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1. Improper integrals

1.1. Tell if the following improper integrals are convergent, and in the positive case compute them:

(a)
∫ +∞

−∞

e−1/|x|

x2
dx; (b)

∫ π/2

0

sin 2x

sinα x
dx, α ∈ R;

(c)
∫ +∞

0

x1/4 + 2√
x(
√
x+ 1)2

dx; (d)
∫ +∞

−1

log(x2(1 + x))

(1 + |x|)2
dx.

Solution. (a)-(c) Solved in class.
(d) It is necessary to study the behavior of the integrand function for x→ −1+, x→ 0 and

x→ +∞. One has

log(x2(1 + x))

(1 + |x|)2
=

2 log |x|+ log(1 + x)

(1 + |x|)2
∼

{
log(1 + x) for x→ −1+,

log |x| for x→ 0,

and being, for all a > 0,∫ a

0

log t dt = lim
ε→0+

∫ a

ε

log t dt = lim
ε→0+

(a log a− a− ε log ε+ ε) = a(log a− 1),

it follows that x 7→ log(1 +x) is integrable in a (right) neighborhood of x = −1 and x 7→ log |x|
is integrable in a neighborhood of x = 0. Moreover, being

lim
x→+∞

log(x2(1 + x))

(1 + |x|)1/2
= 0,

one has, eventually for x→ +∞,

log(x2(1 + x))

(1 + |x|)2
=

log(x2(1 + x))

(1 + |x|)1/2
· 1

(1 + |x|)3/2
≤ 1

(1 + |x|)3/2
∼ 1

x3/2
,

and then the given function is integrable in [−1,+∞). In order to compute the integral, it is
convenient to split it as∫ +∞

−1

log(x2(1 + x))

(1 + |x|)2
dx =

∫ 0

−1

2 log(−x) + log(1 + x)

(1− x)2
dx

+

∫ +∞

0

2 log x+ log(1 + x)

(1 + x)2
dx.

Then there holds, integrating by parts,∫
2 log(−x) + log(1 + x)

(1− x)2
dx =

2 log(−x) + log(1 + x)

1− x
−
∫

1

1− x

(
2

x
+

1

1 + x

)
dx,

and one readily verifies that

1

1− x
· 1

x
=

1

x
+

1

1− x
,

1

1− x
· 1

1 + x
=

1

2

(
1

1− x
+

1

1 + x

)
,

from which
1

1− x

(
2

x
+

1

1 + x

)
=

2

x
+

5

2(1− x)
+

1

2(1 + x)
,
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and consequently∫ 0

−1

2 log(−x) + log(1 + x)

(1− x)2
dx =

= lim
α→−1+

ε→0−

[
log(x2(1 + x))

1− x
− log x2 +

5

2
log |1− x| − 1

2
log(1 + x)

]ε
α

.

Let us compute the two limits one by one. One has

lim
ε→0−

log(ε2(1 + ε))

1− ε
− log ε2 +

5

2
log |1− ε| − 1

2
log(1 + ε)

= lim
ε→0−

log ε2 − (1− ε) log ε2

1− ε
+

log(1 + ε)

1− ε
+

5

2
log |1− ε| − 1

2
log(1 + ε)

= lim
ε→0−

2ε log ε

1− ε
= 0,

and

lim
α→−1+

log(α2(1 + α))

1− α
− logα2 +

5

2
log |1− α| − 1

2
log(1 + α)

= lim
α→−1+

2 log(1 + α)− (1− α) log(1 + α)

2(1− α)
+

log(α2)

1− α
− logα2 +

5

2
log |1− α|

= lim
α→−1+

(1 + α) log(1 + α)

2(1− α)
+

5

2
log 2 =

5

2
log 2,

from which ∫ 0

−1

2 log(−x) + log(1 + x)

(1− x)2
dx = −5

2
log 2.

With computations analogous to the ones above one finds then∫ +∞

0

2 log x+ log(1 + x)

(1 + x)2
dx = lim

ε→0+

r→+∞

[
− log(x2(1 + x))

(1 + x)
− 1

1 + x
+ 2 log

x

1 + x

]r
ε

,

and it is clear that the r → +∞ limit vanishes, while, analogously to above,

lim
ε→0+

− log(ε2(1 + ε))

(1 + ε)
− 1

1 + ε
+ 2 log

ε

1 + ε
= lim
ε→0+

2ε log ε

1 + ε
− 1 = −1.

In conclusion ∫ +∞

−1

log(x2(1 + x))

(1 + |x|)2
dx = 1− 5

2
log 2.

1.2. Tell for which α ∈ R the following improper integrals are convergent, and if applicable compute
them for the indicated values of α:

(a)
∫ 1

0

√
x

| log x|α
dx; α = −1; (b)

∫ +∞

0

(xα−1 − x3α/2)e−αx
2/2; α = 2.

Solution. (a) The integrand is infinitesimal for x → 0 for all α. Near 1 | log x|−α behaves as
|x− 1|−α, which is integrable for α < 1. When α = −1,∫ 1

0

√
x| log x| dx =

2

9
x3/2(−3 log x+ 2)

∣∣∣∣1
0

=
4

9

(b) Solved in class.

1.3. Tell for which α ∈ R the following improper integrals are convergent:

(a)
∫ +∞

0

arctan(αx)− αx√
xα(2 + log(1 + e3xα))

dx; (b)
∫ +∞

0

sin(xα) dx.

Solution. (a) To start with, we observe that, indicated by f the integrand function, for α = 0
there holds f = 0, which is then integrable. For α 6= 0 we must study the asymptotic behavior
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of f for x→ 0 and for x→∞. We start with the behavior for x→ 0, separating the two cases
α > 0 and α < 0. For α > 0, recalling that arctan t = t− t3

3 + o(t4), one has

f(x) ∼ −
α3x3

3

xα/2(2 + log 2)
= − α3

3(2 + log 2)

1

xα/2−3
for x→ 0

and then the given function is integrable, in a neighborhood of x = 0, for 0 < α < 8. For α < 0
one has instead e3xα → +∞ for x→ 0, and then log(1 + e3xα) ∼ 3xα, from which

f(x) ∼ −
α3x3

3

xα/2(3xα)
= −α

3

9
x3−3α/2 → 0 for x→ 0

and then f is integrable, in a neighborhood of x = 0, for all α < 0. Summing up, f is
integrable, in a neighborhood of x = 0, for all α < 8. We now consider the asymptotic behavior
for x→ +∞. For α > 0 one has again log(1 + e3xα) ∼ 3xα and then

f(x) ∼ − αx

xα/2(3xα)
= −α

3

1

x3/2α−1
for x→ +∞,

and therefore the given function is integrable, for x → +∞, for α > 4/3. Finally for α < 0
there holds

f(x) ∼ − αx

xα/2(2 + log 2)
= − α

2 + log 2
x1−α/2 → −∞ for x→ +∞,

and then f is not integrable for x→ +∞ if α < 0. In conclusion, the given integral is convergent
for 4/3 < α < 8.

(b) The integrand function is continuous and bounded in a right (open) neighborhood of
x = 0, and therefore it is integrable there, for all α ∈ R. For what concerns integrablity at
infinity, clearly if α < 0 one has the asymptotic behavior sin(xα) ∼ 1/x|α|, from which the
integrability for α < −1, and the non integrability for −1 ≤ α < 0 both follow. Moreover
clearly the function is constant, thus non integrable, if α = 0. Let then α > 0. Making the
change of variable t = xα one reduces to studying the convergence of the integral∫ +∞

1

sin t

tβ
dt,

where β = (α− 1)/α < 1. If then β ∈ (0, 1), which corresponds to α > 1, one has, integrating
by parts, ∫ r

1

sin t

tβ
dt = −cos r

rβ
+ cos 1− β

∫ r

1

cos t

tβ+1
dt

and since t 7→ cos t
tβ+1 is absolutely integrable and limr→+∞

cos r
rβ

= 0, one sees that the r → +∞
limit of the left hand side exists, i.e., the considerd integral is convergent. If then β = 0, i.e.
α = 1, the considered integral is clearly not convergent. For β ∈ (−1, 0) one has moreover,
integrating two times by parts,∫ r

1

sin t

tβ
dt =

[
−cos t

tβ
− β sin t

tβ+1

]r
1

− β(1 + β)

∫ r

1

sin t

tβ+2
dt.

Being then β + 2 > 1 the r → +∞ limit of the integral in the right hand side exists, while the
one of the expression in square brackets does not exist since β < 0, and then the integral in the
left hand side is not convergent. Analogously, integrating by parts a sufficient number of times,
one verifies that the integral is not convergent for any β < 0, i.e., for α ∈ (0, 1). Suming up,
the considered integral is convergent if and only if |α| > 1. Observe that this gives examples of
integrable functions which do not vanish at infinity.
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2. Sequences of functions

2.1. Determine the intervals of pointwise and uniform convergence of the following sequences of
functions:

(a) fn(x) :=
x

1 + n2x2
; (b) fn(x) :=

nx

1 + n2x2
;

(c) fn(x) :=

√
x2 +

1

n2
; (d) fn(x) := n log

(
1 +

x

n

)
;

(e) fn(x) := sin(nx)e−nx; (f) fn(x) := xn(ex/n − 1);

(g) fn(x) := x(x1/n − 1); (h) fn(x) := n
√

1 + nxn, x ≥ 0.

Solution. (a) Clearly, if x 6= 0, x
1+n2x2 → 0 for n → +∞, and fn(0) = 0 for all n ∈ N.

Then {fn} converges pointwise to the identically vanishing function on R. In order to see if the
convergence is also uniform, we have to determine ‖fn‖ = supx∈R |fn(x)|. There holds

d

dx

(
x

1 + n2x2

)
=

1− n2x2

(1 + n2x2)2
= 0⇔ x = ± 1

n
,

from which one sees that fn has a relative minimum for x = − 1
n and a relative maximum for

x = 1
n . Moreover fn(x)→ 0 for x→ ±∞, and then ‖fn‖ = fn(1/n) = 1

2n → 0 for n→ +∞, so
the convergence is uniform on R.

(b) - (e) Solved in class.
(f) Since ex/n − 1 ∼ x/n for n→ +∞ and x 6= 0, it is evident that

lim
n→+∞

xn(ex/n − 1) =


+∞ x > 1,

0 −1 ≤ x ≤ 1,

6 ∃ x < −1,

and then the sequence {fn} converges pointwise to the identically vanishing function in [−1, 1].
One has furthermore |fn(x)| ≤ |ex/n − 1| for all x ∈ [−1, 1], and one readily sees that x 7→
|ex/n − 1| is decreasing for x ∈ [−1, 0] and increasing for x ∈ [0, 1], and then its maximum is
in x = −1 or in x = 1. Being then e1/n − 1 ≥ 1 − e−1/n (since cosh t ≥ 1 for all t ∈ R), one
concludes that

sup
x∈[−1,1]

|fn(x)| ≤ e1/n − 1→ 0 for n→ +∞,

which implies the uniform convergence in [−1, 1] of the given sequence.
(g) Clearly there holds, for all x ∈ [0,+∞), limn→+∞ x(x1/n−1) = 0, and then the sequence

{fn} converges pointwise to the identically vanishing function in [0,+∞). Moreover since
limx→+∞ x(x1/n − 1) = +∞, one has, for every unbounded interval I ⊂ [0,+∞),

sup
x∈I
|fn(x)| = +∞ 6→ 0 for n→ +∞,

and then {fn} does not converge uniformly to the vanishing function in I. Let now J = [0, a].
In order to find the supremum in J of |fn(x)| we compute

d

dx
x(x1/n − 1) =

(
1

n
+ 1

)
x1/n − 1 = 0 ⇔ x = xn :=

(
1 +

1

n

)−n
,

and from the sign of the derivative one sees that fn is increasing in (0, xn) and decreasing in
(xn,+∞). There follows that,

sup
x∈J
|fn(x)| = max{|fn(xn)|, |fn(a)|} → 0 per n→ +∞,

and then {fn} converges uniformly in J , and then in every bounded interval in [0; +∞).
(h) As one sees easily, there holds

lim
n→+∞

n
√

1 + nxn = f(x) :=

{
1 x ∈ [0, 1],

x x > 1.
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Being then
n
√

1 + nxn − 1 ≤ n
√

1 + n− 1 x ∈ [0, 1],

n
√

1 + nxn − x = x

(
n

√
1

xn
+ n− 1

)
≤ x( n

√
1 + n− 1) x > 1,

one has |fn(x)− f(x)| ≤ max{1, x}( n
√

1 + n− 1) for all x ≥ 0, and then

sup
x∈[0,a]

|fn(x)− f(x)| ≤ max{1, a}( n
√

1 + n− 1)→ 0 per n→ +∞,

which implies the uniform convergence of {fn} to f in every interval [0, a], a > 0 (and then
in every bounded interval in [0,+∞)). For what concerns the unbounded intervals, being, for
n→ +∞,

|fn(n)− f(n)| = n
√

1 + nn+1 − n ≥ n1+1/n − n = n(e
1
n logn − 1) ∼ log n→ +∞,

the given sequence does not converge uniformly in any unbounded interval.

2.2. Given the sequence of functions

fn(x) :=
xn

n
e−x
√
n2+n, x ∈ R,

(a) determine the intervals of pointwise and uniform convergence;
(b) compute limn→+∞

∫ 2

0
fn(x) dx;

(c) study the convergence of the improper integral
∫ +∞

0
fn(x) dx and, if applicable, compute

limn→+∞
∫ +∞

0
fn(x) dx.

Solution. (a) There holds

|fn(x)| = 1

n
en log |x|−x

√
n2+n =

1

n
en(log |x|−x)e−x(

√
n2+n−n) =

1

n
en(log |x|−x)e

−x n√
n2+n+n .

From the inequality log x < x for all x > 0, and from the fact that x 7→ log |x| is strictly
decreasing for x < 0, there follows that there exists a unique x̄ ∈ R such that log |x| ≤ x if and
only if x ≥ x̄, and moreover x̄ ∈ (−1, 0), which implies

lim
n→+∞

en(log |x|−x) =


0 se x > x̄,

1 se x = x̄,

+∞ se x < x̄.

Observing then that exp[−x n√
n2+n+n

] → e−x/2 for n → +∞, for all x ∈ R, and that n 7→ xn

takes alternatively positive and negative values for x < x̄ < 0, one sees that

lim
n→+∞

fn(x) =

{
0 if x ≥ x̄,
6 ∃ if x < x̄.

Concerning uniform convergence, there holds
d

dx

xn

n
e−x
√
n2+n =

xn−1

n
(n− x

√
n2 + n)e−x

√
n2+n,

and then defining xn := n√
n2+n

one has that for n even fn is non negative and decreasing in
[x̄, 0) and in (xn,+∞), and increasing in (0, xn), while for n odd fn is increasing in [x̄, xn) and
decreasing in (xn,+∞). Being moreover limx→+∞ fn(x) = 0, one has

‖fn‖∞ = sup
x∈[x̄,+∞)

|fn(x)| = max{|fn(xn)|, |fn(x̄)|},

and being furthermore

fn(xn) =
1

n
e
−n

(
1−log n√

n2+n

)
→ 0 for n→ +∞,

one concludes that ‖fn‖∞ → 0 and fn → 0 uniformly in [x̄,+∞).
(b) In view of point (a) fn → 0 uniformly in [0, 2] ⊂ [x̄,+∞), and then thanks to the theorem

of passage to the limit under the integral

lim
n→+∞

∫ 2

0

fn(x) dx =

∫ 2

0

0 dx = 0.
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(c) Since the considered integral is extended to an unbounded interval, we can not apply the
theorem of passage to the limit under the intergal (even if the convergence is uniform on the
whole integration interval). However, we can observe that being

√
n2 + n ≥ n, there holds, for

n→ +∞,

0 ≤
∫ +∞

0

xn

n
e−x
√
n2+n dx ≤

∫ +∞

0

xn

n
e−nx dx

= (t = nx) =
1

nn+2

∫ +∞

0

tne−t dt =
n!

nn+2
→ 0.
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