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ABSTRACT. After a brief account of the algebraic version of renormalization group de-
veloped by Buchholz and Verch, and of the main results of the Doplicher-Haag-Roberts
theory of superselection sectors, we introduce the notion of asymptotic charge transfer
chain, through which it is possible to reconstruct the scaling limit theory’s superselection
structure entirely in terms of underlying theory’s observables. Furthermore, these objects
allow the formulation of a natural notion of preservation of a charge in the scaling limit,
so that one gets an intrinsic definition of confined charges, as those charges of the scaling
limit which do not come from preserved charges of the underlying theory.

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

A commonly accepted feature of quantum chromodynamics (QCD), the theory that
is universally believed to describe hadronic physics phenomenology, is that it can be in-
terpreted, at small spatio-temporal scales, in terms of particle-like structures, quarks and
gluons, carrying a colour charge, which do not appear in the spectrum of physical states,
due to the existence of a force between them that grows with distance. This is the phe-
nomenon of confinement. However, such a description may not be intrinsic, since it is
based on the attachment of a physical interpretation to the unobservable Dirac and Yang-
Mills fields out of which the theory is constructed, identified, respectively, with quark and
gluon fields. It may well be the case that there exists another description of the theory,
based on a completely different set of basic fields, which yields the same -matrix and
the same observables, yet not admitting an interpretation in terms of confined particles or
charges. Several examples are known of such a situation. It is well-known, for instance,
that the algebra of observables of the Schwinger model (massless QED in 2 spacetime
dimensions), is isomorphic to the algebra generated by a free massive scalar field ([18]),
and therefore in the physical Hilbert space of the theory there appear no charged states,
though a charged Dirac field enters in the Lagrangean. One would then be led to the inter-
pretation according to which the theory describes a confined charged particle. However,
one could have started simply with a free field Lagrangian obtaining the same final result,
and this setting would leave no space for an interpretation in terms of confinement. Other
examples have become popular in recent years, through the discovery of a web of dual-
ities between supersymmetric Yang-Mills theories: in all such cases one has a couple of
theories describing the same observables, but constructed in terms of completely different
sets of fields and gauge groups. Based on the above considerations, D. Buchholz ([6])
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has advocated the following point of view: in order to decide if the theory intrinsically
describes entities which have to be identified with quarks, gluons and colour, and in order
to have an intrisic notion of their confinement, one has to look at the observables alone.
The algebraic approach to quantum field theory ([15]) is the most suitable one to ad-

dress this problem. Indeed, on one hand, in this framework one has a completely general
procedure which allows to reconstruct, from the knowledge of the algebras of local ob-
servables, the complete set of charges of the theory (its superselection sectors), as well
as charge carrying fields and the global gauge group ([12, 13, 14]). On the other hand,
through the intrinsic version of the renormalization group given by Buchholz and Verch
([8]), it is possible, still assuming only the knowledge of the local observables, to per-
form in a canonical way the scaling (ultraviolet) limit of a theory, which is again a theory
formulated within the algebraic framework.
Using these tools, it is possible to give the following intrinsic notion of confinement

of charges: a theory describes confined charges if there are charges of its scaling limit,
which do not appear as charges of the theory itself.
However, this poses immediately the problem of developing a canonical way to com-

pare the superselection structures (i.e. the set of charges) of the two theories, in such a
way to be able to identify those charges of the scaling limit which are also charges of the
underlying theory. In this contribution, we address this problem. In Section 2 we shall
recall the above mentioned algebraic version of renormalization group, based on the scal-
ing algebra, and the construction of the (ultraviolet) scaling limit theory. In Section 3 we
shall give a short account of the main results of the theory of superselection sectors, and
of its formulation in terms of charge transfer chains. Finally, in Section 4 we shall give
an “asymptotic” version of charge transfer chains, and we shall announce results which
show that, using these objects, it is possible to reconstruct the superselection structure of
the scaling limit theory in terms of observables of the underlying theory. Moreover, it will
follow from our results that, using such asymptotic charge transfer chains, it is possible to
identify in a natural way those charges of the scaling limit theory which are, in an appro-
priate sense, the scaling limit of charges of the underlying theory, thereby providing the
above mentioned comparison betweeen the two superselection structures. The proof of
these results will be published elsewhere. Some work in the same direction is also being
done by C. D’Antoni and R. Verch ([11]).

2. RENORMALIZATION GROUP AND ULTRAVIOLET LIMIT
IN LOCAL QUANTUM FIELD THEORY

In this section we shall briefly recall the results of [8] about the intrisic construction of
the scaling limit of a quantum field theory in the framework of the theory of algebras of
local observables ([15]) — also called local quantum field theory (LQFT, for short). In
this setting, a specific theory is defined by a correspondence

(1)

between open bounded regions in Minkowski space-time, and (unital) -
algebras , thought of as being generated by the observables of the theory which
are measurable by an experiment performed in the region . By fixing a (pure) vacuum
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state, and going to its GNS representation, one can assume that all these -algebras act
on a vacuum Hilbert space . Then the correspondence (1) is assumed to satisfy:

(i) If , then , i.e. is a net.
(ii) The net is local: if is spacelike separated from , in symbols,

then the algebras and commute, .
(iii) The net is Poincaré covariant: there exists on a unitary, strongly continuous

representation of the (proper orthocronous) Poincaré group , which
induces a group of automorphisms of the quasi-local algebra

(closure in the operator norm topology) such that

furthermore the translations satisfy the spectrum condition (the closed
forward light cone), and there exists a unique (up to a phase) translation invariant vector
(vacuum vector), which is also cyclic for .
(iv) For every the function is norm continuous, and the

local algebras are maximal with respect to this property, i.e. every (weak
closure) for which the above function is continuous, is already contained in .

(v) The net satisfies geometric modular action: let be the pair associated by
Tomita-Takesaki modular theory to , where
is the right wedge. Then

where is the one parameter group of boosts in the direction, and is the
reflection in the plane.

For a discussion of the physical motivations of the assumptions (i)–(iii), as well as for
a comprehensive overview of the understanding of structural properties of quantum field
theory gained through them, we refer the reader to [15]. For what concerns assumption
(iv), which is crucial for the construction of the scaling limit, we only remark that it is not
really restrictive, as discussed in [8]. Finally, assumption (v) is verified, e.g., if the local
algebras can be derived from underlying Wightman fields ([2]), and it can be proved at a
purely algebraic level under general assumptions ([3, 4, 19]).
As remarked in [8] a common feature of all possible families of renormalization group

(RG) transformations , in the usual (Lagrangean) approach to quantum field the-
ory, is that they map observables localized in to observables localized in (since
the speed of light has to remain constant), and observables which transfer to states
4-momentum contained in a region to observables which transfer 4-momentum in

(since also Planck’s has to remain constant). Equivalently, the RG orbits
have the following continuity property with respect to Poincaré transformations

([8, Lemma 3.1]):

(2)
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As discussed at length in [8], according to the principles of LQFT, what really matters
are only the above stated phase space properties of RG orbits, and we are thus led to the
following

Definition 2.1. On the -algebra of bounded functions , with the norm

and pointwise defined algebraic operations, we get an action of as

(3)

Then the local scaling algebra relative to the region is the -algebra of all
bounded functions such that and

(4)

The (quasi-local) scaling algebra is the -inductive limit of the net .

It is then clear that is a Poincaré covariant, local net of -algebras. With this tool
at hand, we can study the properties of physical states of the underlying theory in the
limit of short distances (i.e. high energies). For that, given a locally normal state on
we can define its lift to as the family of states

(5)

We will regard as a net directed by , and we shall denote by the set
of its weak*-limit points, which is non-void by Banach-Bourbaki-Alaoglu theorem. As a
consequence of the fact that, for any two locally normal states,
as [20], and of clustering estimates in [1], one has

Theorem 2.2. ([8, Section 4]) is independent of . Let with GNS
representation , and define , . Then

is a local net of -algebras, covariant with respect to a suitable repre-
sentation of satisfying the spectrum condition and leaving
invariant. is pure .

Every net arising as in the above theorem, will be called a scaling limit net of .
We see that there is the possibility of a non-uniqueness of the scaling limit theory, since
it may happen that the theory varies continually as approaches 0. We can expect this
to be the case for theories that, in the conventional setting, do not admit an ultraviolet
fixed point. On the other hand, we can expect that the scaling limits of theories having an
ultraviolet fixed point (in particular asymptotically free ones) will all be isomorprhic (as
nets). This is the case, for instance, for the theory of a free massive scalar field in ,
for which the scaling limits are all isomorphic to the net generated by the free massless
scalar field ([9]), and also for dilatation invariant theories ([8, Section 5]; which satisfy
the Haag-Swieca compactness condition, [17]).

All these statements but the last one are true in any number of spacetime dimensions . The scaling limit
vacuum is pure only for
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The above construction of the scaling limit relies only on assumptions (i)–(iv). As-
sumption (v) is however fundamental in analyzing the scaling limit superselection struc-
ture: if satisfies (v), so does any scaling limit net ([8, Section 6]), which implies
essential Haag duality in the scaling limit
(6)

where is the dual net of . This is a fundamental issue for the DHR
theory of superselection sectors, which we are going to describe.

3. SUPERSELECTION STRUCTURE AND CHARGE TRANSFER CHAINS

Superselection sectors have been one of the first and most succesful applications of
LQFT. Here we can give only a brief account of the results which are useful for us, refer-
ring to the original papers for details. According to Haag and Kastler ([16]), given a local
net , the superselection sectors of the theory have to be identified with unitary
equivalence classes of (irreducible) representations of the quasi-local algebra. However,
one expects that only a subclass of representations describes states which are relevant for
particle physics. Restricting then to states which are, in some sense, local excitations of
the vacuum, one arrives at the following selection criterion for representations of ([12]).

Definition 3.1. The representation of the quasi-local algebra satisfies the DHR se-
lection criterion if, for every double cone ,

unitarily equivalent,
begin the defining (vacuum) representation of .

The corresponding charges (i.e. labels of unitary equivalence classes) are termed lo-
calizable charges. This excludes theories in which long range forces are present, such as
QED: due to Gauss’ law, the electric charge is measurable in the spacelike complement
of any bounded region. Moreover, also in purely massive theories there are topological
charges for which the above criterion only holds if one replaces double cones by space-
like cones ([7]). For such charges it is possible to develop a superselection theory which
is completely analogous to the one for localizable charges. However localizable charges
are the only ones expected to occur in the scaling limit in physically interesting cases
(asymptotically free theories).
The representations complying with the above criterion form the objects of a -

category, whose arrows are the intertwiners between representations. If we assume that
the net satisfies essential Haag duality and a consequence of weak additivity and posi-
tivity of the energy, known as property (B) (for which we refer to [12]), then this category
is equivalent to the -category of all localized transportable endomorphisms
of and their intertwiners ([12, 21]), where a is called localized in if

for every , and it is called transportable if for every there is a
localized there, which is equivalent to . As shown by Doplicher and Roberts ([14]), this
category has the much richer structure of a symmetric tensor -categorywith subobjects,
direct sums and conjugates, which allows the reconstruction of a field net ,

A net is said to be weakly additive if, for every double cone , the von Neumann algebra generated by
, , is the algebra of all bounded operators on the vacuum Hilbert space.
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satisfying normal Bose-Fermi commutation relations, and, acting on it, a compact gauge
group , in such a way that is the fixed point subnet of under the action of .
There is also an alternative description, essentially due to Roberts ([21]), of superselec-

tion structure in terms of so-called charge transfer chains, which we are going to discuss
(without entering into details). We say that an observable is bilocalized in a couple of
double cones and if for every double cone .

Definition 3.2. A charge transfer chain is a sequence of unitaries in , such
that there exists a sequence of double cones , eventually spacelike to any given
double cone, in such a way that is bilocalized in and , and is bilocalized
in and .

We may think of as the operation of shifting a charge from to , as we
are going to see. Transportable charge transfer chains (obviously defined) are the objects
of a -category , whose arrows are suitable sequences .

Theorem 3.3. There is an equivalence of -categories
given, on the objects, by , with

the limit existing in norm. is localized in .

This implies, in particular, that there is a bijection between superselection sectors and
equivalence classes of charge transfer chains.

4. SUPERSELECTION STRUCTURE IN THE ULTRAVIOLET AND CONFINEMENT

In view of the results recalled in the above sections, the structure of charges of the
scaling limit theory has to be regarded as an intrisic feature of the underlying theory
. Thus, if one had a canonical way to identify charges of the underlying theory with (a

subset of) charges of the scaling limit theory, one would get an intrisic notion of confine-
ment: confined charges are those charges of the scaling limit theory which do not come
from charges of the underlying theory. A simple example of this situation is provided by
the already mentioned Schwinger model: as recalled in the introduction, the algebra of
observables of this model is isomoprhic to the algebra generated by a single free massive
scalar field ([18]), and therefore it has no superselection sectors (apart from the vacuum).
However, the algebra in the scaling limit is (a local extension of) the algebra gener-
ated by the free massless scalar field (in Weyl form), and it has a one-parameter family of
(cone-like localizable) superselection sectors, carrying an “electric” charge ([6, 9]), which
is therefore confined. Since in this model the underlying theory describes no charges, it is
natural to call the scaling limit charges the confined ones. In more complicated situations,
however, it is apparent that a way to compare the superselection structure of the two the-
ories is needed. To make such a comparison, what one would need is a natural notion of
preservation of charge in the scaling limit, to which we turn now.
From the results of the above sections, we see that the superselection structure of the

scaling limit can be described by sequences performing the
limit, and elements of are obtained (morally) as limits, for , of functions

. It should then be possible to describe the superselection structure of
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by suitable families of observables , , , and performing the double
limit , . This is indeed possible, as we are going to see.
Let be a net satisfying (i)–(v). If we also assume that complies with a suitable

version of the nuclearity condition [10], it follows ([5]) that each scaling limit theory is
also (suitably) nuclear, and, in turn, that it has property (B). Let then be one of such
scaling limits, arising as the GNS representation of , and let be a
subnet which has as its weak*-limit.

Definition 4.1. An asymptotic charge transfer chain is a bounded sequence
, where is some translate of the right wedge, such that

(i) there holds

(ii) there exists a double cone such that for every

(iii) for all double cones and all

What the two last conditions above express is essentially that is, asymptotically
as and , bilocalized in a couple of regions, one of which is , while the
other one goes to spacelike infinity, and that is asymptotically bilocalized
in a couple of regions both going to spacelike infinity (and in the same direction). This is
analogous, though weaker, to the localization properties of usual charge transfer chains.
In analogy with Theorem 3.3, through asymptotic charge transfer chains it is possible

to reconstruct the scaling limit’s superselection structure.

Theorem 4.2. Transportable asymptotic charge transfer chains are the objects of a -
category (whose arrows are suitable sequences ).
is equivalent to , and the equivalence is given, on the objects, by
, with

-lim

(limit in the strong operator topology). is localized in .

Using asymptotic charge transfer chains it is possible to compare the superselection
structures of and , essentially by looking at those charges for which it is possible
to interchange the two limits, and . By this we mean that it may
well happen that for some scaling limit charge , the corresponding asymptotic charge
transfer chain could also create, in some sense, a fixed charge at each finite scale .
It would then be natural to identify the charge of and of , i.e. to regard as
the scaling limit of the charge . Then would be a non-confined charge. In order to
make precise the above idea of scaling limit of charge, we turn to the consideration of the
scaling limit of charge carrying fields.
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Suppose that the superselection structure of is described by a translation covariant
field net satisfying normal Bose-Fermi commutation rules, and by a compact
gauge group , acting locally on and such that is the fixed point subalgebra of

under this action, as in [14]. In this situation an endomorphism of localized in
is implemented by a multiplet of orthogonal isometries of support in the field net, i.e.

there exist field operators , , such that

(7)

and the ’s transform according to an irreducible representation of .
It is easy to see that it is possible to define the field scaling algebra and the field

algebra scaling limit in complete analogy to what we have done for the observable
algebra.
Let be a charge of , and, for each , let be an endomorphism of class of

localized in , and , , the corresponding charge multiplet.
In general the function will not be an element of , as it lacks the right
continuity properties with respect to the action of the translations. Following [11] we
define smeared charge multiplets

(8)

with , , and it is then easy to see that . We
now want to look at the scaling limit of these charge multiplets: if these scaling limits
are charge multiplets themselves, they create a charge of , which is natural to identify
as the scaling limit of the charge . However, due to the smearing with the function ,
in general one cannot hope that the operators form a multiplet of orthogonal
isometries. Worse than that, if is a -sequence (e.g. has
support in a ball of radius centered in , and ), then there exists the limit

-lim(9)

where is any double cone containing the closure of , but still, in general,
is not a charge multiplet (e.g. it may be zero). This is to be expected:

charges may disappear in the scaling limit, for instance due to an exceptional quantum
behaviour of the associated fields, as may be the case in theories without an ultraviolet
fixed point (cf. the discussion in [6, 8] of the case of “classical” scaling limit). What
one needs, in order to get a nontrivial scaling limit of charge multiplets, is a condition
expressing the physical fact that localizing the charge in smaller and smaller regions does
not require too much energy.

Definition 4.3. The charge is UV-stable if there is a family of associated charge mul-
tiplets , , such that for every there is a compact

For simplicity, we do not assume full Poincaré covariance of the field net, as this would result in unneces-
sary complications of the following definitions of smeared charged multiplets and of UV-stable charges.
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for which

where is the spectral measure determined by the translations.

What we are requiring is then essentially that for an UV-stable charge, energy of order
is needed to be able to create the charge from the vacuum in a region of radius of order

. This condition of preservation of charge is analogous, though apparently somewhat
stronger, to that formulated, for the same purpose, by D’Antoni and Verch ([11]). We also
remark that the above condition is verified in free field models.

Theorem 4.4. With the notation introduced above, let be an UV-stable charge of .
Then , defined as in (9), is a multiplet of orthogonal isometries of support .
Moreover, if is a sequence going to spacelike infinity and if we define

then is an asymptotic charge transfer chain, such that
-lim(10)

and

-lim

Then, an UV-stable charge is preserved in the scaling limit, and there is a correspond-
ing asymptotic charge transfer chain that “creates” the same charge at every finite scale.
This motivates the following intrinsic notion of (non-)confinement, at least for theories
without quantum topological charges.

Definition 4.5. A scaling limit charge is non-confined if there exists an asymptotic
charge transfer chain such that , and a family of equivalent
localized endomorphisms of , localized in , such that (10) holds.

Phrased differently, a non-confined charge is a scaling limit charge which can also
be created at each finite scale. In the general case of a theory describing also quantum
topological charges ([7]), which are localizable in arbitrary spacelike cones, one expects,
on physical grounds, that non-confined cone-like localizable charges give rise to double
cone localizable charges in the scaling limit, because of the fact that the infinite string
attached to such a charge becomes weaker and weaker at small scales, and eventually
disappears. So, we see that the above notion of confinement does not apply to these
theories, as a double cone localizable charge being the scaling limit of a cone-like
localizable charge , would be confined according to it. Work is in progress in order to
treat this more general case.

As angular momentum has the dimensions of , and therefore it is not running under RG, in the case of a
Poincaré covariant theory, in order to get a nonvanishing charge in the scaling limit, it would be necessary to
add a condition expressing the fact that has angular momentum independent of , uniformly as .
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