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ABSTRACT. We present an overview of some recent results on the renormalization
group analysis in the framework of local quantum physics. In particular, we emphasize
the role of the theory of superselection sectors, through the magnifying glass provided
by the scaling limit, that leads to intrinsic notions of preserved and confined sectors.
In the final section we discuss some further results and open problems.

1. INTRODUCTION

The so called “scaling algebras” have been introduced some time ago [4] to ana-
lyze the short distance behaviour of quantum field theories in a model independent
manner, as a counterpart to the renormalization group analysis in the conventional
approach. The idea is to associate to a given theory, described by a C∗-algebra with a
net of subalgebras [15, 21], an algebra of functions defined on R+ and taking values in
the local algebras. These functions should be regarded as “orbits” of the renormaliza-
tion group and they are characterized by requiring that they occupy the same value of
the “phase space” at each scale. Taking the limit as λ→ 0 of the vacuum expectation
values of these functions one can analyze the short distance properties of the given
quantum field theory.

A general classification of the short distance behaviour of the given theory encoded
in a new net of algebras has been obtained which corresponds to the one known in
perturbation theory. Moreover an intrinsic notion of “charge confinement” has been
formulated [3]. A version of such a notion requires a general study of the short distance
property of charged fields and superselection sectors (see [17]) performed in [11], that
has led to a notion of charge preservation. The confined sectors are then identified
with those sectors of the scaling limit theory which do not arise as limits of preserved
sectors. Examples exhibiting both preserved and non preserved sectors have been con-
structed [10].

On the other hand, it is interesting to stress the use of scaling algebras in proving
properties of the underlying (scale λ = 1) theory under requirements on the scaling
limit. The type of local von Neumann algebras, the non-existence of product states
for tangent spacelike regions, the proper outerness of gauge group action are some
examples of such results.
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Here is a brief outline of the content of this note: in the next section, after some
preliminaries on the notion of scaling limit, we review the main ideas and results per-
taining the notions of charge preservation and confinement. Then we give a glimpse
of the interplay between the λ → 0 and λ = 1 cases. In the final section we offer a
panoramic view on some related directions for further studies and open problems.

2. A DIVE INTO THE SCALING LIMIT

2.1. Scaling algebras and scaling limit for field nets. We consider a Poincaré covari-
ant, normal field net O → F(O) over double cones on Minkwoski space. By this, we
mean that O → F(O) is an isotonous net of von Neumann algebras acting irreducibly
on an Hilbert space H , on which commuting unitary representations U of the univer-
sal cover of the Poincaré group P̃

↑
+ and V of a compact gauge group G act, such that,

using the notations α(Λ,a) := AdU (Λ, a), βg := AdV (g ),

α(Λ,a)(F(O)) =F(ΛO +a), βg (F(O)) =F(O).

Furthermore the translations U (1, · ) satisfy the spectrum condition, and the vacuum
Ω ∈H is the unique translation invariant unit vector, and it is also gauge invariant. Fi-
nally there is a k ∈ Z (G) with k2 = e which defines the Bose and Fermi parts of elements
F ∈F(O) according to

F± := 1

2
(F ±βk (F )).

The observable net associated to F is defined as usual as the fixed points net under the
action of G :

A(O) :=F(O)G = {F ∈F(O) :βg (F ) = F, for all g ∈G}.

The scaling algebra associated to F is defined following the case of observable nets [4].
On the C∗-algebra of bounded functions λ ∈ (0,+∞) → Fλ ∈ F with norm given by

‖F‖ = supλ>0 ‖Fλ‖, we define automorphic actions of P̃
↑
+ and G as

α(Λ,a)(F )λ :=α(Λ,λa)(Fλ), β
g

(F )λ :=βg (Fλ).

Definition 2.1. The local scaling field algebra associated to the double cone O is the
C∗-algebra F(O) of all bounded functions F such that Fλ ∈F(λO) and

lim
(Λ,a)→(1,0)

‖α(Λ,a)(F )−F‖ = 0, lim
g→e

‖β
g

(F )−F‖ = 0.

As thoroughly discussed in [4, 11], the first condition in the last equation selects
functions F such that Fλ has a phase space occupation independent of λ, while the
second condition amounts to assuming that we have to do with dimensionless charges
(which is not really restrictive in d = 4).

To a locally normal state ϕ on F we associate the family of states {ϕ
λ

}λ>0 on F de-

fined by

ϕ
λ

(F ) :=ϕ(Fλ),

and consider the set of its weak* limit points as λ→ 0 (called scaling limit states of F),
which is found to be independent of the chosen state ϕ.
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Theorem 2.2. Let ω0 be a scaling limit state. Then ω0 is a pure vacuum state for F, so
that if (π0,H0,Ω0) is the associated GNS representation,

F0(O) :=π0(F(O))′′

defines a covariant, normal field net with gauge group G0 := G/N , where N ⊂ G is a
suitable closed normal subgroup. Furthermore if A0 is the scaling limit of the observable
net associated to ω0 � A, then A0 is isomorphic to the restriction of FG0

0 to the subspace

π0(A)Ω0.

Each of the nets F0 arising in this way is called a scaling limit field net of F.

2.2. Short distance analysis of DHR sectors. Even if we start, in the above construc-
tion, from an F which is a canonical DR complete field net [12], we should expect that
the scaling limit net F0 will not be complete in general, the reason for this being the
possible existence of confined charges [3]. If we assume that F is the complete field
net of its observable net A, and denote by F0 the complete field net obtained by DR
reconstruction from A0, then from the above results and those in [12] we get that the
situation is summarized in the following diagram:

A
SL

����
��

� DR

��<
<<

<<

A0

DR
��/

//
//

F

SL
����
��
�

F0 ⊇F0

It is then natural to interpret the charges of A0 described by F0 but not by F0 as con-
fined charges of A. An example of such a situation is provided by the Schwinger model,
discussed in [3, 5], where A=F and therefore A0 =F0, but, since A0 has nontrivial sec-
tors, F0 is striclty bigger than F0.

Conversely, one could try to characterize the charges of A which survive in the scal-
ing limit as charges of A0. As shown in the examples discussed in the next subsection,
it must be expected that in general sectors may disappear in the scaling limit. A natural
condition of preservation for a DHR sector ξ under the scaling limit is obtained by re-
quiring that states carrying a charge ξ in a region of radius λ have energy at most λ−1,
i.e. constrained only by the Heisenberg uncertainty principle, meaning that the corre-
sponding charge is “pointlike”. As discussed in [11], this can be rephrased in the follow-
ing, apparently more technical, condition, which involves the multiplets of isometries
implementing the sector ξ of [12].

Definition 2.3. A sector ξ of A is preserved in the scaling limit stateω0 = limκωλκ if, for
each double cone O1 and each λ > 0, there exist multiplets of class ξ, ψ j (λ) ∈ F(λO1),
j = 1, . . . ,d , such that, for each ε> 0 and each double cone O containing the closure of
O1, there exist F j ,F ′

j ∈F(O) with

limsup
κ

(‖(ψ j (λκ)−F jλκ
)Ω‖+‖(ψ j (λκ)−F ′

jλκ
)∗Ω‖)< ε.
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We introduce the notation

(αhψ j )λ :=
∫
P̃

↑
+

dΛd a h(Λ, a)α(Λ,λa)(ψ j (λ)),

where h ∈ L1(P̃ ↑
+) and dΛd a is the Haar measure on P̃

↑
+.

Theorem 2.4. Let ξ be a DHR sector preserved in ω0, and ψ j (λ) ∈ F(λO1) be as in the
above definition. Then, with F0 the scaling limit net determined by ω0, there exists

ψ j := s∗- lim
h→δ

π0(αhψ j ) ∈F0(O),

(limit in the strong∗ operator topology) for each O ⊃ O1. If the ψ j (λ) transform under
the action of G like a multiplet according to the irreducible representation vξ, indepen-
dent of λ, then vξ is trivial on N and the ψ j transform under the action of G0 = G/N
like a multiplet according to the irreducible representation vξ,0(g N ) = vξ(g ), g ∈G. Fur-
thermore the equation

ρ(a) :=
d∑

j=1
ψ j aψ∗

j , a ∈A0,

defines an irreducible, covariant endomorphism with finite statistics of A0 localized in O.

2.3. Tensor products and examples of preserved and non-preserved sectors. A nat-
ural question that arises when trying to compute the scaling limit in concrete models
is the one about the permutability of the scaling limit and tensor product of nets oper-
ations. Some answer has been given in [10]. In order to formulate it, we introduce the
operators Θβ,O : F(O) → H defined by Θβ,O(F ) := e−βH FΩ, where H is the Hamilton-
ian, and we say that a theory is asymptotically p-nuclear for some p ∈ (0,1) if

limsup
λ→0

‖Θλβ,λO‖p <∞,

‖ · ‖p denoting the nuclear p-norm. It follows from [18] that a theory generated by
a finite multiplet of scalar free fields with any masses is asymptotically p-nuclear for
every p ∈ (0,1).

Theorem 2.5. Let p ∈ (0,1/6) and let F(i ), i = 1,2, be covariant, normal and asymptoti-
cally p-nuclear field nets. Furthermore, let F denote theZ2-graded tensor product of F(1)

and F(2) and, for each scaling limit stateω0 of F, let F0, F(1)
0 , F(2)

0 be the scaling limit nets

corresponding to ω0, ω0 � F(1), ω0 � F(2), respectively. Then if F(i )
0 , i = 1,2 satisfy twisted

Haag duality, F0 is isomorphic to theZ2-graded tensor product of F(1)
0 and F(2)

0 .

Using this result, it is possible to construct models which exhibit preserved and non-
preserved sectors, with basic building blocks appropriate (generalized) free fields. In
particular, if φ j , j = 1, . . . ,d , is a multiplet of generalized free fields with mass measure
dρ(m) = dm, transforming under a d-dimensional representation of a compact group
G , and if we define the algebra F(O) as the one generated by the fields 2n(diamO)φ j ( f )
with supp f ⊂ O, and n(λ) →+∞ as λ→ 0, it can be shown that the scaling limit of F
is trivial, F0(O) =C1. On the other hand, the results of [5] can be generalized to show
that the net generated by any multiplet of free fields of mass m has as unique scaling
limit the net generated by the same multiplet of free fields of mass m = 0, and that all
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the corresponding DHR sectors are preserved. Performing suitable tensor products of
such theories one gets the following result [10].

Theorem 2.6. For any choice of (G , N ) with G a compact Lie group and N ⊂G a closed
normal subgroup, there exists an observable net A which has DHR sectors labelled by
classes of representations of G, and such that its scaling limit theory A0, which is unique,
has only DHR sectors labelled by classes of representations of G/N , so that the sectors of
A corresponding to representations of G trivial on N are preserved, while the remaining
ones are not.

2.4. Short distance analysis of BF sectors. In [11] the analysis of Subsection 2.1 and 2.2
has been generalized to cover the case of BF sectors (cf. [15]), which is physically inter-
esting in view of the fact that gauge charges, if not confined, should give rise to BF
sectors. This requires a redefinition of the scaling algebra inspired by the physical pic-
ture that BF charges, at least in an asymptotically free theory, should become localized
in bounded regions at small scales (see [11] for details). The outcome is that starting
at scale λ = 1 from a field net C → F(C ) indexed by spacelike cones, one ends up with
a scaling limit field net O →F0(O) indexed by double cones. Consequently, the notion
of preservation of charges is formulated in such a way as to associate to a preserved BF
sector at scale λ = 1 a DHR sector, corresponding to the same gauge group (quotient)
representation, in the scaling limit.

Denoting by DHR(A0) the set of DHR sectors of A0 and by BF(A) the set of BF sectors
of A, the situation can be summarized by the following diagram,

A
SL //

��

A0

��
BF(A) BF0(A)? _oo //___ DHR(A0)

where BF0(A) is the set of preserved BF sectors of A, and were the dashed arrow is the
map associating to each preserved BF sector of A the corresponding DHR sector of A0

according to the previous discussion. This leads to the following criterion for confined
sectors: a sector ξ ∈ DHR(A0) is confined if it is not in the image of BF0(A) under this
map.

3. ROBERTS VARIATIONS

We would like to present a sample of the results mentioned at the end of the in-
troduction. They are variations of some old results obtained by Roberts in a dilation
invariant theory [20] and are surely known to experts but we present them as they give
the flavour of the involved reasoning.

The first result is the existence of “entanglement” among observables localized in
spacelike separated regions with a common bounday point. We prove in fact that no
locally normal state can factorize across such regions.

Proposition 3.1. Assume F has a nonclassical scaling limit ω0 which satisfies the Reeh-

Schlieder property, i.e. F0(O)Ω0 = H0 for all double cones O. Then for every pair of
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spacelike tangent double cones O1 and O2 there is no locally normal state ϕ of F such
that

(3.1) ϕ(FG) =ϕ(F ) ·ϕ(G), F ∈F(O1), G ∈F(O2) .

Proof. Without loss of generality, we can prove the claim for O1, O2 which both con-
tain the origin in their spacelike boundary, since the theory is translation covariant.
Assuming that the formula (3.1) holds one gets for the lifts of ϕ to F

ϕ
λ

(FG) =ϕ(FλGλ) =ϕ(Fλ) ·ϕ(Gλ) =ϕ
λ

(F ) ·ϕ
λ

(F )

for all 0 <λ≤ 1 and all F ∈F(O1), G ∈F(O2). Taking a subnet λκ→ 0 withω0 = limκϕ
λκ

one obtains
ω0(F G) =ω0(F ) ·ω0(G) .

The conclusion now follows from the fact that,ω0 being nonclassical, there is F̂ ∈F(O1)

such that π0(F̂ ) 6=ω0(F̂ )I and hence, with F := F̂ −ω0(F̂ )I , π0(F ) 6= 0 butω0(F ) = 0. One
would then deduce that ω0(F G) = 0 for all G ∈F(O2), which is impossible by the Reeh-
Schlieder property. �

The next result shows that under some requirements in restriction to F(O) a gauge
automorphism can not be inner. (This does not rule out the possibility that it is how-
ever implemented by a unitary in F(O1) with O1 ÀO, as in a theory satisfying the split
property.)

Proposition 3.2. Let V ∈ F(O) be unitary and V F = βg (F )V for all F ∈ F(O). Then we
have g ∈ N for any closed normal subrgroup N ⊂G associated to a scaling limit state ω0
as in Theorem 2.2.

Proof. We sketch the proof in the case where F is Bosonic. The general case is similar
but requires more work. Take a double cone O and by translational covariance assume
that the origin is at the “corner” of O, so thatλO ⊂O for allλ≤ 1. Also, let W be a wedge
spacelike separated from O with the origin at the corner of W , too.

If ϕ is the locally normal state on F given by ϕ(F ) = ω(V FV ∗) one has for F ∈
F(O), F ′ ∈F(W ),

ϕ
λ

(F ′ F ) =ω(V F ′
λFλV ∗) =ω(F ′

λβg (Fλ)) =ωλ(F ′β
g

(F )).

Let λκ → 0 be a subnet with ω0 = limκϕ
λκ

. Then since limλ→0 ‖(ϕ−ω) � F(λO)‖ = 0

[20], one also has ω0 = limκωλκ and therefore, from the above equation,

ω0(F ′ F ) =ω0(F ′β
g

(F )), F ∈F(O), F ′ ∈F(W ).

Thus, since by a standard Reeh-Schlieder argument Ω0 is cyclic for F0(W ), it readily
follows that

π0(F )Ω0 =V0(g )π0(F )Ω0

for all F , that is g ∈ N . �



RENORMALIZATION GROUP IN ALGEBRAIC QUANTUM FIELD THEORY 7

4. PERSPECTIVES

In this final section we shortly address some topics that are the subject of current
research and should lead to significant developments in the area.

4.1. Scaling limit of localized endomorphisms. In order to study the short distance
properties of charges, it would be interesting to work out a more intrinsic mechanism
for defining scaling limit of DHR endomorphisms without using multiplets. Among
other virtues, this could be useful in applications to low-dimensional theories, where
no canonical DHR type-construction is available.

Since technical problems arise, it could even be worth examining new objects that
are endomorphisms only in a weaker asymptotic sense, as suggested e.g. by the results
in [19], in which a C∗-category equivalent to the superselection category of the scaling
limit theory is constructed in terms of asymptotic charge shifters. It is an intriguing
possibility to adapt to this purpose some techniques that to date have been mainly
worked out in the framework of K K -theory.

4.2. Field content of the scaling limit. The way Haag-Kastler nets are related to Wight-
man fields [23] has been the subject of several investigations. In recent times some
interesting advance has been made in [1] where a phase space condition has been in-
troduced that allows the construction of pointlike fields affiliated to a given net of local
algebras. The action of renormalization on pointlike fields is currently under inves-
tigation [2]. An analysis of convergence of n-point functions and operator product
expansions in the scaling limit are also expected.

4.3. Scaling limit of subsystems vs. subsystems of scaling limits. Motivated by the
problem of characterizing in abstract way the local nets generated by fields with a clear
physical interpretation, a classification theorem for subsystems has been obtained in
[6]. In a parallel development, the functorial properties of the DR-constructions have
been considered in [8]. On the other hand, some aspects of the DR-analysis of the
scaling limit have been considered in [11]. Therefore it is quite natural to compare the
available classification results for subsystems of the ambient theory and of its scaling
limit. If A ⊂ A is a “reasonable” subsystem (such as the one generated by the local
implementers of the spacetime translations), one can show that

A0 ⊂ F0 ⊂ F0

∪ ∪ ∪
A0 ⊂ F0 ⊂ F 0 ,

with an obvious meaning of the symbols. However a more detailed analysis of the sec-
ond and the third vertical inclusions requires some additional work. Making use of the
results in [6] one obtains that indeed F0 = F 0 for a number of interesting situations,
including the fixpoints of free field nets [9]. In this way, one expects to derive some
relations between (the local nets generated by) the Noether charges (i.e., quantum in-
variants of motion) of the given theory and those of its scaling limit.
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4.4. Scale dependant gauge transformations. The analysis of the charge content of
the scaling limit has been based upon the experimental fact that 4D physical charges
do not depend on the scale. However, there is some reason to believe that in lower
dimensions such a dependancy could show up. An example in this direction is given
by the Schwinger model, in which the charge of the “electron” is dimensionful. In a re-
lated fashion, there should be some construction explaining how the symmetry group
of the original theory behaves under scaling. The mechanism of group contractions
advocated by Inonu and Wigner [16] may play a role in this context.

4.5. Low dimensional models. Perhaps the most succesful example of an interacting
theory is the P (ϕ)2 model. It has been conjectured that the scaling limit of this model
is the same as for the corresponding free theory [13]. However, to date there is no com-
plete analysis of the scaling limit of the free theory, even if it has been shown in [5]
that all scaling limit theories contain, as a subtheory, a central extension of the mass-
less free field in d = 2, obtained as the scaling limit of the subalgebra generated by the
(smoothed out) Weyl operators.

4.6. A noncommutative geometry setup. From a purely mathematical point of view,
it has been recognized that, under fairly general phase space conditions on the under-
lying theory, the way the scaling limit is defined fits pretty well with Gromov’s tangent
cone construction [14]. This leads to the possibility to think of a scaling limit as a kind
of tangent space of the given local net in a suitable noncommutative geometry frame-
work. As the tangent cone construction enjoys rather good functoriality properties,
this also sheds some light on the fact that in [10] nuclearity conditions were employed
in order to show the permutability of the scaling limit with the operation of tensor
product of theories.
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