{B} is a family a functions $\rho_{\lambda} : \mathfrak{A} \to \mathfrak{B}, \lambda \in (0, 1]$, such that

• $\lambda \mapsto \rho_{\lambda}(A)$ is continuous for every $A \in \mathfrak{A}$;

• for every $A, A' \in \mathfrak{A}, \alpha \in \mathbb{C}$,

$$\lim_{\lambda \to 0} \rho_{\lambda}(A + \alpha A') - \rho_{\lambda}(A) - \alpha \rho_{\lambda}(A') = 0$$
$$\lim_{\lambda \to 0} \rho_{\lambda}(A^{*}) - \rho_{\lambda}(A)^{*} = 0$$
$$\lim_{\lambda \to 0} \rho_{\lambda}(AA') - \rho_{\lambda}(A)\rho_{\lambda}(A') = 0$$

4 (1) × 4 (2) × 4 (2) × 4 (2) ×

1/3

Notion of aysmptotic morphism of C*-algebras introduced by [Connes-Higson '90] in connection with KK-theory and Baum-Connes conjecture.

Definition

 $\mathfrak{A}, \mathfrak{B}$ C*-algebras. An asymptotic morphism from \mathfrak{A} to \mathfrak{B} is a family a functions $\rho_{\lambda} : \mathfrak{A} \to \mathfrak{B}, \lambda \in (0, 1]$, such that

- $\lambda \mapsto \rho_{\lambda}(A)$ is continuous for every $A \in \mathfrak{A}$;
- for every $A, A' \in \mathfrak{A}, \alpha \in \mathbb{C}$,

$$\lim_{\lambda \to 0} \rho_{\lambda}(\mathbf{A} + \alpha \mathbf{A}') - \rho_{\lambda}(\mathbf{A}) - \alpha \rho_{\lambda}(\mathbf{A}') = 0$$
$$\lim_{\lambda \to 0} \rho_{\lambda}(\mathbf{A}^{*}) - \rho_{\lambda}(\mathbf{A})^{*} = 0$$
$$\lim_{\lambda \to 0} \rho_{\lambda}(\mathbf{A}\mathbf{A}') - \rho_{\lambda}(\mathbf{A})\rho_{\lambda}(\mathbf{A}') = 0$$

< ロ > < 同 > < 回 > < 回 >

2/3

Definition above has several important consequences:

- asymptotic morphism (ρ_{λ}) induces a homomorphism $\rho_* : K_*(\mathfrak{A}) \to K_*(\mathfrak{B})$
- there is a natural notion of homotopy, homotopy classes can be composed in a way consistent with K-theory
- homotopy classes of asymptotic morphisms
 C₀(ℝ) ⊗ 𝔅 ⊗ 𝔅 → C₀(ℝ) ⊗ 𝔅 ⊗ 𝔅 form an abelian group E(𝔅, 𝔅)
 (E-theory)
- E-theory is a bifunctor, with product structure analogous to Kasparov product, and there is a natural transformation KK(𝔄,𝔅) → E(𝔅,𝔅)
- $KK(\mathfrak{A},\mathfrak{B})\simeq E(\mathfrak{A},\mathfrak{B})$ if \mathfrak{A} is K-nuclear

Moral: $E(\mathfrak{A}, \mathfrak{B})$ is another description of $KK(\mathfrak{A}, \mathfrak{B})$

2/3

Definition above has several important consequences:

- asymptotic morphism (ρ_{λ}) induces a homomorphism $\rho_* : K_*(\mathfrak{A}) \to K_*(\mathfrak{B})$
- there is a natural notion of homotopy, homotopy classes can be composed in a way consistent with K-theory
- homotopy classes of asymptotic morphisms
 C₀(ℝ) ⊗ 𝔅 ⊗ 𝔅 → C₀(ℝ) ⊗ 𝔅 ⊗ 𝔅 form an abelian group E(𝔅, 𝔅)
 (E-theory)
- E-theory is a bifunctor, with product structure analogous to Kasparov product, and there is a natural transformation KK(𝔄,𝔅) → E(𝔅,𝔅)

• $KK(\mathfrak{A},\mathfrak{B})\simeq E(\mathfrak{A},\mathfrak{B})$ if \mathfrak{A} is K-nuclear

Moral: $E(\mathfrak{A}, \mathfrak{B})$ is another description of $KK(\mathfrak{A}, \mathfrak{B})$

3/3

KK-theory is in turn a key tool for constructing C*-algebras invariants and an important ingredient in noncommutative geometry (index theorems, Novikov and Baum-Connes conjecture...)

Intriguing question [Doplicher '99]: Does asymptotic morphisms (or related objects) play a role in (the operator algebraic approach to) Quantum Field Theory?

Motivation:

- morphisms of the algebra of observables are fundamental elements in the description of the theory superselection (charge) structure
- superselection structure of the (short-distance) scaling limit of the theory could be related to some kind of asymptotic morphism

This talk: describe the two above ingredients, and try to combine them in order to do some steps towards an answer

3/3

KK-theory is in turn a key tool for constructing C*-algebras invariants and an important ingredient in noncommutative geometry (index theorems, Novikov and Baum-Connes conjecture...)

Intriguing question [Doplicher '99]: Does asymptotic morphisms (or related objects) play a role in (the operator algebraic approach to) Quantum Field Theory? Motivation:

- morphisms of the algebra of observables are fundamental elements in the description of the theory superselection (charge) structure
- superselection structure of the (short-distance) scaling limit of the theory could be related to some kind of asymptotic morphism

This talk: describe the two above ingredients, and try to combine them in order to do some steps towards an answer

3/3

KK-theory is in turn a key tool for constructing C*-algebras invariants and an important ingredient in noncommutative geometry (index theorems, Novikov and Baum-Connes conjecture...)

Intriguing question [Doplicher '99]: Does asymptotic morphisms (or related objects) play a role in (the operator algebraic approach to) Quantum Field Theory? Motivation:

- morphisms of the algebra of observables are fundamental elements in the description of the theory superselection (charge) structure
- superselection structure of the (short-distance) scaling limit of the theory could be related to some kind of asymptotic morphism

This talk: describe the two above ingredients, and try to combine them in order to do some steps towards an answer

イロト 不得 トイヨト イヨト

Outline

- 2 Superselection Theory
- 3 Scaling Limit of QFT
- Asymptotic Morphisms and Scaling Limit Superselection Theory
- 5 Conclusions and Outlook

Outline

Introduction

3 Scaling Limit of QFT

Asymptotic Morphisms and Scaling Limit Superselection Theory

5 Conclusions and Outlook

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Superselection Theory Data:

1/2

- *H* separable;
- O ⊂ ℝ⁴ → 𝔄(O) ⊂ B(𝔄) net of von Neumann algebras (generated by observables measurable in O) satisfying Haag duality

$$\mathscr{A}(O) = \mathscr{A}(O')';$$

• $\gamma \mapsto U(\gamma)$ unitary representation of \mathscr{P}_+^{\uparrow} with positive energy, such that

$$U(\gamma) \mathscr{A}(\mathcal{O}) U(\gamma)^* = \mathscr{A}(\gamma.\mathcal{O});$$

• $\Omega \in \mathscr{H}$ unique such that $U(x)\Omega = \Omega$ (vacuum).

Superselection sectors are meant to identify representations which describe "localized excitations of the vacuum" and are given by classes of localized endomorphisms:

$$\Delta(\mathcal{O}) := \{ \rho \in \mathsf{End}(\mathscr{A}) \, : \, \rho(\mathcal{A}) = \mathcal{A} \, \forall \mathcal{A} \in \mathscr{A}(\mathcal{O}') \}$$

Superselection Theory Data:

1/2

- *H* separable;
- O ⊂ ℝ⁴ → 𝔄(O) ⊂ B(𝔄) net of von Neumann algebras (generated by observables measurable in O) satisfying Haag duality

$$\mathscr{A}(O) = \mathscr{A}(O')';$$

• $\gamma \mapsto U(\gamma)$ unitary representation of \mathscr{P}_+^{\uparrow} with positive energy, such that

$$U(\gamma) \mathscr{A}(\mathcal{O}) U(\gamma)^* = \mathscr{A}(\gamma.\mathcal{O});$$

• $\Omega \in \mathscr{H}$ unique such that $U(x)\Omega = \Omega$ (vacuum).

Superselection sectors are meant to identify representations which describe "localized excitations of the vacuum" and are given by classes of localized endomorphisms:

$$\Delta(\mathcal{O}) := \{ \rho \in \mathsf{End}(\mathscr{A}) \, : \, \rho(\mathcal{A}) = \mathcal{A} \, \forall \mathcal{A} \in \mathscr{A}(\mathcal{O}') \}$$

Superselection Theory

2/2

Theorem ([Doplicher-Roberts '90])

 $\exists ! O \mapsto \mathscr{F}(O)$ field net, $g \in G \mapsto V(g)$, G compact (global) gauge group, such that:

- $\mathscr{F}(O)^G = \mathscr{A}(O);$
- ∀ρ ∈ Δ(O) ∃ψ₁,...,ψ_d ∈ ℱ(O) orthogonal isometries (ψ_i^{*}ψ_j = δ_{ij}), v_[ρ] d-dimensional irrep of G, with

Ad
$$V(g)(\psi_i) = \sum_{j=1}^d v_{[\rho]}(g)_{ij}\psi_j, \quad \rho(A) = \sum_{j=1}^d \psi_j A \psi_j^*;$$

• \mathscr{F} has normal commutation relations, defined by $k \in Z(G)$ with $k^2 = e$.

 $\mathscr{F}(\mathscr{A}) = \mathscr{F}, G(\mathscr{A}) = G$ are the canonical DR field net and gauge group of \mathscr{A}

Superselection Theory

2/2

Theorem ([Doplicher-Roberts '90])

 $\exists ! O \mapsto \mathscr{F}(O)$ field net, $g \in G \mapsto V(g)$, G compact (global) gauge group, such that:

- $\mathscr{F}(O)^G = \mathscr{A}(O);$
- ∀ρ ∈ Δ(O) ∃ψ₁,...,ψ_d ∈ ℱ(O) orthogonal isometries (ψ^{*}_iψ_j = δ_{ij}), v_[ρ] d-dimensional irrep of G, with

Ad
$$V(g)(\psi_i) = \sum_{j=1}^d v_{[\rho]}(g)_{ij}\psi_j, \quad \rho(A) = \sum_{j=1}^d \psi_j A \psi_j^*;$$

• \mathscr{F} has normal commutation relations, defined by $k \in Z(G)$ with $k^2 = e$.

 $\mathscr{F}(\mathscr{A}) = \mathscr{F}, G(\mathscr{A}) = G$ are the canonical DR field net and gauge group of \mathscr{A}

Outline

2 Superselection Theory

- 4 Asymptotic Morphisms and Scaling Limit Superselection Theory
- 5 Conclusions and Outlook

< ロ > < 同 > < 回 > < 回 >

Scaling Algebras 1/2 On C*-algebra of bounded functions $\lambda \in \mathbb{R}^{\times}_{+} \mapsto \underline{F}_{\lambda} \in \mathscr{F}$ define:

$$\begin{split} \|\underline{F}_{\lambda}\| &:= \sup_{\lambda} \|\underline{F}_{\lambda}\|,\\ \underline{\alpha}_{(\Lambda,x)}(\underline{F})_{\lambda} &:= \mathsf{Ad} \ U(\Lambda,\lambda x)(\underline{F}_{\lambda}), \qquad (\Lambda,x) \in \mathscr{P}_{+}^{\uparrow},\\ \underline{\beta}_{g}(\underline{F})_{\lambda} &:= \mathsf{Ad} \ V(g)(\underline{F}_{\lambda}), \qquad g \in G. \end{split}$$

Definition

Local scaling algebra of O:

$$\underline{\mathfrak{F}}(\mathcal{O}) := \left\{ \underline{F} : \underline{F}_{\lambda} \in \mathscr{F}(\lambda \mathcal{O}), \lim_{\gamma \to e} \|\underline{\alpha}_{\gamma}(\underline{F}) - \underline{F}\| = 0, \\ \lim_{g \to e} \|\underline{\beta}_{g}(\underline{F}) - \underline{F}\| = 0 \right\}$$

If $G = \{e\}$ then $\mathscr{F} = \mathscr{A}$ and we set $\underline{\mathfrak{A}} := \underline{\mathfrak{F}}$ (original scaling algebra of [Buchholz-Verch '95])

Scaling Algebras 1/2 On C*-algebra of bounded functions $\lambda \in \mathbb{R}^{\times}_{+} \mapsto \underline{F}_{\lambda} \in \mathscr{F}$ define:

$$\begin{split} \|\underline{F}_{\lambda}\| &:= \sup_{\lambda} \|\underline{F}_{\lambda}\|,\\ \underline{\alpha}_{(\Lambda,x)}(\underline{F})_{\lambda} &:= \operatorname{Ad} U(\Lambda, \lambda x)(\underline{F}_{\lambda}), \qquad (\Lambda, x) \in \mathscr{P}_{+}^{\uparrow},\\ \underline{\beta}_{g}(\underline{F})_{\lambda} &:= \operatorname{Ad} V(g)(\underline{F}_{\lambda}), \qquad g \in G. \end{split}$$

Definition

Local scaling algebra of O:

$$\underline{\mathfrak{F}}(\mathcal{O}) := \left\{ \underline{F} : \underline{F}_{\lambda} \in \mathscr{F}(\lambda \mathcal{O}), \lim_{\gamma \to e} \|\underline{\alpha}_{\gamma}(\underline{F}) - \underline{F}\| = \mathbf{0}, \\ \lim_{g \to e} \|\underline{\beta}_{g}(\underline{F}) - \underline{F}\| = \mathbf{0} \right\}$$

If $G = \{e\}$ then $\mathscr{F} = \mathscr{A}$ and we set $\mathfrak{A} := \mathfrak{F}$ (original scaling algebra of [Buchholz-Verch '95])

Scaling Algebras 1/2 On C*-algebra of bounded functions $\lambda \in \mathbb{R}^{\times}_{+} \mapsto \underline{F}_{\lambda} \in \mathscr{F}$ define:

$$\begin{split} \|\underline{F}_{\lambda}\| &:= \sup_{\lambda} \|\underline{F}_{\lambda}\|,\\ \underline{\alpha}_{(\Lambda,x)}(\underline{F})_{\lambda} &:= \mathsf{Ad} \ U(\Lambda,\lambda x)(\underline{F}_{\lambda}), \qquad (\Lambda,x) \in \mathscr{P}_{+}^{\uparrow},\\ \underline{\beta}_{g}(\underline{F})_{\lambda} &:= \mathsf{Ad} \ V(g)(\underline{F}_{\lambda}), \qquad g \in G. \end{split}$$

Definition

Local scaling algebra of O:

$$\underline{\mathfrak{F}}(\mathcal{O}) := \left\{ \underline{F} : \underline{F}_{\lambda} \in \mathscr{F}(\lambda \mathcal{O}), \lim_{\gamma \to e} \|\underline{\alpha}_{\gamma}(\underline{F}) - \underline{F}\| = 0, \\ \lim_{g \to e} \|\underline{\beta}_{g}(\underline{F}) - \underline{F}\| = 0 \right\}$$

If $G = \{e\}$ then $\mathscr{F} = \mathscr{A}$ and we set $\underline{\mathfrak{A}} := \underline{\mathfrak{F}}$ (original scaling algebra of [Buchholz-Verch '95])

Scaling Algebras

2/2

- Continuity condition w.r.t. translations ⇔ <u>*F*</u>_λ has a "phase space occupation" independent of λ ⇔ ħ not rescaled.
- Continuity condition w.r.t. $G \iff \underline{F}_{\lambda}$ has a "charge transfer" independent of λ
- Typical elements

$$\underline{F}_{\lambda} = \int dx \, dg \, h(x,g) \, V(g) \, U(\lambda x) e^{i \phi_{\lambda}(f)} \, U(\lambda x)^* \, V(g)^*,$$

where $\phi_{\lambda}(x) = Z_{\lambda}\phi(\lambda x)$ is the usual renormalized field.

• We consider "all possible renormalization schemes" compatible with above requirements.

Scaling Limits

 φ locally normal state on $\mathscr{F} \rightsquigarrow \underline{\varphi}_{\lambda}(\underline{F}) := \varphi(\underline{F}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $SL^{\mathscr{F}}(\varphi) := \{ weak^* \text{ limit points of } (\underline{\varphi}_{\lambda})_{\lambda > 0} \text{ for } \lambda \to 0 \}.$

Theorem ([D'Antoni-M.-Verch '04])

•
$$SL^{\mathscr{F}}(\varphi) = (\underline{\omega}_{0,\iota})_{\iota \in I}$$
 is independent of φ .

• $\underline{\omega}_{0,\iota} \in SL^{\mathscr{F}}$ with GNS representation $\pi_{0,\iota}$. Then $\mathscr{F}_{0,\iota}(\mathcal{O}) := \pi_{0,\iota}(\underline{\mathfrak{F}}(\mathcal{O}))''$ is a field net in vacuum representation.

•
$$\exists G_{0,\iota} = G/N_{0,\iota}$$
 such that $\mathscr{A}_{0,\iota} = \mathscr{F}_{0,\iota}^{G_{0,\iota}}$.

 $O \mapsto \mathscr{F}_{0,\iota}(O)$ is the scaling limit net of \mathscr{F} . Physical interpretation: $\mathscr{F}_{0,\iota}$ describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

(日)

Scaling Limits

 φ locally normal state on $\mathscr{F} \rightsquigarrow \underline{\varphi}_{\lambda}(\underline{F}) := \varphi(\underline{F}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $SL^{\mathscr{F}}(\varphi) := \{ weak^* \text{ limit points of } (\underline{\varphi}_{\lambda})_{\lambda > 0} \text{ for } \lambda \to 0 \}.$

Theorem ([D'Antoni-M.-Verch '04])

•
$$\mathsf{SL}^{\mathscr{F}}(\varphi) = (\underline{\omega}_{\mathbf{0},\iota})_{\iota \in I}$$
 is independent of φ .

• $\underline{\omega}_{0,\iota} \in SL^{\mathscr{F}}$ with GNS representation $\pi_{0,\iota}$. Then $\mathscr{F}_{0,\iota}(\mathcal{O}) := \pi_{0,\iota}(\underline{\mathfrak{F}}(\mathcal{O}))''$ is a field net in vacuum representation.

•
$$\exists G_{0,\iota} = G/N_{0,\iota}$$
 such that $\mathscr{A}_{0,\iota} = \mathscr{F}_{0,\iota}^{G_{0,\iota}}$.

 $O \mapsto \mathscr{F}_{0,\iota}(O)$ is the scaling limit net of \mathscr{F} . Physical interpretation: $\mathscr{F}_{0,\iota}$ describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

Scaling Limits

 φ locally normal state on $\mathscr{F} \rightsquigarrow \underline{\varphi}_{\lambda}(\underline{F}) := \varphi(\underline{F}_{\lambda})$ states on $\underline{\mathfrak{A}}$,

 $SL^{\mathscr{F}}(\varphi) := \{ weak^* \text{ limit points of } (\underline{\varphi}_{\lambda})_{\lambda > 0} \text{ for } \lambda \to 0 \}.$

Theorem ([D'Antoni-M.-Verch '04])

•
$$\mathsf{SL}^{\mathscr{F}}(\varphi) = (\underline{\omega}_{\mathbf{0},\iota})_{\iota \in I}$$
 is independent of φ .

• $\underline{\omega}_{0,\iota} \in SL^{\mathscr{F}}$ with GNS representation $\pi_{0,\iota}$. Then $\mathscr{F}_{0,\iota}(\mathcal{O}) := \pi_{0,\iota}(\underline{\mathfrak{F}}(\mathcal{O}))''$ is a field net in vacuum representation.

•
$$\exists G_{0,\iota} = G/N_{0,\iota}$$
 such that $\mathscr{A}_{0,\iota} = \mathscr{F}_{0,\iota}^{G_{0,\iota}}$.

 $O \mapsto \mathscr{F}_{0,\iota}(O)$ is the scaling limit net of \mathscr{F} . Physical interpretation: $\mathscr{F}_{0,\iota}$ describes the short-distance (i.e. high-energy) behaviour of \mathscr{A} .

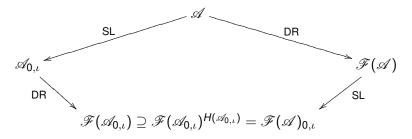
Scaling Limits and Superselection Sectors 1/2 $\mathscr{F}(\mathscr{A})_{0,\iota}$ is not in general the canonical DR field net for $\mathscr{A}_{0,\iota}$ General situation:

 $H(\mathscr{A}_{0,\iota}) \subset G(\mathscr{A}_{0,\iota})$ normal subgroup such that

 $G(\mathscr{A})_{0,\iota} = G(\mathscr{A})/N(\mathscr{A})_{0,\iota} = G(\mathscr{A}_{0,\iota})/H(\mathscr{A}_{0,\iota}).$

 $\begin{aligned} \mathscr{F}(\mathscr{A}_{0,\iota}) \supseteq \mathscr{F}(\mathscr{A})_{0,\iota} & \Longrightarrow & \mathscr{A} \text{ has confined charges.} \\ \text{E.g. in the Schwinger model:} \\ \mathscr{F}(\mathscr{A}) = \mathscr{A} & \Longrightarrow & \mathscr{F}(\mathscr{A})_{0,\iota} = \mathscr{A}_{0,\iota} \subseteq \mathscr{F}(\mathscr{A}_{0,\iota}) \left[\texttt{Buchholz, Verch'spr} \right] \end{aligned}$

Scaling Limits and Superselection Sectors $\mathscr{F}(\mathscr{A})_{0,\iota}$ is not in general the canonical DR field net for $\mathscr{A}_{0,\iota}$ General situation:

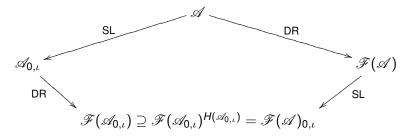


 $H(\mathscr{A}_{0,\iota}) \subset G(\mathscr{A}_{0,\iota})$ normal subgroup such that

$$G(\mathscr{A})_{0,\iota} = G(\mathscr{A})/N(\mathscr{A})_{0,\iota} = G(\mathscr{A}_{0,\iota})/H(\mathscr{A}_{0,\iota}).$$

 $\begin{array}{l} \mathscr{F}(\mathscr{A}_{0,\iota}) \supseteq \mathscr{F}(\mathscr{A})_{0,\iota} \implies \mathscr{A} \text{ has confined charges.} \\ \text{E.g. in the Schwinger model:} \\ \mathscr{F}(\mathscr{A}) = \mathscr{A} \implies \mathscr{F}(\mathscr{A})_{0,\iota} = \mathscr{A}_{0,\iota} \subsetneq \mathscr{F}(\mathscr{A}_{0,\iota}) \left[\texttt{Buchholz-Verch}'97 \right]_{\mathcal{F}_{0,\iota}} \end{array}$

Scaling Limits and Superselection Sectors $\mathscr{F}(\mathscr{A})_{0,\iota}$ is not in general the canonical DR field net for $\mathscr{A}_{0,\iota}$ General situation:



 $H(\mathscr{A}_{0,\iota}) \subset G(\mathscr{A}_{0,\iota})$ normal subgroup such that

$$G(\mathscr{A})_{0,\iota} = G(\mathscr{A})/N(\mathscr{A})_{0,\iota} = G(\mathscr{A}_{0,\iota})/H(\mathscr{A}_{0,\iota}).$$

 $\begin{array}{l} \mathscr{F}(\mathscr{A}_{0,\iota}) \supsetneq \mathscr{F}(\mathscr{A})_{0,\iota} \implies \mathscr{A} \text{ has confined charges.} \\ \text{E.g. in the Schwinger model:} \\ \mathscr{F}(\mathscr{A}) = \mathscr{A} \implies \mathscr{F}(\mathscr{A})_{0,\iota} = \mathscr{A}_{0,\iota} \subsetneq \mathscr{F}(\mathscr{A}_{0,\iota}) \left[\text{Buchholz-Verch '97} \right]_{\mathcal{O}(\mathfrak{A})} \\ \end{array}$

Scaling Limits and Superselection Sectors 2/2

Which sectors survive the scaling limit?

Physical picture \rightarrow pointlike charges survive.

- $\psi_j(\lambda) \in \mathscr{F}(\lambda O)$ of class $[\rho] \implies \psi_j(\lambda)\Omega$ charge $[\rho]$ in λO .
- $[\rho]$ pointlike \implies energy of $\psi_j(\lambda)\Omega \sim \lambda^{-1}$.

Theorem ([D'Antoni-M.-Verch '04])

With $\psi_j(\lambda)$ as above and

$$(\underline{\alpha}_h \psi_j)_{\lambda} := \int_{\mathbb{R}^4} dx h(x) \operatorname{Ad} U(\lambda x)(\psi_j(\lambda)),$$

there exists

$$\psi_j^{\mathsf{0}} = \operatorname{s*-lim}_{h \to \delta} \pi_{0,\iota}(\underline{\alpha}_h \psi_j) \in \mathscr{F}_{0,\iota}(\mathcal{O})$$

and ψ_i^0 is a $G_{0,\iota}$ -multilplet which implements a DHR sector of $\mathscr{A}_{0,\iota}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Scaling Limits and Superselection Sectors 2/2

Which sectors *survive* the scaling limit? Physical picture \rightarrow pointlike charges survive.

- $\psi_j(\lambda) \in \mathscr{F}(\lambda O)$ of class $[\rho] \implies \psi_j(\lambda)\Omega$ charge $[\rho]$ in λO .
- [ρ] pointlike \implies energy of $\psi_j(\lambda)\Omega \sim \lambda^{-1}$.

Theorem ([D'Antoni-M.-Verch '04]]

With $\psi_j(\lambda)$ as above and

$$(\underline{\alpha}_h \psi_j)_{\lambda} := \int_{\mathbb{R}^4} dx h(x) \operatorname{Ad} U(\lambda x)(\psi_j(\lambda)),$$

there exists

$$\psi_j^{\mathsf{0}} = \underset{h \to \delta}{\mathsf{s*-lim}} \pi_{\mathsf{0},\iota}(\underline{\alpha}_h \psi_j) \in \mathscr{F}_{\mathsf{0},\iota}(\mathcal{O})$$

and ψ_i^0 is a $G_{0,\iota}$ -multilplet which implements a DHR sector of $\mathscr{A}_{0,\iota}$.

< ロ > < 同 > < 回 > < 回 >

Scaling Limits and Superselection Sectors 2/2

Which sectors *survive* the scaling limit? Physical picture \rightarrow pointlike charges survive.

- $\psi_j(\lambda) \in \mathscr{F}(\lambda O)$ of class $[\rho] \implies \psi_j(\lambda)\Omega$ charge $[\rho]$ in λO .
- [ρ] pointlike \implies energy of $\psi_j(\lambda)\Omega \sim \lambda^{-1}$.

Theorem ([D'Antoni-M.-Verch '04]) With $\psi_i(\lambda)$ as above and

$$(\underline{\alpha}_h\psi_j)_\lambda := \int_{\mathbb{R}^4} dx h(x) \operatorname{Ad} U(\lambda x)(\psi_j(\lambda)),$$

there exists

$$\psi_j^{\mathsf{0}} = \operatorname{s*-lim}_{h \to \delta} \pi_{0,\iota}(\underline{\alpha}_h \psi_j) \in \mathscr{F}_{0,\iota}(O)$$

and ψ_i^0 is a $G_{0,\iota}$ -multilplet which implements a DHR sector of $\mathscr{A}_{0,\iota}$.

-

Some Advertisement

Furhter results:

- Non-preserved sectors can actually appear, models constructed using certain generalized free fields [Lutz '97, D'Antoni-M. '07]
- Model independent understanding of pointlike field renormalization and scaling of OPE (substitute for coupling constant renormalization) [Bostelmann-D'Antoni-M. '09]
- Discussion of scaling limit of subsystems
 ℬ ⊂ 𝔄 ⊂ 𝔅(𝔄) = 𝔅(𝔅), in connection with quantum Noether theorem [Conti-M. '09]
- Relation with quantum Gromov-Hausdorff metric [Bostelmann-Guido-Suriano]
- Application to scaling of models with factorizing S-matrix [Bostelmann-Lechner-M. '11]

イロト 不得 トイヨト イヨト

Outline

Introduction

- 2 Superselection Theory
- Scaling Limit of QFT

Asymptotic Morphisms and Scaling Limit Superselection Theory

5 Conclusions and Outlook

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Main Idea

We rephrase Doplicher's question more precisely: Question: It is possible to associate to DHR morphisms ρ_0 of $\mathscr{A}_{0,\iota}$, some sort of asymptotic morphism of \mathscr{A} ?

We try to use two remarks:

Connes-Higson asymptotic morphisms (from 𝔅 to 𝔅) can be equivalently described as morphisms ρ : 𝔅 → 𝔅₀ where 𝔅₀ := C_b((0, 1], 𝔅)/C₀((0, 1], 𝔅), using a (set-theoretic) section s : 𝔅₀ → C_b((0, 1], 𝔅)

• Analogy: $\underline{\mathfrak{A}} \leftrightarrow C_b((0,1],\mathfrak{A})$, ker $\pi_{0,\iota} \leftrightarrow C_0((0,1],\mathfrak{A})$, $\mathscr{A}_{0,\iota} \leftrightarrow \mathfrak{A}_0$ Problems:

(1) How to relate morphisms of $\mathscr{A}_{0,\iota}$ with morphisms $\mathscr{A} \to \mathscr{A}_{0,\iota}$?

If the set of the set

イロト 不得 トイヨト イヨト

Main Idea

We rephrase Doplicher's question more precisely: Question: It is possible to associate to DHR morphisms ρ_0 of $\mathscr{A}_{0,\iota}$, some sort of asymptotic morphism of \mathscr{A} ? We try to use two remarks:

Connes-Higson asymptotic morphisms (from 𝔅 to 𝔅) can be equivalently described as morphisms ρ : 𝔅 → 𝔅₀ where 𝔅₀ := C_b((0, 1], 𝔅)/C₀((0, 1], 𝔅), using a (set-theoretic) section s : 𝔅₀ → C_b((0, 1], 𝔅)

• Analogy: $\underline{\mathfrak{A}} \leftrightarrow C_b((0,1],\mathfrak{A})$, ker $\pi_{0,\iota} \leftrightarrow C_0((0,1],\mathfrak{A})$, $\mathscr{A}_{0,\iota} \leftrightarrow \mathfrak{A}_0$ roblems:

- **1** How to relate morphisms of $\mathscr{A}_{0,\iota}$ with morphisms $\mathscr{A} \to \mathscr{A}_{0,\iota}$?
- ② How to deal with weak closure in $\mathscr{A}_{0,\iota}(\mathcal{O}) = \pi_{0,\iota}(\mathfrak{A}(\mathcal{O}))^-$?

Main Idea

We rephrase Doplicher's question more precisely: Question: It is possible to associate to DHR morphisms ρ_0 of $\mathscr{A}_{0,\iota}$, some sort of asymptotic morphism of \mathscr{A} ? We try to use two remarks:

- Connes-Higson asymptotic morphisms (from 𝔅 to 𝔅) can be equivalently described as morphisms ρ : 𝔅 → 𝔅₀ where 𝔅₀ := C_b((0, 1], 𝔅)/C₀((0, 1], 𝔅), using a (set-theoretic) section s : 𝔅₀ → C_b((0, 1], 𝔅)
- Analogy: $\underline{\mathfrak{A}} \leftrightarrow C_b((0,1],\mathfrak{A})$, ker $\pi_{0,\iota} \leftrightarrow C_0((0,1],\mathfrak{A})$, $\mathscr{A}_{0,\iota} \leftrightarrow \mathfrak{A}_0$ Problems:
 - **(**) How to relate morphisms of $\mathscr{A}_{0,\iota}$ with morphisms $\mathscr{A} \to \mathscr{A}_{0,\iota}$?
 - **2** How to deal with weak closure in $\mathscr{A}_{0,\iota}(\mathcal{O}) = \pi_{0,\iota}(\mathfrak{A}(\mathcal{O}))^-$?

Relating \mathscr{A} and $\mathscr{A}_{0,\iota}$

1/2

Recall: \mathscr{A} satisfies the split property if for all $O_1 \Subset O_2$ (i.e. $\overline{O}_1 \subset O_2$) there exists \mathscr{N} type I factor such that

 $\mathscr{A}(O_1) \subset \mathscr{N} \subset \mathscr{A}(O_2)$

Equivalently $\mathscr{A}(O_1) \lor \mathscr{A}(O_2)' \simeq \mathscr{A}(O_1) \otimes \mathscr{A}(O_2)'$

Theorem

• \mathscr{A} , \mathscr{B} nets of type III₁ factors with split property

• $O_1 \in O_2 \in \cdots \in O_n \in \cdots$ with $\bigcup_n O_n = \mathbb{R}^4$

There exists isomorphism $\phi : \mathscr{A} \to \mathscr{B}$ such that $\phi(\mathscr{A}(O_n)) = \mathscr{B}(O_n)$.

Hypotheses above:

- satisfied in free field theory, and expected to hold quite generally
- conditions are known which imply them for \mathscr{A} , $\mathscr{A}_{0,\iota}$ (nuclearity)

Relating \mathscr{A} and $\mathscr{A}_{0,\iota}$

1/2

Recall: \mathscr{A} satisfies the split property if for all $O_1 \Subset O_2$ (i.e. $\overline{O}_1 \subset O_2$) there exists \mathscr{N} type I factor such that

 $\mathscr{A}(O_1) \subset \mathscr{N} \subset \mathscr{A}(O_2)$

Equivalently $\mathscr{A}(O_1) \lor \mathscr{A}(O_2)' \simeq \mathscr{A}(O_1) \otimes \mathscr{A}(O_2)'$

Theorem

- A, B nets of type III1 factors with split property
- $O_1 \Subset O_2 \Subset \cdots \Subset O_n \Subset \cdots$ with $\bigcup_n O_n = \mathbb{R}^4$

There exists isomorphism $\phi : \mathscr{A} \to \mathscr{B}$ such that $\phi(\mathscr{A}(O_n)) = \mathscr{B}(O_n)$.

Hypotheses above:

- satisfied in free field theory, and expected to hold quite generally
- conditions are known which imply them for A, A_{0,ν} (nuclearity)

ヘロト 不通 とうき とうとう ほう

1/2

Recall: \mathscr{A} satisfies the split property if for all $O_1 \Subset O_2$ (i.e. $\overline{O}_1 \subset O_2$) there exists \mathscr{N} type I factor such that

 $\mathscr{A}(O_1) \subset \mathscr{N} \subset \mathscr{A}(O_2)$

Equivalently $\mathscr{A}(O_1) \lor \mathscr{A}(O_2)' \simeq \mathscr{A}(O_1) \otimes \mathscr{A}(O_2)'$

Theorem

• \mathscr{A} , \mathscr{B} nets of type III₁ factors with split property

• $O_1 \Subset O_2 \Subset \cdots \Subset O_n \Subset \cdots$ with $\bigcup_n O_n = \mathbb{R}^4$

There exists isomorphism $\phi : \mathscr{A} \to \mathscr{B}$ such that $\phi(\mathscr{A}(O_n)) = \mathscr{B}(O_n)$.

Hypotheses above:

- satisfied in free field theory, and expected to hold quite generally
- conditions are known which imply them for \mathscr{A} , $\mathscr{A}_{0,\iota}$ (nuclearity)

(日)

2/2

Proof.

If 𝔄(O_k) ⊂ 𝒩_k ⊂ 𝔄(O_{k+1}) type I factor, [Doplicher '82] gives a commuting diagram

which defines an isomorphism $\phi_{\mathscr{A}} : \mathscr{A} \to \mathscr{O}^{0}_{\mathscr{K}}$ (and same for \mathscr{B}) • $B(\mathscr{H}^{\otimes k-1}) \otimes \mathbb{1} \subset \phi_{\mathscr{A}}(\mathscr{A}(O_{k}))$ III₁ factor $\implies \phi_{\mathscr{A}}(\mathscr{A}(O_{k})) = B(\mathscr{H}^{\otimes k-1}) \otimes \mathscr{A}_{k}, \mathscr{A}_{k}$ III₁ factor • $\mathscr{A}(O_{k}), \mathscr{B}(O_{k})$ hyperfinite (by split) III₁ factors \implies isomorphic $\implies \exists U_{k} \in U(\mathscr{H})$ such that $U_{k}\mathscr{A}_{k}U_{k}^{*} = \mathscr{B}_{k}$ • $\bigotimes_{k} \operatorname{Ad} U_{k} \circ \phi_{\mathscr{A}}(\mathscr{A}(O_{k})) = \phi_{\mathscr{B}}(\mathscr{B}(O_{k}))$

2/2

Proof.

If 𝔄(O_k) ⊂ 𝒩_k ⊂ 𝔄(O_{k+1}) type I factor, [Doplicher '82] gives a commuting diagram

which defines an isomorphism $\phi_{\mathscr{A}} : \mathscr{A} \to \mathscr{O}^{0}_{\mathscr{K}}$ (and same for \mathscr{B}) • $B(\mathscr{K}^{\otimes k-1}) \otimes \mathbb{1} \subset \phi_{\mathscr{A}}(\mathscr{A}(O_{k}))$ III₁ factor $\implies \phi_{\mathscr{A}}(\mathscr{A}(O_{k})) = B(\mathscr{K}^{\otimes k-1}) \otimes \mathscr{A}_{k}, \mathscr{A}_{k}$ III₁ factor • $\mathscr{A}(O_{k}), \mathscr{B}(O_{k})$ hyperfinite (by split) III₁ factors \implies isomorphic $\implies \exists U_{k} \in U(\mathscr{K})$ such that $U_{k} \mathscr{A}_{k} U_{k}^{*} = \mathscr{B}_{k}$

• $\bigotimes_k \operatorname{Ad} U_k \circ \phi_{\mathscr{A}}(\mathscr{A}(O_k)) = \phi_{\mathscr{B}}(\mathscr{B}(O_k))$

2/2

Proof.

If 𝔄(O_k) ⊂ 𝒩_k ⊂ 𝔄(O_{k+1}) type I factor, [Doplicher '82] gives a commuting diagram

which defines an isomorphism $\phi_{\mathscr{A}} : \mathscr{A} \to \mathscr{O}^{0}_{\mathscr{K}}$ (and same for \mathscr{B}) • $B(\mathscr{K}^{\otimes k-1}) \otimes \mathbb{1} \subset \phi_{\mathscr{A}}(\mathscr{A}(O_{k}))$ III₁ factor $\implies \phi_{\mathscr{A}}(\mathscr{A}(O_{k})) = B(\mathscr{K}^{\otimes k-1}) \otimes \mathscr{A}_{k}, \mathscr{A}_{k}$ III₁ factor • $\mathscr{A}(O_{k}), \mathscr{B}(O_{k})$ hyperfinite (by split) III₁ factors \implies isomorphic

- $\implies \exists U_k \in U(\mathscr{K}) \text{ such that } U_k \mathscr{A}_k U_k^* = \mathscr{B}_k$
- $\bigotimes_k \operatorname{Ad} U_k \circ \phi_{\mathscr{A}}(\mathscr{A}(O_k)) = \phi_{\mathscr{B}}(\mathscr{B}(O_k))$

2/2

Proof.

If 𝔄(O_k) ⊂ 𝒩_k ⊂ 𝔄(O_{k+1}) type I factor, [Doplicher '82] gives a commuting diagram

which defines an isomorphism $\phi_{\mathscr{A}} : \mathscr{A} \to \mathscr{O}^{0}_{\mathscr{K}}$ (and same for \mathscr{B}) • $B(\mathscr{K}^{\otimes k-1}) \otimes \mathbb{1} \subset \phi_{\mathscr{A}}(\mathscr{A}(O_{k}))$ III₁ factor $\implies \phi_{\mathscr{A}}(\mathscr{A}(O_{k})) = B(\mathscr{K}^{\otimes k-1}) \otimes \mathscr{A}_{k}, \mathscr{A}_{k}$ III₁ factor • $\mathscr{A}(O_{k}), \mathscr{B}(O_{k})$ hyperfinite (by split) III₁ factors \implies isomorphic $\implies \exists U_{k} \in U(\mathscr{K})$ such that $U_{k}\mathscr{A}_{k}U_{k}^{*} = \mathscr{B}_{k}$

• $\bigotimes_k \operatorname{Ad} U_k \circ \phi_{\mathscr{A}}(\mathscr{A}(O_k)) = \phi_{\mathscr{B}}(\mathscr{B}(O_k))$

A "Weak Closure" of the Scaling Algebra

To exploit analogy $\mathscr{A}_{0,\iota} \leftrightarrow \mathfrak{A}_0$: need to lift elements $A \in \mathscr{A}_{0,\iota}(O) \setminus \pi_{0,\iota}(\mathfrak{A}(O))$ to some kind of functions $\lambda \mapsto A_\lambda \in \mathscr{A}$

Definition ([D'Antoni-M.-Verch '04])

 $\lambda \in \mathbb{R}_+ \mapsto A_\lambda \in \mathscr{A}(\lambda O)$ norm bounded is asymptotically contained in $\mathscr{A}_{0,\iota}(\hat{O})$ if $\forall \varepsilon > 0, \exists \underline{A}, \underline{A}' \in \mathfrak{A}(\hat{O})$ s.t.

$$\limsup_{\kappa} \left(\| (A_{\lambda_{\kappa}} - \underline{A}_{\lambda_{\kappa}}) \Omega \| + \| (A^*_{\lambda_{\kappa}} - \underline{A}'_{\lambda_{\kappa}}) \Omega \| \right) < \varepsilon$$

 $\mathfrak{A}^{\bullet}(\mathcal{O}) := \{ \lambda \mapsto \mathcal{A}_{\lambda} \text{ asymptotically contained in } \mathscr{A}_{0,\iota}(\hat{\mathcal{O}}) \text{ for all } \hat{\mathcal{O}} \supseteq \mathcal{O} \}$

Theorem

 $O \mapsto \underline{\mathfrak{A}}^{\bullet}(O)$ is a net of C^* -algebras, $\underline{\mathfrak{A}}(O) \subset \underline{\mathfrak{A}}^{\bullet}(O)$

Question: is it a local net?

Gerardo Morsella (Roma 2)

Asymptotic Morphisms and Scaling of QFT GREFI-GENCO Paris 2011 21 / 30

・ロト ・四ト ・ヨト ・ヨト

A "Weak Closure" of the Scaling Algebra

To exploit analogy $\mathscr{A}_{0,\iota} \leftrightarrow \mathfrak{A}_0$: need to lift elements $A \in \mathscr{A}_{0,\iota}(O) \setminus \pi_{0,\iota}(\mathfrak{A}(O))$ to some kind of functions $\lambda \mapsto A_\lambda \in \mathscr{A}$

Definition ([D'Antoni-M.-Verch '04])

 $\lambda \in \mathbb{R}_+ \mapsto A_\lambda \in \mathscr{A}(\lambda O)$ norm bounded is asymptotically contained in $\mathscr{A}_{0,\iota}(\hat{O})$ if $\forall \varepsilon > 0, \exists \underline{A}, \underline{A}' \in \mathfrak{A}(\hat{O})$ s.t.

$$\limsup_{\kappa} \big(\| (\boldsymbol{A}_{\lambda_{\kappa}} - \underline{\boldsymbol{A}}_{\lambda_{\kappa}}) \Omega \| + \| (\boldsymbol{A}_{\lambda_{\kappa}}^{*} - \underline{\boldsymbol{A}}_{\lambda_{\kappa}}^{\prime}) \Omega \| \big) < \varepsilon$$

 $\underline{\mathfrak{A}}^{\bullet}(\mathcal{O}) := \{ \lambda \mapsto \mathcal{A}_{\lambda} \text{ asymptotically contained in } \mathscr{A}_{0,\iota}(\hat{\mathcal{O}}) \text{ for all } \hat{\mathcal{O}} \supseteq \mathcal{O} \}$

Theorem

 $O \mapsto \underline{\mathfrak{A}}^{\bullet}(O)$ is a net of C^* -algebras, $\underline{\mathfrak{A}}(O) \subset \underline{\mathfrak{A}}^{\bullet}(O)$

Question: is it a local net?

Gerardo Morsella (Roma 2)

くロン 不通 とくほ とくほ とうほう

A "Weak Closure" of the Scaling Algebra

To exploit analogy $\mathscr{A}_{0,\iota} \leftrightarrow \mathfrak{A}_0$: need to lift elements $A \in \mathscr{A}_{0,\iota}(O) \setminus \pi_{0,\iota}(\mathfrak{A}(O))$ to some kind of functions $\lambda \mapsto A_\lambda \in \mathscr{A}$

Definition ([D'Antoni-M.-Verch '04])

 $\lambda \in \mathbb{R}_+ \mapsto A_\lambda \in \mathscr{A}(\lambda O)$ norm bounded is asymptotically contained in $\mathscr{A}_{0,\iota}(\hat{O})$ if $\forall \varepsilon > 0, \exists \underline{A}, \underline{A}' \in \mathfrak{A}(\hat{O})$ s.t.

$$\limsup_{\kappa} \big(\| (\textit{\textbf{A}}_{\lambda_{\kappa}} - \underline{\textit{\textbf{A}}}_{\lambda_{\kappa}}) \Omega \| + \| (\textit{\textbf{A}}_{\lambda_{\kappa}}^{*} - \underline{\textit{\textbf{A}}}_{\lambda_{\kappa}}) \Omega \| \big) < \varepsilon$$

 $\underline{\mathfrak{A}}^{\bullet}(\mathcal{O}) := \{ \lambda \mapsto \mathcal{A}_{\lambda} \text{ asymptotically contained in } \mathscr{A}_{0,\iota}(\hat{\mathcal{O}}) \text{ for all } \hat{\mathcal{O}} \supseteq \mathcal{O} \}$

Theorem

 $O \mapsto \underline{\mathfrak{A}}^{ullet}(O)$ is a net of C^* -algebras, $\underline{\mathfrak{A}}(O) \subset \underline{\mathfrak{A}}^{ullet}(O)$

Question: is it a local net?

Gerardo Morsella (Roma 2)

Asymptotic Morphisms and Scaling of QFT GREFI-GENCO Paris 2011 21 / 30

1/2

We need to extend $\pi_{0,\iota}$ to $\underline{\mathfrak{A}}^{\bullet}$

Definition ([Bostelmann-D'Anotni-M. '09])

 \mathscr{A} has convergent scaling limit if \exists subalgebra $\underline{\hat{\mathfrak{U}}} \subset \underline{\mathfrak{U}}$ such that

•
$$\underline{A} \in \hat{\underline{\mathfrak{A}}} \implies \exists \lim_{\lambda \to 0} \omega(\underline{A}_{\lambda});$$

•
$$\pi_{0,\iota}(\underline{\hat{\mathfrak{A}}}(O))'' = \mathscr{A}_{0,\iota}(O).$$

Satisfied by free fields.

Theorem

 \mathscr{A} with convergent scaling limit. There exists a morphism $\pi_{0,\iota}^{\bullet}: \underline{\mathfrak{A}}^{\bullet} \to \mathscr{A}_{0,\iota}^{d}$ which extends $\pi_{0,\iota}$ and such that $\mathscr{A}_{0,\iota}(\mathcal{O}) \subset \pi_{0,\iota}^{\bullet}(\underline{\mathfrak{A}}^{\bullet}(\mathcal{O}))$ for all \mathcal{O}

 $\mathscr{A}^d_{0,\iota}(\mathcal{O}):=\mathscr{A}_{0,\iota}(\mathcal{O}')'$ dual net

くロン 不通 とくほ とくほ とうほう

1/2

We need to extend $\pi_{0,\iota}$ to $\underline{\mathfrak{A}}^{\bullet}$

Definition ([Bostelmann-D'Anotni-M. '09])

 \mathscr{A} has convergent scaling limit if \exists subalgebra $\underline{\hat{\mathfrak{U}}} \subset \underline{\mathfrak{U}}$ such that

•
$$\underline{A} \in \underline{\hat{\mathfrak{U}}} \implies \exists \lim_{\lambda \to 0} \omega(\underline{A}_{\lambda});$$

•
$$\pi_{0,\iota}(\underline{\hat{\mathfrak{A}}}(O))'' = \mathscr{A}_{0,\iota}(O).$$

Satisfied by free fields.

Theorem

 \mathscr{A} with convergent scaling limit. There exists a morphism $\pi_{0,\iota}^{\bullet}: \underline{\mathfrak{A}}^{\bullet} \to \mathscr{A}_{0,\iota}^{d}$ which extends $\pi_{0,\iota}$ and such that $\mathscr{A}_{0,\iota}(O) \subset \pi_{0,\iota}^{\bullet}(\underline{\mathfrak{A}}^{\bullet}(O))$ for all O

 $\mathscr{A}^d_{0,\iota}(O) := \mathscr{A}_{0,\iota}(O')'$ dual net

くロン 不通 とくほ とくほ とうほう

2/2

Proof.

- definition of $\pi_{0,\iota}^{\bullet}$: by $\langle \pi_{0,\iota}(\underline{B})\Omega_{0,\iota}, \pi_{0,\iota}^{\bullet}(\underline{A})\pi_{0,\iota}(\underline{C})\Omega_{0,\iota} \rangle = \lim_{\kappa} \omega(\underline{B}_{\lambda_{\kappa}}^{*}A_{\lambda_{\kappa}}\underline{C}_{\lambda_{\kappa}})$ for $A \in \underline{\mathfrak{A}}^{\bullet}, \underline{B}, \underline{C} \in \underline{\mathfrak{A}}$
- show: $\pi_{0,\iota}(\underline{\alpha}_h A) \xrightarrow{s^*} \pi_{0,\iota}^{\bullet}(A)$ as $h \to \delta$, $(\underline{\alpha}_h A)_{\lambda} := \int dx h(x) \alpha_{\lambda x}(A_{\lambda}) \in \mathfrak{A}$
- multiplicativity of π[•]_{0,ι}: approximate A_λB_λΩ by (<u>α</u>_hA)_λ(<u>α</u>_hB)_λΩ and use multiplicativity of π_{0,ι}
- $\mathscr{A}_{0,\iota}(O) \subset \pi_{0,\iota}^{\bullet}(\underline{\mathfrak{A}}^{\bullet}(O))$: given $A_0 \in \mathscr{A}_{0,\iota}(O)$ we can find $\underline{A}_n \in \underline{\mathfrak{A}}(O)$ and $\lambda_n \searrow 0$ with $\pi_{0,\iota}(\underline{A}_n) \xrightarrow{s^*} A_0$ and $\|(\underline{A}_{n+1,\lambda} - \underline{A}_{n,\lambda})\Omega\| < 1/2^n$, $\lambda < \lambda_n$. With $A_{\lambda} := \underline{A}_{n,\lambda}, \lambda_{n+1} < \lambda < \lambda_n$, we have $A \in \underline{\mathfrak{A}}^{\bullet}(O)$, $\pi_{0,\iota}^{\bullet}(A) = A_0$

(日)

2/2

Proof.

• definition of $\pi_{0,\iota}^{\bullet}$: by $\langle \pi_{0,\iota}(\underline{B})\Omega_{0,\iota}, \pi_{0,\iota}^{\bullet}(\underline{A})\pi_{0,\iota}(\underline{C})\Omega_{0,\iota} \rangle = \lim_{\kappa} \omega(\underline{B}_{\lambda_{\kappa}}^{*}A_{\lambda_{\kappa}}\underline{C}_{\lambda_{\kappa}})$ for $A \in \underline{\mathfrak{A}}^{\bullet}, \underline{B}, \underline{C} \in \underline{\mathfrak{A}}$

• show:
$$\pi_{0,\iota}(\underline{\alpha}_h A) \xrightarrow{s^*} \pi_{0,\iota}^{\bullet}(A)$$
 as $h \to \delta$,
 $(\underline{\alpha}_h A)_{\lambda} := \int dx h(x) \alpha_{\lambda x}(A_{\lambda}) \in \mathfrak{A}$

- multiplicativity of π[•]_{0,ι}: approximate A_λB_λΩ by (<u>α</u>_hA)_λ(<u>α</u>_hB)_λΩ and use multiplicativity of π_{0,ι}
- $\mathscr{A}_{0,\iota}(O) \subset \pi_{0,\iota}^{\bullet}(\underline{\mathfrak{A}}^{\bullet}(O))$: given $A_0 \in \mathscr{A}_{0,\iota}(O)$ we can find $\underline{A}_n \in \underline{\mathfrak{A}}(O)$ and $\lambda_n \searrow 0$ with $\pi_{0,\iota}(\underline{A}_n) \xrightarrow{s^*} A_0$ and $\|(\underline{A}_{n+1,\lambda} - \underline{A}_{n,\lambda})\Omega\| < 1/2^n$, $\lambda < \lambda_n$. With $A_{\lambda} := \underline{A}_{n,\lambda}, \lambda_{n+1} < \lambda < \lambda_n$, we have $A \in \underline{\mathfrak{A}}^{\bullet}(O)$, $\pi_{0,\iota}^{\bullet}(A) = A_0$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Proof.

- definition of $\pi_{0,\iota}^{\bullet}$: by $\langle \pi_{0,\iota}(\underline{B})\Omega_{0,\iota}, \pi_{0,\iota}^{\bullet}(\underline{A})\pi_{0,\iota}(\underline{C})\Omega_{0,\iota} \rangle = \lim_{\kappa} \omega(\underline{B}_{\lambda_{\kappa}}^{*}A_{\lambda_{\kappa}}\underline{C}_{\lambda_{\kappa}})$ for $A \in \underline{\mathfrak{A}}^{\bullet}, \underline{B}, \underline{C} \in \underline{\mathfrak{A}}$
- show: $\pi_{0,\iota}(\underline{\alpha}_h A) \xrightarrow{s^*} \pi_{0,\iota}^{\bullet}(A)$ as $h \to \delta$, $(\underline{\alpha}_h A)_{\lambda} := \int dx h(x) \alpha_{\lambda x}(A_{\lambda}) \in \underline{\mathfrak{A}}$
- multiplicativity of π[•]_{0,ι}: approximate A_λB_λΩ by (<u>α</u>_hA)_λ(<u>α</u>_hB)_λΩ and use multiplicativity of π_{0,ι}
- $\mathscr{A}_{0,\iota}(O) \subset \pi_{0,\iota}^{\bullet}(\underline{\mathfrak{A}}^{\bullet}(O))$: given $A_0 \in \mathscr{A}_{0,\iota}(O)$ we can find $\underline{A}_n \in \underline{\widehat{\mathfrak{A}}}(O)$ and $\lambda_n \searrow 0$ with $\pi_{0,\iota}(\underline{A}_n) \xrightarrow{s^*} A_0$ and $\|(\underline{A}_{n+1,\lambda} - \underline{A}_{n,\lambda})\Omega\| < 1/2^n$, $\lambda < \lambda_n$. With $A_{\lambda} := \underline{A}_{n,\lambda}, \lambda_{n+1} < \lambda < \lambda_n$, we have $A \in \underline{\mathfrak{A}}^{\bullet}(O)$, $\pi_{0,\iota}^{\bullet}(A) = A_0$

Proof.

- definition of $\pi_{0,\iota}^{\bullet}$: by $\langle \pi_{0,\iota}(\underline{B})\Omega_{0,\iota}, \pi_{0,\iota}^{\bullet}(\underline{A})\pi_{0,\iota}(\underline{C})\Omega_{0,\iota} \rangle = \lim_{\kappa} \omega(\underline{B}_{\lambda_{\kappa}}^{*}A_{\lambda_{\kappa}}\underline{C}_{\lambda_{\kappa}})$ for $A \in \underline{\mathfrak{A}}^{\bullet}, \underline{B}, \underline{C} \in \underline{\mathfrak{A}}$
- show: $\pi_{0,\iota}(\underline{\alpha}_h A) \xrightarrow{s^*} \pi_{0,\iota}^{\bullet}(A)$ as $h \to \delta$, $(\underline{\alpha}_h A)_{\lambda} := \int dx h(x) \alpha_{\lambda x}(A_{\lambda}) \in \underline{\mathfrak{A}}$
- multiplicativity of π[•]_{0,ι}: approximate A_λB_λΩ by (<u>α</u>_hA)_λ(<u>α</u>_hB)_λΩ and use multiplicativity of π_{0,ι}
- $\mathscr{A}_{0,\iota}(O) \subset \pi_{0,\iota}^{\bullet}(\underline{\mathfrak{A}}^{\bullet}(O))$: given $A_0 \in \mathscr{A}_{0,\iota}(O)$ we can find $\underline{A}_n \in \underline{\hat{\mathfrak{A}}}(O)$ and $\lambda_n \searrow 0$ with $\pi_{0,\iota}(\underline{A}_n) \xrightarrow{s^*} A_0$ and $\|(\underline{A}_{n+1,\lambda} - \underline{A}_{n,\lambda})\Omega\| < 1/2^n$, $\lambda < \lambda_n$. With $A_{\lambda} := \underline{A}_{n,\lambda}, \lambda_{n+1} < \lambda < \lambda_n$, we have $A \in \underline{\mathfrak{A}}^{\bullet}(O)$, $\pi_{0,\iota}^{\bullet}(A) = A_0$

Asymptotic Morphisms and Scaling Limit Morphisms 1/3

From now on, \mathscr{A} has convergent scaling limit. We introduce a weak notion of asymptotic morphism

Definition

An asymptotic morphism relative to $\underline{\omega}_{0,\iota}$ is a family of maps $\rho_{\lambda} : \mathscr{A} \to \mathscr{A}, \lambda > 0$, such that

$$\begin{split} & \lim_{\kappa} \| [\rho_{\lambda_{\kappa}}(\boldsymbol{A})^{*} - \rho_{\lambda_{\kappa}}(\boldsymbol{A}^{*})] \Omega \| = 0 \\ & \lim_{\kappa} \| [\rho_{\lambda_{\kappa}}(\boldsymbol{A} + \alpha \boldsymbol{B}) - \rho_{\lambda_{\kappa}}(\boldsymbol{A}) + \alpha \rho_{\lambda_{\kappa}}(\boldsymbol{B})] \Omega \| = 0 \\ & \lim_{\kappa} \| [\rho_{\lambda_{\kappa}}(\boldsymbol{A}\boldsymbol{B}) - \rho_{\lambda_{\kappa}}(\boldsymbol{A}) \rho_{\lambda_{\kappa}}(\boldsymbol{B})] \Omega \| = 0 \end{split}$$

(ρ_λ) is called tame if furhermore
ρ[•](A) : λ ∈ ℝ₊ ↦ ρ_λ(A) ∈ 𝔄 belongs to 𝔄[•]
A ∈ 𝔄 ↦ ρ[•](A) ∈ 𝔄[•] is continuous
π[•]_{0,ℓ}(ρ[•](𝔄_{loc})) ⊂ (𝔄_{0,ℓ})_{loc}

Asymptotic Morphisms and Scaling Limit Morphisms1/3

From now on, \mathscr{A} has convergent scaling limit. We introduce a weak notion of asymptotic morphism

Definition

An asymptotic morphism relative to $\underline{\omega}_{0,\iota}$ is a family of maps $\rho_{\lambda} : \mathscr{A} \to \mathscr{A}, \lambda > 0$, such that

$$\begin{split} & \lim_{\kappa} \| [\rho_{\lambda_{\kappa}}(\boldsymbol{A})^{*} - \rho_{\lambda_{\kappa}}(\boldsymbol{A}^{*})] \Omega \| = 0 \\ & \lim_{\kappa} \| [\rho_{\lambda_{\kappa}}(\boldsymbol{A} + \alpha \boldsymbol{B}) - \rho_{\lambda_{\kappa}}(\boldsymbol{A}) + \alpha \rho_{\lambda_{\kappa}}(\boldsymbol{B})] \Omega \| = 0 \\ & \lim_{\kappa} \| [\rho_{\lambda_{\kappa}}(\boldsymbol{A}\boldsymbol{B}) - \rho_{\lambda_{\kappa}}(\boldsymbol{A}) \rho_{\lambda_{\kappa}}(\boldsymbol{B})] \Omega \| = 0 \end{split}$$

 (ρ_{λ}) is called tame if furhermore

•
$$\rho^{\bullet}(A) : \lambda \in \mathbb{R}_+ \mapsto \rho_{\lambda}(A) \in \mathscr{A}$$
 belongs to \mathfrak{A}^{\bullet}

• $A \in \mathscr{A} \mapsto \rho^{\bullet}(A) \in \underline{\mathfrak{A}}^{\bullet}$ is continuous

•
$$\pi^{\bullet}_{0,\iota}(\rho^{\bullet}(\mathscr{A}_{\mathsf{loc}})) \subset (\mathscr{A}_{0,\iota})_{\mathsf{loc}}$$

Asymptotic Morphisms and Scaling Limit Morphisms2/3

Following Connes-Higson and our analogy, asymptotic moprhisms should correspond to morphisms $\rho : \mathscr{A} \to \mathscr{A}_{0,\iota}$ Some should correspond to isomorphisms $\phi : \mathscr{A} \to \mathscr{A}_{0,\iota}$ (exist quite generally, shown above)

Definition

An asymptotic isomorphism is an asymptotic morphism (ϕ_{λ}) such that

• $\phi^{\bullet}: \mathscr{A} \to \underline{\mathfrak{A}}^{\bullet}$ is injective

• \exists continuous section $\bar{s} : \mathscr{A}_{0,\iota} \to \mathfrak{A}^{\bullet}$ of $\pi^{\bullet}_{0,\iota}$ such that $\phi^{\bullet}(\mathscr{A}) = \bar{s}(\mathscr{A}_{0,\iota})$

Note that there always exists a continuous section $s : \mathscr{A}_{0,\iota} \to \mathfrak{A}^{\bullet}$ of $\pi_{0,\iota}^{\bullet}$ [Bartle-Graves '50s] AMor_{ι}(\mathscr{A}) := {(ρ_{λ}) asymptotic morphism relative to $\underline{\omega}_{0,\iota}$ } Also_{ι}(\mathscr{A}) := {(ϕ_{λ}) asymptotic isomorphism relative to $\underline{\omega}_{0,\iota}$ }

イロン イロン イヨン 「ヨ

Asymptotic Morphisms and Scaling Limit Morphisms2/3

Following Connes-Higson and our analogy, asymptotic moprhisms should correspond to morphisms $\rho : \mathscr{A} \to \mathscr{A}_{0,\iota}$ Some should correspond to isomorphisms $\phi : \mathscr{A} \to \mathscr{A}_{0,\iota}$ (exist quite generally, shown above)

Definition

An asymptotic isomorphism is an asymptotic morphism (ϕ_{λ}) such that

•
$$\phi^{\bullet}: \mathscr{A} \to \underline{\mathfrak{A}}^{\bullet}$$
 is injective

• \exists continuous section $\bar{s} : \mathscr{A}_{0,\iota} \to \mathfrak{A}^{\bullet}$ of $\pi_{0,\iota}^{\bullet}$ such that $\phi^{\bullet}(\mathscr{A}) = \bar{s}(\mathscr{A}_{0,\iota})$

Note that there always exists a continuous section $s : \mathscr{A}_{0,\iota} \to \mathfrak{A}^{\bullet}$ of $\pi_{0,\iota}^{\bullet}$ [Bartle-Graves '50s]

 $\mathsf{AMor}_{\iota}(\mathscr{A}) := \{(\rho_{\lambda}) \text{ asymptotic morphism relative to } \underline{\omega}_{0,\iota}\}$ $\mathsf{Also}_{\iota}(\mathscr{A}) := \{(\phi_{\lambda}) \text{ asymptotic isomorphism relative to } \underline{\omega}_{0,\iota}\}$

イロト 不得 トイヨト イヨト 二日

Asymptotic Morphisms and Scaling Limit Morphisms2/3

Following Connes-Higson and our analogy, asymptotic moprhisms should correspond to morphisms $\rho : \mathscr{A} \to \mathscr{A}_{0,\iota}$ Some should correspond to isomorphisms $\phi : \mathscr{A} \to \mathscr{A}_{0,\iota}$ (exist quite generally, shown above)

Definition

An asymptotic isomorphism is an asymptotic morphism (ϕ_{λ}) such that

•
$$\phi^{\bullet}: \mathscr{A} \to \underline{\mathfrak{A}}^{\bullet}$$
 is injective

• \exists continuous section $\bar{s} : \mathscr{A}_{0,\iota} \to \mathfrak{A}^{\bullet}$ of $\pi_{0,\iota}^{\bullet}$ such that $\phi^{\bullet}(\mathscr{A}) = \bar{s}(\mathscr{A}_{0,\iota})$

Note that there always exists a continuous section $s : \mathscr{A}_{0,\iota} \to \mathfrak{A}^{\bullet}$ of $\pi_{0,\iota}^{\bullet}$ [Bartle-Graves '50s] AMor_{ι}(\mathscr{A}) := {(ρ_{λ}) asymptotic morphism relative to $\underline{\omega}_{0,\iota}$ } Also_{ι}(\mathscr{A}) := {(ϕ_{λ}) asymptotic isomorphism relative to $\underline{\omega}_{0,\iota}$ }

Asymptotic Morphisms and Scaling Limit Morphisms3/3

Isomorphism $\phi : \mathscr{A} \to \mathscr{A}_{0,\iota}$ used to lift morphisms $\rho_0 : \mathscr{A}_{0,\iota} \to \mathscr{A}_{0,\iota}$ to morphisms $\rho : \mathscr{A} \to \mathscr{A}_{0,\iota}$

 \downarrow

 ρ_0 should correspond to pairs $((\rho_\lambda), (\phi_\lambda)) \in AMor_{\iota}(\mathscr{A}) \times Also_{\iota}(\mathscr{A})$ There is a natural notion of asymptotic equivalence of pairs

Theorem

There is a bijective correspondence between asymptotic equivalence classes of pairs $((\rho_{\lambda}), (\phi_{\lambda})) \in AMor_{\iota}(\mathscr{A}) \times Also_{\iota}(\mathscr{A})$ and unitary equivalence classes of morphisms $\rho_{0} : \mathscr{A}_{0,\iota} \to \mathscr{A}_{0,\iota}$, given by

$$\rho_0 = \pi^{\bullet}_{0,\iota} \rho^{\bullet} (\phi^{\bullet})^{-1} \bar{s}$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Asymptotic Morphisms and Scaling Limit Morphisms3/3

Isomorphism $\phi : \mathscr{A} \to \mathscr{A}_{0,\iota}$ used to lift morphisms $\rho_0 : \mathscr{A}_{0,\iota} \to \mathscr{A}_{0,\iota}$ to morphisms $\rho : \mathscr{A} \to \mathscr{A}_{0,\iota}$

 \downarrow

 ρ_0 should correspond to pairs $((\rho_\lambda), (\phi_\lambda)) \in AMor_\iota(\mathscr{A}) \times Also_\iota(\mathscr{A})$ There is a natural notion of asymptotic equivalence of pairs

Theorem

There is a bijective correspondence between asymptotic equivalence classes of pairs $((\rho_{\lambda}), (\phi_{\lambda})) \in AMor_{\iota}(\mathscr{A}) \times Also_{\iota}(\mathscr{A})$ and unitary equivalence classes of morphisms $\rho_{0} : \mathscr{A}_{0,\iota} \to \mathscr{A}_{0,\iota}$, given by

$$\rho_0 = \pi_{0,\iota}^{\bullet} \rho^{\bullet} (\phi^{\bullet})^{-1} \bar{s}$$

イロト 不得 トイヨト イヨト

Asymptotic Morphisms and Preserved Sectors 1/2

Recall: $[\rho]$ preserved $\implies \exists \psi_j(\lambda) \in \mathscr{F}(\lambda O)$ such that

$$\rho_0(\boldsymbol{A}) = \sum_{j=1}^d \psi_j^0 \boldsymbol{A}(\psi_j^0)^*$$

is a DHR morphism of $\mathscr{A}_{0,\iota}$, where $\psi_j^0 = s^*-\lim_{h\to\delta} \pi_{0,\iota}(\underline{\alpha}_h\psi_j)$ Define:

$$\rho(\lambda)(A) := \sum_{j=1}^{d} \psi_j(\lambda) A \psi_j(\lambda)^*$$

scaled DHR morphisms of \mathscr{A} localized in λO , $[\rho(\lambda)] = [\rho]$ Question: What is the relation, if any, between $\rho(\lambda)$ and asymptotic morphism associated to ρ_0 ?

27/30

イロト 不得 トイヨト イヨト

Asymptotic Morphisms and Preserved Sectors 1/2

Recall: $[\rho]$ preserved $\implies \exists \psi_j(\lambda) \in \mathscr{F}(\lambda O)$ such that

$$\rho_0(\boldsymbol{A}) = \sum_{j=1}^d \psi_j^0 \boldsymbol{A}(\psi_j^0)^*$$

is a DHR morphism of $\mathscr{A}_{0,\iota}$, where $\psi_j^0 = s^*-\lim_{h\to\delta} \pi_{0,\iota}(\underline{\alpha}_h\psi_j)$ Define:

$$\rho(\lambda)(\mathbf{A}) := \sum_{j=1}^{d} \psi_j(\lambda) \mathbf{A} \psi_j(\lambda)^*$$

scaled DHR morphisms of \mathscr{A} localized in λO , $[\rho(\lambda)] = [\rho]$ Question: What is the relation, if any, between $\rho(\lambda)$ and asymptotic morphism associated to ρ_0 ?

Asymptotic Morphisms and Preserved Sectors 2/2

Theorem

- $\rho(A)^{\bullet}: \lambda \in \mathbb{R}_+ \mapsto \rho(\lambda)(A_{\lambda}) \in \mathscr{A}$ belongs to $\underline{\mathfrak{A}}^{\bullet}$ for all $A \in \underline{\mathfrak{A}}^{\bullet}$
- if ((ρ_λ), (φ_λ)) ∈ AMor_ι(𝒜) × Also_ι(𝒜) is a pair associated to ρ₀, then

$$\pi^{\bullet}_{0,\iota}(\rho^{\bullet}(A)) = \pi^{\bullet}_{0,\iota}(\rho(\bar{s}\phi(A))^{\bullet})$$

for all $A \in \mathscr{A}$

Morally: $\rho_{\lambda}(A) \sim \rho(\lambda)(\bar{s}\phi(A))_{\lambda})$

Question: Can one characterize confinement/preservation of charges in terms of a relation as above between asymptotic morphism and families of scaled morphisms of *A*?

(日)

Asymptotic Morphisms and Preserved Sectors 2/2

Theorem

- $\rho(A)^{\bullet}: \lambda \in \mathbb{R}_+ \mapsto \rho(\lambda)(A_{\lambda}) \in \mathscr{A}$ belongs to $\underline{\mathfrak{A}}^{\bullet}$ for all $A \in \underline{\mathfrak{A}}^{\bullet}$
- if ((ρ_λ), (φ_λ)) ∈ AMor_ι(𝒜) × Also_ι(𝒜) is a pair associated to ρ₀, then

$$\pi^{\bullet}_{0,\iota}(\rho^{\bullet}(A)) = \pi^{\bullet}_{0,\iota}(\rho(\bar{s}\phi(A))^{\bullet})$$

for all $A \in \mathscr{A}$

Morally: $\rho_{\lambda}(A) \sim \rho(\lambda)(\bar{s}\phi(A))_{\lambda})$

Question: Can one characterize confinement/preservation of charges in terms of a relation as above between asymptotic morphism and families of scaled morphisms of \mathscr{A} ?

< 日 > < 同 > < 回 > < 回 > < 回 > <

Outline

Introduction

- 2 Superselection Theory
- 3 Scaling Limit of QFT

4 Asymptotic Morphisms and Scaling Limit Superselection Theory

5 Conclusions and Outlook

Conclusions and Outlook

Summary:

- There exists a bijection between (pairs of suitable) asymptotic morphisms of *A* and morphisms of the scaling algebra A_{0,i}
- Asymptotic morphism associated to a preserved sector [ρ] is asymptotically equivalent to a family of scaled morphisms of class [ρ]

(Some of the many) open questions:

- How can we characterize asymptotic morphisms associated to localized morphisms of $\mathscr{A}_{0,\iota}$?
- Is it possible to encode further structure of superselection structure of A_{0,} (tensor structure, statistics etc.)?
- Can we describe **confinement/preservation** of charges through asymptotic morphisms?
- Can we use asymptotic morphisms to define (noncommutative geometric) invariants of *A* with an interesting physical interpretation?

Conclusions and Outlook

Summary:

- There exists a bijection between (pairs of suitable) asymptotic morphisms of *A* and morphisms of the scaling algebra A_{0,i}
- Asymptotic morphism associated to a preserved sector [ρ] is asymptotically equivalent to a family of scaled morphisms of class [ρ]

(Some of the many) open questions:

- How can we characterize asymptotic morphisms associated to localized morphisms of A_{0,i}?
- Is it possible to encode further structure of superselection structure of A_{0,ι} (tensor structure, statistics etc.)?
- Can we describe confinement/preservation of charges through asymptotic morphisms?
- Can we use asymptotic morphisms to define (noncommutative geometric) invariants of *A* with an interesting physical interpretation?