Corso di Fondamenti di Analisi Matematica a.a. 2016-17

G. Morsella

Esercizi del 26/4/17

Gli esercizi contrassegnati da un asterisco (*) sono piuttosto impegnativi.

- 1. Siano I un insieme e μ_{\sharp} la misura che conta in I. Mostrare:
 - (a) data $f: I \to [0, +\infty)$, se $\sup_{F \in \mathscr{P}_0(I)} \sum_{\alpha \in F} f(\alpha) < \infty$, allora l'insieme $\{\alpha \in I: f(\alpha) > 0\}$ è al più numerabile (sugg.: si ha $\sharp \{\alpha \in I: f(\alpha) \geq 1/n\} \leq n \sup_{F \in \mathscr{P}_0(I)} \sum_{\alpha \in F} f(\alpha)$);
 - (b) data $f: I \to [0, +\infty)$, si ha $\int_I f d\mu_{\sharp} = \sup_{F \in \mathscr{P}_0(I)} \sum_{\alpha \in F} f(\alpha)$ (sugg.: se $F \in \mathscr{P}_0(I)$, $s := \sum_{\alpha \in F} f(\alpha) \chi_{\{\alpha\}}$ è una funzione semplice);
 - (c) data $f \in L^1(I, d\mu_{\sharp}) =: \ell^1(I)$, e posto $s_F := \sum_{\alpha \in F} f(\alpha)$, $F \in \mathscr{P}_0(I)$, si ha $\int_I f \, d\mu_{\sharp} = \lim_{F \in \mathscr{P}_0(I)} s_F$ nel senso dei net su $\mathscr{P}_0(I)$, parzialmente ordinato per inclusione: $F \leq G$ se $F \subset G$ (sugg.: se $f \geq 0$, $\lim_{F \in \mathscr{P}_0(I)} s_F = \sup_{F \in \mathscr{P}_0(I)} s_F$).
- 2. Sia $(\delta_{\alpha})_{\alpha \in I} \subset \ell^2(I)$ la base ortonormale canonica: $\delta_{\alpha} = (\delta_{\alpha\beta})_{\beta \in I}$. Senza usare il teorema sulle caratterizzazioni delle basi ortonormali, dimostrare che per ogni $x = (x_{\alpha})_{\alpha \in I} \in \ell^2(I)$ si ha $x = \sum_{\alpha \in I} x_{\alpha} \delta_{\alpha}$, cioè $\lim_{F \in \mathscr{P}_0(I)} ||x \sum_{\alpha \in F} x_{\alpha} \delta_{\alpha}|| = 0$.
- 3. Mostrare che, se $x \in H$ e $(e_{\alpha})_{\alpha \in I} \subset H$ è un sistema ortonormale, l'insieme $\{\alpha \in I : \langle e_{\alpha}, x \rangle \neq 0\}$ è al più numerabile.
- *4. Dimostrare che una base ortonormale di uno spazio di Hilbert H infinito-dimensionale non è una base di Hamel, e che una base di Hamel di H ha cardinalità più che numerabile.