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spectrum for elliptic operators

Riccardo MOLLEa, Donato PASSASEOb

aDipartimento di Matematica, Università di Roma “Tor Vergata”,
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P.O. Box 193, 73100 Lecce, Italy.

Abstract. - In this paper we present a new variational characteriztion of the first non-
trival curve of the Fuč́ık spectrum for elliptic operators with Dirichlet boundary conditions.
Moreover, we describe the asymptotic behaviour and some properties of this curve and of the
corresponding eigenfunctions. In particular, this new characterization allows us to compare
the first curve of the Fuč́ık spectrum with the infinitely many curves we obtained in previous
works (see [36, 37]): for example, we show that these curves are all asymptotic to the same
lines as the first curve, but they are all distinct from such a curve.
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1 Introduction

The Fuč́ık spectrum, first introduced in [22] and [17], plays an important role in the
study of some elliptic problems with linear growth. Let us consider, for example, the
Dirichlet problem

∆u+ g(x, u) = 0 in Ω, u = 0 on ∂Ω, (1.1)

where Ω is a bounded connected domain of RN with N ≥ 1 and g is a Carathéodory
function in Ω× R such that

lim
t→−∞

g(x, t)

t
= α, lim

t→+∞

g(x, t)

t
= β ∀x ∈ Ω (1.2)
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with α, β in R. Existence and multiplicity of solutions for problems of this type are
strictly related to the position of the pair (α, β) with respect to the Fuč́ık spectrum Σ
which is defined as the set of all the pairs (α, β) ∈ R2 such that the Dirichlet problem

∆u− αu− + βu+ = 0 in Ω, u = 0 on ∂Ω (1.3)

has nontrivial solutions (here, u± = max{±u, 0} and u nontrivial means u ∈ H1
0 (Ω),

u 6≡ 0). In fact, these problems may lack compactness in the sense that the well
known Palais-Smale compactness condition fails if the pair (α, β) belongs to the Fuč́ık
spectrum Σ; moreover, the topological properties of the sublevels of the corresponding
energy functional depend on the position of (α, β) with respect to Σ.
After the pionering papers [10] and [1] on these problems, the important role of the
Fuč́ık spectrum has been pointed out in [22] and [17]. Then, several works have been
devoted to describe the structure of Σ (see, for example, [2, 5, 6, 8, 9, 16–30, 39–43]
etc. . . . ).
Let us denote by λ1 < λ2 ≤ λ3 ≤ . . . the eigenvalues of −∆ in H1

0 (Ω). It is clear that Σ
includes the lines {λ1}×R and R×{λ1}, contains all the pairs (λi, λi) ∀i ∈ N (that are
the only pairs (α, β) of Σ such that α = β) and is symmetric with respect to the line
{(α, β) ∈ R2 : α = β} (because a function u satisfies (1.3) if and only if −u satisfies
(1.3) with (β, α) in place of (α, β)). Moreover, if α 6= λ1, β 6= λ1 and (α, β) ∈ Σ,
then α > λ1, β > λ1 and the eigenfunctions corresponding to the pair (α, β) are sign
changing functions.
In the case N = 1, Σ is completely known and may be obtained by direct computation.
It consists of curves emanating from the pairs (λi, λi); if i is an even positive integer,
there exists only one curve while, if i is odd, there exist exactly two curves emanating
from (λi, λi). All these curves are smooth, unbounded and decreasing. Moreover, on
each curve, α tends to an eigenvalue of −∆ in H1

0 (Ω) as β → +∞. Conversely, for
every eigenvalue λi there exist exactly three curves asymptotic to the lines {λi} × R
and R × {λi}; they pass, respectively, through the pairs (λ2i−1, λ2i−1), (λ2i, λ2i) and
(λ2i+1, λ2i+1).
On the contrary, in the case of higher dimensions the known results are much less
complete and the description of Σ remains a largely open question. It is known that
Σ is a closed set and that the lines {λ1} × R and R× {λ1} (the trivial part of Σ) are
isolated in Σ (see [17]). Many results concern the curves of Σ emanating from each
pair (λi, λi) (local existence and multiplicity, local and global properties, etc. . . . ).
In particular, if λi has multiplicity m, i.e. λi−1 < λi = . . . = λi+m−1 < λi+m, from
the point (λi, λi) arises a continuum composed by a lower and an upper curve, both
decreasing (and maybe coincident) such that Σ ∩ (λi−1, λi+m)2 lies between these two
curves, so the open squares (λi−1, λi)

2 and (λi, λi+m)2 do not contain any point of Σ
(see, for example, [24, 29, 41, 42] and the references therein).
Combining these results, one can infer that Σ contains a first nontrivial curve, which
passes through (λ2, λ2) and extends to infinity. In [20] the authors prove directly the
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existence of such a first curve, give a variational characterization of it and derive several
properties. In particular, they show that this curve is asymptotic to the lines {λ1}×R
and R×{λ1}, give a new proof of the fact that these lines are isolated in Σ and deduce
that all the eigenfunctions corresponding to points of the first curve have exactly two
nodal domains (extending the well known Courant nodal domains theorem).
Recently (see [33–35]) we have obtained new existence and multiplicity results for a class
of Dirichlet problems of type (1.1) (in particular for semilinear problems with jumping
nonlinearities) using a variational method that does not require to know whether or
not the pair (α, β) belongs to Σ and, in addition, may be used to give new information
on the structure of Σ. In fact (see [36, 37]) using this method we have proved that if
N ≥ 2 there exist infinitely many curves in Σ, asymptotic to the lines {λ1} × R and
R × {λ1} (while, if N = 1, Σ has only two curves asymptotic to these lines). More
precisely (see also Theorem 3.1) we have proved that, if N ≥ 2 and k ∈ N, for β > 0
large enough there exists αk,β > λ1 such that (αk,β, β) ∈ Σ; moreover, for all k ∈ N,
limβ→+∞ αk,β = λ1, αk,β depends continuously on β and αk,β < αk+1,β (notice that the
method developed in [33–35] has been also used in the study of some nonlinear scalar
field equations (see [11–13])).
The following natural question remains still open: where do these curves come from?
Most probably, they come from bifurcations of the first nontrivial curve of Σ or from
pairs (λi, λi) of higher eigenvalues.
The results obtained in [32] seem to confirm our conjecture. In fact, in [32] the authors
study the Fuč́ık spectrum of the laplacian on a two-dimensional torus T 2 with periodic
conditions and, exploiting the invariance properties of T 2 with respect to translations,
they prove that at least two global curves emanate from every pair of eigenvalues:
a global curve which can be obtained explicitely and a global curve which can be
characterized variationally using a suitable topological index (see [4, 7, 31]). The
explicit curves are asymptotic to lines {λ} × R and R × {λ} for suitable constants
λ > 0, while the variational curves are all asymptotic to {0} × R and R × {0}, the
trivial lines of the Fuč́ık spectrum in T 2. Therefore, the explicit and the variational
curves cannot coincide globally and many curve crossings must occur. Moreover, on
the first explicit curve there exist infinitely many points of bifurcations (associated to
symmetry breaking phenomena).
These results suggest that, in higher dimensions, Σ has a quite complicated struc-
ture even if, for example, Ω is a ball of RN with N ≥ 2 (where we observed similar
phenomena that motivated our conjecture).
In the present paper we give a new variational characterization of the first nontrivial
curve of Σ. We prove that the infimum

inf

{∫
Ω

|Du−|2dx : u ∈ H1
0 (Ω), ‖u+‖L2(Ω) = ‖u−‖L2(Ω) = 1,

∫
Ω

|Du+|2dx = β

}
(1.4)
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is achieved for all β > λ1; moreover we prove that, if we denote by αβ the above
infimum, then αβ is continuous and strictly decreasing with respect to β in ]λ1,+∞[,
limβ→+∞ αβ = λ1, limβ→λ1 αβ = +∞, (αβ, β) ∈ Σ ∀β > λ1 and

{(α, β) ∈ Σ : α > λ1, β > λ1} ⊆ {(α, β) ∈ R2 : β > λ1, α ≥ αβ ∀β > λ1}. (1.5)

Therefore (using β as parameter) the first nontrivial curve of Σ may be described as
the set {(α, β) ∈ R2 : β > λ1, α = αβ ∀β > λ1} (a similar description holds if we use
α as parameter).
The eigenfunctions corresponding to (αβ, β) are suitable smooth functions uβ ∈ H1

0 (Ω),
such that u+

β 6≡ 0, u−β 6≡ 0 in Ω and the function ūβ = −‖u−β ‖
−1
L2(Ω)u

−
β + ‖u+

β ‖
−1
L2(Ω)u

+
β is

a minimizing function for (1.4).
This variational characterization of the first nontrivial curve of Σ, which is different
from the ones obtained in [20] and in [32], has been first announced in [38].
All the properties of the first curve and of the corresponding eigenfunctions may be
easily deduced from this new characterization. In the present paper, in particular, we
deduce that all the curves we obtained in [37] are distinct from the first curve. In
fact, suitable asymptotic estimates of αβ, as β → +∞, allow us to say that for every
positive integer k we have αβ < αk,β when β is large enough.
The asymptotic behaviour of the eigenfunctions uβ corresponding to (αβ, β), as β →
+∞, shows that the support of u+

β is localized near the boundary of Ω for β large

enough and that ‖uβ‖−1
L2(Ω)uβ → −e1 in Ω, where e1 denotes the positive eigenfunction

of −∆ in H1
0 (Ω), corresponding to λ1 and normalized in L2(Ω). On the contrary, the

eigenfunctions uk,β corresponding to the pairs (αk,β, β), for β large enough, have the
support of u+

k,β localized near the maximum points of e1 (see [36, 37] and also Theorem
3.1 and Proposition 3.2). This fact suggests that, arguing as in [37], it is possible to
construct a new class of infinitely many curves of Σ, asymptotic to the lines {λ1} ×R
and R × {λ1}, corresponding to eigenfunctions having an arbitrarily large number of
bumps localized near the boundary of Ω (see Remark 3.5 for more details about this
construction).
The method we use in this paper is completely variational. For all β > λ1, the
eigenfunction uβ corresponding to the pair (αβ, β) is obtained as critical point of the
functional f(u) =

∫
Ω

[|Du|2 − β(u+)2]dx constrained on the set S = {u ∈ H1
0 (Ω) :∫

Ω
(u−)2dx = 1} (here, αβ arises as the Lagrange multiplier with respect to the con-

straint S). In Section 2 we introduce also another functional fβ,ε, converging to fβ
as ε → 0, which for all ε > 0 presents more manageable variational properties with
respect to fβ; thus we first find constrained critical points for fβ,ε and then we let
ε→ 0 in order to obtain the variational characterization of the first nontrivial curve of
Σ (see Theorem 2.1). In Section 3 we analyse the asymptotic behaviour, as β → +∞,
of this curve and of the corresponding eigenfunctions, we compare this curve with the
infinitely many curves obtained in [37] and we discuss some possible generalizations,
forthcoming results on related questions, etc. . . .
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2 Variational characterization of the first curve of

Σ

The following theorem gives a variational characterization of the first nontrivial curve
of the Fuč́ık spectrum Σ.

Theorem 2.1 Let Ω be a bounded connected domain of RN with N ≥ 1. For all
β > λ1, let us set

αβ = inf

{∫
Ω

|Du−|2dx : u ∈ H1
0 (Ω), ‖u+‖L2(Ω) = ‖u−‖L2(Ω) = 1,

∫
Ω

|Du+|2dx = β

}
.

(2.1)
Then, αβ > λ1, (αβ, β) ∈ Σ ∀β > λ1 and αβ ≤ α for every α > λ1 such that
(α, β) ∈ Σ. Moreover, αβ is continuous and strictly decreasing with respect to β in
]λ1,+∞[, αλ2 = λ2, the infimum in (2.1) is achieved ∀β > λ1 and an eigenfunction
corresponding to the pair (αβ, β) is given by uβ = −ū−β +µβū

+
β , where ūβ is a minimizing

function for (2.1) and µβ is a suitable positive constant.
As β → +∞, αβ → λ1 and u−β → e1 in H1

0 (Ω); as β → λ1, αβ → +∞ and

‖u+
β ‖
−1
L2(Ω)u

+
β → e1 in H1

0 (Ω).

In order to prove this theorem, for all β > 0 and ε > 0 we consider the functional
fβ,ε : H1

0 (Ω)→ R defined by

fβ,ε(u) =

∫
Ω

|Du|2dx− 2

∫
Ω

Gβ,ε(u)dx, (2.2)

where Gβ,ε(t) =
∫ t

0
gβ,ε(τ)dτ ∀t ∈ R, with gβ,ε(τ) = 0 ∀τ ≤ ε and gβ,ε(τ) = β(τ −

ε) ∀τ ≥ ε. Our first aim is to find sign changing functions u ∈ H1
0 (Ω) which are

constrained critical points for the functional fβ,ε constrained on the set S = {u ∈ H1
0 (Ω)

:
∫

Ω
(u−)2dx = 1}. Therefore, we consider the set Mβ,ε consisting of all the functions

u in S such that u+ 6≡ 0 and f ′β,ε(u)[u+] = 0.
One can easily verify that for all ε > 0, if a sign changing function u ∈ S is a critical
point for fβ,ε constrained on S, then u ∈ Mβ,ε and f ′β,ε(−u− + tu+)[u+] is positive for

t ∈]0, 1[ and negative for t > 1 (because 1
τ
g(τ) is strictly increasing with respect to τ in

]ε,+∞[); so the function u is the unique maximum point for fβ,ε on the set {−u−+ tu+

: t ≥ 0} which is included in S.
Notice that, for ε = 0, the functional fβ = fβ,0 and the sets Mβ,0 do not have the
same properties; this is the reason for introducing first the functional fβ,ε which, for
all ε > 0, presents more manageable variational properties and then we let ε→ 0.
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Proposition 2.2 For all ε > 0, we have Mβ,ε 6= ∅ if and only if β > λ1. If β > λ1,
the minimum of fβ,ε on Mβ,ε is achieved for all ε > 0 and every minimizing function
uβ,ε satisfies the equation

∆uβ,ε + gβ,ε(uβ,ε)− αβ,εu−β,ε = 0 in Ω, (2.3)

where αβ,ε =
∫

Ω
|Du−β,ε|2dx ∀ε > 0, ∀β > λ1.

Proof Notice that gβ,ε(τ) ≤ βτ ∀τ ≥ 0, ∀β > 0, ∀ε > 0; moreover, if a function
u ∈ S satisfies

∫
Ω

(u+)2dx > 0, then
∫

Ω
|Du+|2dx > λ1

∫
Ω

(u+)2dx. Thus, if β ≤ λ1 we
obtain

∫
Ω
|Du+|2dx > β

∫
Ω

(u+)2dx ≥
∫

Ω
gβ,ε(u

+)u+dx, namely f ′β,ε(u)[u+] > 0, which

implies u 6∈Mβ,ε. Therefore, if β ≤ λ1, we have Mβ,ε = ∅ ∀ε > 0.
On the contrary, if β > λ1 we have Mβ,ε 6= ∅. In fact, if β > λ1, one can easily construct
a function ū ∈ S such that

∫
Ω
|Dū+|2dx < β

∫
Ω

(ū+)2dx. For example, fix x0 ∈ ∂Ω,

set Ωr = Ω \ B(x0, r), Ω̃r = Ω ∩ B(x0, r) and, for r ∈]0, (1/2) diam(Ω)[, consider the
positive eigenfunctions e1(Ωr) and e1(Ω̃r), normalized in L2, corresponding to the first
eigenvalues of the operator −∆ in H1

0 (Ωr) and H1
0 (Ω̃r) respectively; then, the function

ū such that ū = e1(Ωr) in Ωr and ū = −e1(Ω̃r) in Ω̃r has the required properties for r
small enough.
Notice that fβ,ε(−ū− + tū+) = fβ,ε(−ū−) + fβ,ε(tū

+) ∀t ≥ 0; moreover, one can easily
verify by direct computation that

lim
t→+∞

1

t2
fβ,ε(tū

+) =

∫
Ω

|Dū+|2dx− β
∫

Ω

(ū+)2dx < 0 (2.4)

and (since ε > 0)

lim
t→0

1

t2
fβ,ε(tū

+) =

∫
Ω

|Dū+|2dx > 0. (2.5)

Therefore, we infer that for all ε > 0 there exists t̄ > 0 such that fβ,ε(−ū− + t̄ū+) ≥
fβ,ε(−ū− + tū+) ∀t ≥ 0, which implies −ū− + t̄ū+ ∈ Mβ,ε. Thus, Mβ,ε 6= ∅ ∀β > λ1,
∀ε > 0.
Now, let us prove that the infimum infMβ,ε fβ,ε is achieved for all β > λ1 and ε > 0.
Let us consider a minimizing sequence (un)n. Notice that fβ,ε(un) = fβ,ε(−u−n ) +
fβ,ε(u

+
n ) ∀n ∈ N, where = fβ,ε(−u−n ) =

∫
Ω
|Du−n |2dx ≥ λ1 (because ‖u−n ‖L2(Ω) = 1)

and fβ,ε(u
+
n ) > 0 since un ∈ Mβ,ε implies fβ,ε(u

+
n ) = max{fβ,ε(tu+

n ) : t ≥ 0} > 0
∀ε > 0 (because 1

τ
gβ,ε(τ) is strictly increasing with respect to τ in ]ε,+∞[). Taking

into account that sup{fβ,ε(un) : n ∈ N} < +∞, it follows that

λ1 ≤ lim inf
n→∞

fβ,ε(−u−n ) ≤ lim sup
n→∞

fβ,ε(−u−n ) < +∞ (2.6)

and
0 ≤ lim inf

n→∞
fβ,ε(u

+
n ) ≤ lim sup

n→∞
fβ,ε(u

+
n ) < +∞. (2.7)
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Since fβ,ε(−u−n ) =
∫

Ω
|Du−n |2dx, (2.6) implies that the sequence (u−n )n is bounded in

H1
0 (Ω). Now, let us prove that also the sequence (u+

n )n is bounded in H1
0 (Ω). Taking

into account that f ′β,ε(un)[u+
n ] = 0 ∀n ∈ N, we have∫

Ω

|Du+
n |2dx =

∫
Ω

gβ,ε(u
+
n )u+

n dx ≤ β

∫
Ω

(u+
n )2dx. (2.8)

Therefore, it suffices to prove that the sequence (u+
n )n is bounded in L2(Ω). Arguing

by contradiction, assume that (up to a subsequence) limn→∞
∫

Ω
(u+

n )2dx = ∞ and
set vn = ‖u+

n ‖−1
L2(Ω)u

+
n . Then, (2.8) implies

∫
Ω
|Dvn|2dx ≤ β ∀n ∈ N. So (up to a

subsequence) (vn)n converges in L2(Ω), weakly in H1
0 (Ω) and a.e. in Ω to a function

v ∈ H1
0 (Ω). It follows that

∫
Ω
|Dv|2dx ≤ β,

∫
Ω
v2dx = 1 and v ≥ 0 in Ω. Moreover,

taking into account that f ′β,ε(un)[u+
n ] = 0 ∀n ∈ N, and that limn→∞

∫
Ω

(u+
n )2dx = ∞,

one can verify by direct computation that limn→∞
∫

Ω
|Dvn|2dx = β. It follows that

lim
n→∞

f ′β,ε(tvn)[vn] = 2tβ − 2

∫
Ω

gβ,ε(tv)vdx ∀t ≥ 0. (2.9)

Since
∫

Ω
v2dx = 1, for all ε > 0 we obtain

lim inf
t→+∞

[
tβ −

∫
Ω

gβ,ε(tv)v dx

]
= lim inf

t→+∞

∫
Ω

[βtv − gβ,ε(tv)]v dx > 0. (2.10)

Now, let us set tn = ‖u+
n ‖L2(Ω) and notice that f ′β,ε(tvn)[vn] > 0 ∀t ∈]0, tn[ (because

1
τ
gβ,ε(τ) is strictly increasing with respect to τ in ]ε,+∞[). Since we are assuming

limn→∞ tn = +∞, we obtain

lim inf
n→∞

fβ,ε(u
+
n ) = lim inf

n→∞

∫ tn

0

f ′β,ε(tvn)[vn]dt ≥ 2

∫ τ

0

[
tβ −

∫
Ω

gβ,ε(tv)v dx

]
dt ∀τ > 0.

(2.11)
Then, as τ → +∞, from (2.10) we obtain limn→∞ fβ,ε(u

+
n ) = +∞, in contradiction

with (2.7). Therefore, we can say that also the sequence (u+
n )n is bounded in H1

0 (Ω). It
follows that there exists u ∈ H1

0 (Ω) such that (up to a subsequence) (un)n converges to
u in L2(Ω), weakly in H1

0 (Ω) and a.e. in Ω. As a consequence of the L2(Ω) convergence,
we have

∫
Ω

(u−)2dx = 1. Let us prove that u+ 6≡ 0. Arguing by contradiction, assume
that u+ ≡ 0. Then (because of the L2(Ω) convergence) from (2.8) we infer that
limn→∞

∫
Ω
|Du+

n |2dx = 0, so we have limn→∞ fβ,ε(u
+
n ) = 0. Therefore, we obtain a

contradiction if we prove that

inf{fβ,ε(w+) : w ∈Mβ,ε} > 0 ∀ε > 0. (2.12)

Since w ∈ Mβ,ε implies fβ,ε(w
+) = max{fβ,ε(tw+) : t > 0}, it is clear that it suffices

to prove that there exist two positive constants ρβ,ε and cβ,ε such that fβ,ε(w) ≥ cβ,ε
∀w ∈ H1

0 (Ω) such that
∫

Ω
|Dw|2dx = ρβ,ε.
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In order to prove the existence of these constants cβ,ε and ρβ,ε, notice that, since
β > λ1, there exists jβ ∈ N such that λjβ ≤ β < λjβ+1. Let us denote by S1

β and S2
β

the closed subspaces of H1
0 (Ω) spanned by the eigenfunctions of the Laplace operator

−∆ in H1
0 (Ω), corresponding to eigenvalues λj with, respectively, 1 ≤ j ≤ jβ and

j ≥ jβ + 1. For all β > λ1 and ε > 0, there exists νβ,ε > 0 such that, if w ∈ S1
β and∫

Ω
|Dw|2dx ≤ ν2

β,ε, then |w(x)| ≤ ε ∀x ∈ Ω.
For all w ∈ H1

0 (Ω) such that
∫

Ω
|Dw|2dx ≤ ν2

β,ε, set w = w1,β+w2,β, with w1,β ∈ S1
β and

w2,β ∈ S2
β. Then, taking into account that

∫
Ω
|Dw1,β|2dx ≤ ν2

β,ε and as a consequence
w1,β ≤ ε in Ω, we have fβ,ε(w1,β) =

∫
Ω
|Dw1,β|2dx and f ′β,ε(w1,β)[w2,β] = 0. Therefore,

we obtain

fβ,ε(w) = fβ,ε(w1,β + w2,β) = fβ,ε(w1,β + w2,β)− fβ,ε(w1,β) +

∫
Ω

|Dw1,β|2dx, (2.13)

where

fβ,ε(w1,β + w2,β)− fβ,ε(w1,β) ≥ f ′β,ε(w1,β)[w2,β] +

∫
Ω

|Dw2,β|2dx− β
∫

Ω

w2
2,βdx

=

∫
Ω

[|Dw2,β|2 − βw2
2,β]dx

≥
(

1− β

λjβ+1

)∫
Ω

|Dw2,β|2dx (2.14)

because
∫

Ω
|Dw2,β|2dx ≥ λjβ+1

∫
Ω
w2

2,βdx. It follows that, for a suitable c̃β,ε > 0, we
have fβ,ε(w) ≥ c̃β,ε

∫
Ω
|Dw|2dx ∀w ∈ H1

0 (Ω) such that
∫

Ω
|Dw|2dx ≤ ν2

β,ε. Therefore, it
follows easily that there exist two constants ρβ,ε ∈]0, νβ,ε[ and cβ,ε > 0 satisfying the
required properties. Thus, we can say that u+ 6≡ 0.
From the weak H1

0 (Ω) convergence, it follows that f ′β,ε(u
+)[u+] ≤ 0; on the other hand,

a direct computation shows that limt→0
1
t
f ′β,ε(tu

+)[u+] = 2
∫

Ω
|Du+|2dx, so we infer

that f ′β,ε(tu
+)[u+] > 0 for t > 0 small enough (because u+ 6≡ 0). Therefore, there

exists t̃ ∈]0, 1] such that the function ũ = −u−+ t̃u+ belongs to Mβ,ε. Moreover, since
fβ,ε(t̃u

+
n ) ≤ fβ,ε(u

+
n ) ∀n ∈ N, we have

lim inf
n→∞

fβ,ε(t̃u
+
n ) ≤ lim inf

n→∞
fβ,ε(u

+
n ). (2.15)

It follows that

fβ,ε(ũ) ≤ lim inf
n→∞

fβ,ε(−u−n + t̃u+
n ) ≤ lim inf

n→∞
fβ,ε(un) = inf{fβ,ε(u) : u ∈Mβ,ε}. (2.16)

Thus, we can say that the infimum of fβ,ε on Mβ,ε is achieved and that fβ,ε(ũ) =
minMβ,ε fβ,ε.
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Let β > λ1, ε > 0 and uβ,ε be a minimizing function for fβ,ε on Mβ,ε. Our aim is to
prove that uβ,ε is a constrained critical point for the functional fβ,ε constrained on the
set S, namely that there exists a Lagrange multiplier αβ,ε such that

1

2
f ′β,ε(uβ,ε)[ψ] = −αβ,ε

∫
Ω

u−β,εψ dx ∀ψ ∈ H1
0 (Ω) (2.17)

(that is, uβ,ε is a weak solution of the equation (2.3)).
Let us point out that, unlike the case of the smooth constraint

∫
Ω

(u−)2dx = 1, for
which the Lagrange multipliers theorem applies (and gives the multiplier αβ,ε), the
constraint f ′β,ε(u)[u+] = 0 does not satisfy the regularity conditions required in that
theorem. However, it is a “natural constraint” in the sense that it does not give rise
to Lagrange multipliers.
Notice that (as we observed before) f ′β,ε(u + tu+)[u+] is positive for t ∈] − 1, 0[ and
negative for t > 0. Therefore, uβ,ε is the unique maximum point for fβ,ε on the set
{uβ,ε + tu+

β,ε : t ≥ −1}. Then, arguing by contradiction, assume that (2.17) is not
satisfied for any choice of the multiplier αβ,ε in R. It follows by standard arguments
that there exists a continuous map η :]− 1,+∞[→ H1

0 (Ω) such that η(t) = uβ,ε + tu+
β,ε

if |t| > 1
2
, ‖η(t)−‖L2(Ω) = 1, η(t)+ 6≡ 0, fβ,ε(η(t)) < fβ,ε(uβ,ε) ∀t ≥ −1.

Therefore, we infer that there exists t̄ ∈
[
−1

2
, 1

2

]
such that η(t̄) ∈ Mβ,ε, which gives

a contradiction because fβ,ε(η(t̄)) < fβ,ε(uβ,ε) and fβ,ε(uβ,ε) = minMβ,ε fβ,ε. Thus, we
can conclude that there exists a multiplier αβ,ε in R such that (2.17) holds.
Finally, notice that, if in (2.17) we set ψ = u−β,ε, we easily obtain αβ,ε =

∫
Ω
|Du−β,ε|2dx,

so the proof is complete.
q.e.d.

Now, our aim is to describe the behaviour as ε → 0 of the minimizing function uβ,ε
given by Proposition 2.2.

Proposition 2.3 For all β > λ1 and ε > 0, let uβ,ε be a minimizing function for
the functional fβ,ε on the set Mβ,ε and put ūβ,ε = −u−β,ε + ‖u+

β,ε‖
−1
L2(Ω)u

+
β,ε. Then,

up to a subsequence, ūβ,ε converges in H1
0 (Ω), as ε → 0, to a function ūβ such that∫

Ω
|Dū+

β |2dx = β and∫
Ω

|Dū−β |
2dx = min

{∫
Ω

|Du−|2dx : u ∈ H1
0 (Ω), (2.18)

‖u+‖L2(Ω) = ‖u−‖L2(Ω) = 1,

∫
Ω

|Du+|2dx = β

}
.

Proof Notice that, since uβ,ε ∈Mβ,ε, we have∫
Ω

|Du+
β,ε|

2dx =

∫
Ω

gβ,ε(uβ,ε)u
+
β,εdx < β

∫
Ω

(u+
β,ε)

2dx ∀ε > 0. (2.19)
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Therefore, we obtain
∫

Ω
|Dū+

β,ε|2dx < β ∀ε > 0.
Moreover, we have also

lim sup
ε→0

∫
Ω

|Du−β,ε|
2dx < +∞. (2.20)

In fact, since β > λ1, there exists û ∈ H1
0 (Ω) such that

∫
Ω

(û+)2dx =
∫

Ω
(û−)2dx = 1,∫

Ω
|Dû+|2dx < β. As a consequence, we obtain

fβ,ε(uβ,ε) ≤
∫

Ω

|Dû−|2dx+ max{fβ,ε(tû+) : t ≥ 0} ∀ε > 0 (2.21)

and, as ε→ 0, since
∫

Ω
|Dû+|2dx < β,

lim sup
ε→0

fβ,ε(uβ,ε) ≤
∫

Ω

|Dû−|2dx < +∞, (2.22)

which implies (2.20) because fβ,ε(uβ,ε) =
∫

Ω
|Du−β,ε|2dx + fβ,ε(u

+
β,ε) with fβ,ε(u

+
β,ε) > 0

∀ε > 0.
It follows that, up to a subsequence, ūβ,ε converges as ε→ 0 to a function ūβ ∈ H1

0 (Ω)
in L2(Ω), weakly in H1

0 (Ω) and a.e. in Ω.
Let us prove that, indeed, ūβ,ε → ūβ strongly in H1

0 (Ω) as ε→ 0. In fact, we have∫
Ω

|Dū+
β |

2dx = β and lim
ε→0

∫
Ω

|Du−β,ε|
2dx =

∫
Ω

|Du−β |
2dx. (2.23)

For the proof, we argue by contradiction and assume that
∫

Ω
|Dū+

β |2dx < β or (up to a

subsequence)
∫

Ω
|Du−β |2dx < limε→0

∫
Ω
|Du−β,ε|2dx. In this case, by slight modifications

of the supports of u−β and ū+
β , one can construct a function ũβ ∈ H1

0 (Ω) such that

‖ũ−β ‖L2(Ω) = ‖ũ+
β ‖L2(Ω) = 1,

∫
Ω
|Dũ+

β |2dx < β and
∫

Ω
|Dũ−β |2dx < limε→0

∫
Ω
|Du−β,ε|2dx.

Then, for all ε > 0, let us consider the function ũβ,ε ∈Mβ,ε such that ũ−β,ε = ũ−β ∀ε > 0

and ũ+
β,ε = tεũ

+
β where, for all ε > 0, tε is the (unique) positive number such that

f ′β,ε(tεũ
+
β )[ũ+

β ] = 0 (such a number tε exists because
∫

Ω
|Dũ+

β |2dx < β).
Thus, we have

fβ,ε(uβ,ε)− fβ,ε(ũβ,ε) = fβ,ε(u
+
β,ε)− fβ,ε(ũ

+
β,ε) + fβ,ε(u

−
β,ε)− fβ,ε(ũ

−
β,ε), (2.24)

where fβ,ε(u
+
β,ε) ≥ 0 ∀ε > 0, limε→0 fβ,ε(ũ

+
β,ε) = 0 (because

∫
Ω
|Dũ+

β |2dx < β) and

limε→0 fβ,ε(u
−
β,ε) >

∫
Ω
|Dũ−β |2dx = fβ,ε(ũ

−
β,ε) ∀ε > 0.

It follows that fβ,ε(uβ,ε) > fβ,ε(ũβ,ε) for ε > 0 small enough, which gives a contradiction
because ũβ,ε ∈ Mβ,ε and fβ,ε(uβ,ε) = minMβ,ε fβ,ε. Thus, we can conclude that ūβ,ε →
ūβ strongly in H1

0 (Ω) as ε→ 0 and that
∫

Ω
|Dū+

β |2dx = β.
In a similar way, now we prove (2.18). Arguing again by contradiction, assume that
there exists a function v ∈ H1

0 (Ω) such that ‖v+‖L2(Ω) = ‖v−‖L2(Ω) = 1,
∫

Ω
|Dv+|2dx =

β and
∫

Ω
|Dv−|2dx <

∫
Ω
|Dū−β |2dx.
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In this case, by slight modifications of the supports of v+ and v−, one can find v̂β ∈
H1

0 (Ω) such that ‖v̂+
β ‖L2(Ω) = ‖v̂−β ‖L2(Ω) = 1,

∫
Ω
|Dv̂+

β |2dx < β and
∫

Ω
|Dv̂−β |2dx <∫

Ω
|Dū−β |2dx.

Since
∫

Ω
|Dv̂+

β |2dx < β and ‖v̂+
β ‖L2(Ω) = 1, it follows that for all ε > 0 there exists

t̂ε > 0 such that f ′β,ε(t̂εv̂
+
β )[v̂+

β ] = 0, namely, the function v̂β,ε = −v̂−β + t̂εv̂
+
β belongs to

Mβ,ε.
Then, by direct computation, we obtain

fβ,ε(uβ,ε)− fβ,ε(v̂β,ε) = fβ,ε(u
−
β,ε)− fβ,ε(v̂

−
β,ε) + fβ,ε(u

+
β,ε)− fβ,ε(v̂

+
β,ε), (2.25)

where fβ,ε(u
+
β,ε) ≥ 0, fβ,ε(v̂

−
β,ε) =

∫
Ω
|Dv̂−β |2dx ∀ε > 0, limε→0 fβ,ε(v̂

+
β,ε) = 0 and

lim
ε→0

fβ,ε(u
−
β,ε) =

∫
Ω

|Dū−β |
2dx >

∫
Ω

|Dv̂−β |
2dx. (2.26)

It follows that fβ,ε(uβ,ε) > fβ,ε(v̂β,ε) for ε > 0 small enough; so we have again a
contradiction because v̂β,ε ∈Mβ,ε and fβ,ε(uβ,ε) = minMβ,ε fβ,ε ∀ε > 0.

q.e.d.

Proposition 2.4 For all β > λ1 and ε > 0, let uβ,ε be a minimizing function for the
functional fβ,ε on the set Mβ,ε. Then, as ε → 0 (up to a subsequence) uβ,ε converges
in H1

0 (Ω) to a sign changing function uβ which solves the equation

∆uβ − αβu−β + βu+
β = 0 in Ω, (2.27)

where αβ is the positive number introduced in Theorem 2.1. Moreover, the function
ūβ = −u−β + ‖u+

β ‖
−1
L2(Ω)u

+
β is a minimizing function for αβ (see (2.1)) and λ1 < αβ ≤ α

for every α > λ1 such that (α, β) ∈ Σ.

Proof As we proved in Proposition 2.2, for all β > λ1 and ε > 0, uβ,ε is a weak
solution of the equation

∆uβ,ε − αβ,εu−β,ε + gβ,ε(uβ,ε) = 0 in Ω, (2.28)

where αβ,ε =
∫

Ω
|Du−β,ε|2dx.

Moreover, by Proposition 2.3, ūβ,ε = −u−β,ε + ‖u+
β,ε‖

−1
L2(Ω)u

+
β,ε converges, as ε → 0, to a

function ūβ in H1
0 (Ω).

Let us prove that
lim inf
ε→0

‖u+
β,ε‖L2(Ω) > 0 ∀β > λ1. (2.29)
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Arguing by contradiction, assume that (up to a subsequence) limε→0 ‖u+
β,ε‖L2(Ω) = 0

for some β > λ1. In this case, since f ′β,ε(uβ,ε)[u
+
β,ε] = 0, we infer that u+

β,ε → 0 in H1
0 (Ω)

as ε→ 0. Therefore, if we let ε→ 0, from (2.28) we obtain∫
Ω

[Dū−βDψ − ᾱβū
−
β ψ]dx = 0 ∀ψ ∈ H1

0 (Ω), (2.30)

where ᾱβ =
∫

Ω
|Dū−β |2dx. Thus, we have a contradiction because Dū−β 6≡ 0 on Ω ∩

∂(supp ū−β ).
Now, let us prove that

lim sup
ε→0

‖u+
β,ε‖L2(Ω) < +∞ ∀β > λ1. (2.31)

Arguing again by contradiction, assume that (up to a subsequence) limε→0 ‖u+
β,ε‖L2(Ω) =

+∞ for some β > λ1. Then, as ε→ 0, from (2.28) we obtain∫
Ω

[Dū+
βDψ − βū

+
β ψ]dx = 0 ∀ψ ∈ H1

0 (Ω). (2.32)

Thus, we again have a contradiction because Dū+
β 6≡ 0 on Ω ∩ ∂(supp ū+

β ).
Therefore, we can say that for all β > λ1 (up to a subsequence) uβ,ε converges as ε→ 0
to a sign changing function uβ strongly in H1

0 (Ω). Moreover, if we let ε→ 0 in (2.28),
because of the minimality property (2.18) given by Proposition 2.3, we infer that uβ is
a weak solution of the Dirichlet problem

∆uβ − αβu−β + βu+
β = 0 in Ω, uβ = 0 on ∂Ω. (2.33)

It follows that
∫

Ω
|Du+

β |2dx = β
∫

Ω
(u+

β )2dx > 0 and
∫

Ω
|Du−β |2dx = αβ ∀β > λ1 (notice

that
∫

Ω
|Du−β |2dx > λ1 because u+

β 6≡ 0). So we can say that the function ūβ =

−u−β + ‖u+
β ‖
−1
L2(Ω)u

+
β is a minimizing function for the infimum in (2.1) and αβ ≤ α for

every α > λ1 such that (α, β) ∈ Σ, which completes the proof.
q.e.d.

Proposition 2.5 For all β > λ1, let αβ be the positive number introduced in Theorem
2.1. Then αβ is continuous and strictly decreasing with respect to β in ]λ1,+∞[.
Moreover, limβ→+∞ αβ = λ1 and limβ→λ1 αβ = +∞.

Proof First, let us prove that αβ depends continuously on β in ]λ1,+∞[, namely,
limβ→β̄ αβ = αβ̄ ∀β̄ ∈]λ1,+∞[.
Let us set ūβ = −u−β + ‖u+

β ‖
−1
L2(Ω)u

+
β ∀β > λ1, where uβ is the eigenfunction, corre-

sponding to the pair (αβ, β), given by Proposition 2.4.
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In order to prove that lim infβ→β̄ αβ ≥ αβ̄, we argue by contradiction and assume that
there exists a sequence (βn)n such that limn→∞ βn = β̄ and limn→∞ αβn < αβ̄.
Since αβn =

∫
Ω
|Dū−βn|

2dx and
∫

Ω
|Dū+

βn
|2dx = βn ∀n ∈ N, it follows that the sequence

(ūβn)n is bounded in H1
0 (Ω), so (up to a subsequence) it converges to a function û in

L2(Ω), weakly in H1
0 (Ω) and a.e. in Ω. Then, we have

lim
n→∞

∫
Ω

|Dū−βn |
2dx ≥

∫
Ω

|Dû−|2dx and

∫
Ω

|Dû+|2dx ≤ lim
n→∞

∫
Ω

|Dū+
βn
|2dx = β̄.

(2.34)
As a consequence, there exists a function v̂ ∈ H1

0 (Ω) such that 0 ≤ v̂ ≤ û+ in Ω and∫
Ω
|Dv̂|2dx = β̄

∫
Ω
v̂2dx > 0.

Therefore, by (2.1) we have

αβ̄ ≤
∫

Ω

|Dû−|2dx ≤ lim
n→∞

∫
Ω

|Dū−βn|
2dx = lim

n→∞
αβn , (2.35)

which is a contradiction. Thus we can say that lim infβ→β̄ αβ ≥ αβ̄.
Now, let us prove that lim supβ→β̄ αβ ≤ αβ̄. By slight perturbations of the function ūβ̄,
one can construct ∀β > λ1 a function ũβ ∈ H1

0 (Ω) such that ‖ũ+
β ‖L2(Ω) = ‖ũ−β ‖L2(Ω) =

1,
∫

Ω
|Dũ+

β |2dx = β ∀β > λ1 and ũ−β → ū−
β̄

in H1
0 (Ω) as β → β̄. It follows that

αβ ≤
∫

Ω
|Dũ−β |2dx ∀β > λ1 and

lim sup
β→β̄

αβ ≤ lim
β→β̄

∫
Ω

|Dũ−β |
2dx =

∫
Ω

|Dū−
β̄
|2dx = αβ̄. (2.36)

Thus, we can conclude that αβ depends continuously on β in ]λ1,+∞[.
Now, we prove that αβ is strictly decreasing with respect to β in ]λ1,+∞[. Let us
consider β1 and β2 in ]λ1,+∞[ such that β1 < β2. Since αβ1 =

∫
Ω
|Du−β1

|2dx and

β1 < β2, there exists ǔβ2 ∈ H1
0 (Ω) (with supp(ǔ+

β2
) ⊆ supp(u+

β1
) and supp(ǔ−β2

) ⊇
supp(u−β1

)) such that ‖ǔ+
β2
‖L2(Ω) = ‖ǔ−β2

‖L2(Ω) = 1,
∫

Ω
|Dǔ+

β2
|2dx = β2,

∫
Ω
|Dǔ−β2

|2dx <∫
Ω
|Du−β1

|2dx = αβ1 .
Therefore, taking into account Proposition 2.3 (see (2.18)), we obtain

αβ2 = min

{∫
Ω

|Du−|2dx : u ∈ H1
0 (Ω), ‖u+‖L2(Ω) = ‖u−‖L2(Ω) = 1,∫

Ω

|Du+|2dx = β2

}
<

∫
Ω

|Du−β1
|2dx (2.37)

that is αβ2 < αβ1 .
Let us prove that limβ→+∞ αβ = λ1. Since αβ is decreasing with respect to β, from
Proposition 2.3 we obtain

λ1 < αβ = inf

{∫
Ω

|Du−|2dx : u ∈ H1
0 (Ω), ‖u+‖L2(Ω) = ‖u−‖L2(Ω) = 1,
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∫
Ω

|Du+|2dx ≤ β

}
. (2.38)

As β → +∞, it follows that

λ1 ≤ lim
β→+∞

αβ = inf{αβ : β > λ1}

≤ inf

{∫
Ω

|Du−|2dx : u ∈ H1
0 (Ω), ‖u+‖L2(Ω) = ‖u−‖L2(Ω) = 1

}
≤

∫
Ωr

|De1(Ωr)|2dx ∀r ∈
]
0,

1

2
diam(Ω)

[
, (2.39)

where Ωr and e1(Ωr) are defined in the following way: we fix x0 ∈ ∂Ω, set Ωr =
Ω \ B(x0, r) and denote by e1(Ωr) the positive eigenfunction, normalized in L2(Ωr),
corresponding to the first eigenvalue of the operator −∆ in H1

0 (Ωr). Then, as r → 0,
we obtain limβ→+∞ αβ = λ1. Notice that, as a consequence, we have also limβ→λ1 αβ =
+∞, because the set {(αβ, β) ∈ R2 : β > λ1} (the first nontrivial curve of Σ) is
symmetric with respect to the line {(α, β) ∈ R2 : α = β} (since a pair (α, β) ∈ Σ if
and only if (β, α) ∈ Σ).

q.e.d.

Proof of Theorem 2.1 For all β > λ1 and ε > 0, let uβ,ε be a minimizing function
for the functional fβ,ε on the set Mβ,ε (here we use Proposition 2.2). From Propositions
2.3 and 2.4 we deduce that, as ε→ 0, uβ,ε converges in H1

0 (Ω) to a function uβ such that
u+
β 6≡ 0 and ‖u−β ‖L2(Ω) = 1, satisfying the equation ∆uβ − αβu−β + βu+

β = 0 in Ω, with

αβ =
∫

Ω
|Du−β |2dx > λ1. Thus (αβ, β) ∈ Σ. Moreover, from Proposition 2.3 we infer

that the function ūβ = −u−β +‖u+
β ‖
−1
L2(Ω)u

+
β is a minimizing function for (2.1) and αβ ≤ α

for every α > λ1 such that (α, β) ∈ Σ. Notice that the eigenfunction uβ corresponding
to the pair (αβ, β) may be written as uβ = −ū−β + µβū

+
β with µβ = ‖u+

β ‖L2(Ω).
By Proposition 2.5, we know that αβ is continuous and strictly decreasing with respect
to β in ]λ1,+∞[ and that limβ→+∞ αβ = λ1, limβ→λ1 αβ = +∞. As a consequence,
we can infer that αλ2 = λ2. In fact, because of the minimality property (2.1), since
(λ2, λ2) ∈ Σ, we have αλ2 ≤ λ2. Arguing by contradiction, assume that αλ2 < λ2.
Then, the continuous curve {(αβ, β) ∈ R2 : β ∈]λ1,+∞[} meets the line {(α, β) ∈ R2

: α = β} in a point (λ̄, λ̄) ∈ R2 with λ1 < λ̄ < λ2, which is impossible because λ̄ must
be an eigenvalue for the Laplace operator −∆ in H1

0 (Ω). Thus, we can conclude that
αλ2 = λ2.
Now let us prove that, as β → +∞, u−β → e1 in H1

0 (Ω). In fact, ‖u−β ‖L2(Ω) = 1

and αβ =
∫

Ω
|Du−β |2dx ∀β > λ1. Since limβ→+∞ αβ = λ1, u−β converges to a function

ū ∈ H1
0 (Ω) in L2(Ω), weakly in H1

0 (Ω) and a.e. in Ω; moreover,

λ1 = lim
β→+∞

∫
Ω

|Du−β |
2dx ≤

∫
Ω

|Dū|2dx (2.40)
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because ū ∈ H1
0 (Ω) and ‖ū‖L2(Ω) = 1. It follows that u−β → ū strongly in H1

0 (Ω) and
ū = e1. Finally, taking into account that a function u satisfies (1.3) if and only if −u
satisfies (1.3) with (β, α) in place of (α, β), we infer that ‖u+

β ‖
−1
L2(Ω)u

+
β → e1 in H1

0 (Ω),
as β → λ1, so the proof is complete.

q.e.d.

3 Comparison with other curves of Σ and final re-

marks

Now, our aim is to use the variational characterization of the first nontrivial curve of
the Fuč́ık spectrum Σ, obtained in Section 2, in order to prove that this curve is distinct
from all the infinitely many curves of Σ obtained in previous papers (see [36, 37] and
the references therein).
In the next theorem we gather the main results presented in [36] and [37].

Theorem 3.1 Let Ω be a bounded connected domain of RN with N ≥ 2. Then, there
exists a nondecreasing sequence (bk)k of positive numbers, having the following proper-
ties. For every positive integer k and for all β > bk, there exist αk,β > λ1 and uk,β ∈
H1

0 (Ω), with u+
k,β 6≡ 0 and u−k,β 6≡ 0, such that the equation ∆uk,β −αk,βu−k,β +βu+

k,β = 0
in Ω is satisfied for all β > bk. Moreover, for every positive integer k, αk,β depends
continuously on β in ]bk,+∞[, αk,β < αk+1,β ∀β > bk+1, αk,β → λ1 as β → +∞, while
uk,β → −e1 in H1

0 (Ω).

Thus, the continuous curves {(αk,β, β) ∈ R2 : β > bk} and {(β, αk,β) ∈ R2 : β > bk}
are included in the nontrivial part of the Fuč́ık spectrum Σ for all k ∈ N and, as the
first nontrivial curve of Σ, are all asymptotic to the lines {λ1} × R and R× {λ1}.
In addition, these curves and the corresponding eigenfunctions have the properties
described in the following proposition (see [36, 37] and the references therein).

Proposition 3.2 Let Ω be a bounded connected domain of RN with N ≥ 2. For every
positive integer k, let bk > 0 and, for β > bk, let αk,β > λ1 and uk,β ∈ H1

0 (Ω) be the
positive number and the function given by Theorem 3.1. Then, the following properties
hold. There exist r > 0 and, for all k ≥ 1 and β > bk, k points x1,β, . . . , xk,β in Ω such

that the balls B
(
x1,β,

r√
β

)
, . . . , B

(
xk,β,

r√
β

)
are pairwise disjoint and all included in

Ω, uk,β(x) ≤ 0 ∀x ∈ Ω \∪ki=1B
(
xi,β,

r√
β

)
and u+

k,β 6≡ 0 in B
(
xi,β,

r√
β

)
∀i ∈ {1, . . . , k}.

As β → +∞, we have

lim
β→+∞

e1(xi,β) = max
Ω

e1 ∀i ∈ {1, . . . , k} (3.1)
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and
lim

β→+∞

√
β |xi,β − xj,β| =∞ for i 6= j. (3.2)

If, ∀k ∈ N, ∀i ∈ {1, . . . , k}, ∀β > bk, we set si,k,β = sup
{
uk,β(x) : x ∈ B

(
xi,β,

r√
β

)}
and define Ui,k,β(x) = s−1

i,k,βuk,β

(
x√
β

+ xi,β

)
∀x ∈

√
β(Ω− xi,β), then the rescaled func-

tion Ui,k,β converges as β → +∞ to the radial solution U of the problem

∆U + U+ = 0 in RN , U(0) = 1 (3.3)

and the convergence is uniform on the compact subsets of RN .
If N ≥ 3, we have

lim
β→+∞

β
N−2

2 (αk,β − λ1) = cap(r̄1)
(

max
Ω

e1

)2

k (3.4)

where r̄1 is the radius of the balls in RN for which the first eigenvalue of −∆ in H1
0 is

equal to 1 and cap(r̄1) denotes the capacity of these balls.
Finally, in the case N = 2 we have

lim
β→+∞

lg β(αk,β − λ1) = 4π
(

max
Ω

e1

)2

k. (3.5)

In Proposition 2.5 we proved that αβ converges to λ1 as β → +∞; now, we need to
estimate the rate of convergence.

Proposition 3.3 For all β > λ1, let αβ be the positive number introduced in Theorem
2.1. Then, for N ≥ 3 we have

lim
β→+∞

β
N−2

2 (αβ − λ1) = 0 (3.6)

while, for N = 2,
lim

β→+∞
lg β(αβ − λ1) = 0. (3.7)

Proof Let r̄1 be the positive number introduced in Proposition 3.2. For all y ∈
Ω, let us consider the function ūβ,y ∈ H1

0 (Ω), defined as follows. First notice that

B
(
y, r̄1√

β

)
⊆ Ω for β large enough and the first eigenvalue of −∆ in H1

0

(
B
(
y, r̄1√

β

))
is equal to β (because of the choice of r̄1). Then, for β > 0 large enough, in the ball

B
(
y, r̄1√

β

)
we define ūβ,y to be the positive eigenfunction corresponding to the first

eigenvalue of −∆ in H1
0

(
B
(
y, r̄1√

β

))
, normalized in L2

(
B
(
y, r̄1√

β

))
. Now, in order to

define ūβ,y in Ω \B
(
y, r̄1√

β

)
, set εβ = β−q with q ∈

]
1
2
− 1

N
, 1

2

[
if N ≥ 3 and εβ = 1

lg β
if
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N = 2. Then, for β > 0 large enough, consider the function ũβ,y inH1
0

(
Ω \B

(
y, r̄1√

β

))
,

such that ∆ũβ,y = 0 in the annulus A
(
y, r̄1√

β
, r̄1√

β
+ εβ

)
= B

(
y, r̄1√

β
+ εβ

)
\ B

(
y, r̄1√

β

)
and ũβ,y(x) = −e1(x) ∀x ∈ Ω \ B

(
y, r̄1√

β
+ εβ

)
. Finally, we complete the definition of

ūβ,y by setting ūβ,y(x) = ‖ũβ,y‖−1

L2(Ω\B(y,r̄1/
√
β))
ũβ,y(x) ∀x ∈ Ω \B

(
y, r̄1√

β

)
.

Since ‖ū+
β,y‖L2(Ω) = ‖ū−β,y‖L2(Ω) = 1 and

∫
Ω
|Dū+

β,y|2dx = β, taking into account (2.1)

we infer that αβ ≤
∫

Ω
|Dū−β,y|2dx for β > 0 large enough so that B

(
y, r̄1√

β
+ εβ

)
⊆ Ω.

Let us estimate the integral
∫

Ω
|Dū−β,y|2dx. We have∫

Ω

|Dū−β,y|
2dx = ‖ũβ,y‖−2

L2(Ω\B(y,r̄1/
√
β))

∫
Ω\B

(
y,
r̄1√
β

) |Dũβ,y|2dx (3.8)

where

‖ũβ,y‖2
L2(Ω\B(y,r̄1/

√
β))

= 1−
∫
B
(
y,
r̄1√
β

+εβ

) e2
1dx+

∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) ũ2
β,ydx (3.9)

and∫
Ω\B

(
y,
r̄1√
β

) |Dũβ,y|2dx = λ1−
∫
B
(
y,
r̄1√
β

+εβ

) |De1|2dx+

∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) |Dũβ,y|2dx. (3.10)

Since limβ→+∞ εβ
√
β = +∞, one can easily verify that there exists a positive number

c(y) (depending only on y) such that

lim
β→+∞

ε−Nβ

∫
B
(
y,
r̄1√
β

+εβ

)(e2
1 + |De1|2)dx ≤ c(y) (3.11)

and

lim sup
β→+∞

ε−Nβ

∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) ũ2
β,ydx ≤ c(y). (3.12)

Now, let us estimate the integral
∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) |Dũβ,y|2dx. Let us write ũβ,y as ũβ,y =

ṽβ,y + w̃β,y where ṽβ,y and w̃β,y satisfy ∆ṽβ,y = 0, ∆w̃β,y = 0 in A
(
y, r̄1√

β
, r̄1√

β
+ εβ

)
with

boundary condition ṽβ,y = e1, w̃β,y = −e1 on ∂B
(
y, r̄1√

β

)
and ṽβ,y = 0, w̃β,y = −e1 on

∂B
(
y, r̄1√

β
+ εβ

)
.

If N ≥ 3, one can verify by standard arguments that

lim
β→+∞

β
N−2

2

∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) |Dṽβ,y|2dx = e2
1(y)

∫
RN\B(0,r̄1)

|DṼ |2dx = e2
1(y) cap(r̄1),

(3.13)
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where Ṽ satisfies ∆Ṽ = 0 in RN \B(0, r̄1), Ṽ = 1 on ∂B(0, r̄1), lim|x|→∞ Ṽ (x) = 0.
Moreover,

lim sup
β→+∞

ε−Nβ

∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) |Dw̃β,y|2dx ≤ c(y), (3.14)

where c(y) is the positive number appearing in (3.11) and (3.12). Taking into account
the choice of εβ, we obtain also

lim
β→+∞

β
N−2

2

∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) |Dṽβ,y| |Dw̃β,y| dx = 0. (3.15)

Thus, since αβ ≤
∫

Ω
|Dū−β,y|2dx for β > 0 large enough so that B

(
y, r̄1√

β
+ εβ

)
⊂ Ω, it

follows that
lim sup
β→+∞

β
N−2

2 (αβ − λ1) ≤ e2
1(y) cap(r̄1) ∀y ∈ Ω, (3.16)

which (as y tends to the boundary of Ω) implies (3.6).

If N = 2, we argue in analogous way (but with lg β in place of β
N−2

2 ). Since εβ = 1
lg β

for N = 2, one can verify by direct computation that

lim
β→+∞

lg β

∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) |Dṽβ,y|2dx = 4πe2
1(y). (3.17)

Moreover,

lim sup
β→+∞

lg2 β

∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) |Dw̃β,y|2dx ≤ c(y) (3.18)

(where c(y) is the same as in (3.11) and (3.12)) and

lim
β→+∞

lg β

∫
A
(
y,
r̄1√
β
,
r̄1√
β

+εβ

) |Dṽβ,y| |Dw̃β,y| dx = 0. (3.19)

Therefore, it follows that

lim sup
β→+∞

lg β(αβ − λ1) ≤ 4πe2
1(y) ∀y ∈ Ω, (3.20)

which clearly implies (3.7).
q.e.d.

As a consequence of Propositions 3.2 and 3.3 we can state the following corollary.

Corollary 3.4 For every positive integer k, there exists b̃k > 0 such that αβ < αk,β
∀β > b̃k.
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The proof follows directly by comparing formulas (3.4) and (3.5) with (3.6) and (3.7).

Remark 3.5 The proof of Proposition 3.3 suggests that, for β > 0 large enough, the
support of u+

β is localized near the boundary of Ω. Indeed, a more careful analysis
of the asymptotic behaviour of uβ as β → +∞ (arguing as in [37]) shows that for all
β > 0 there exists yβ ∈ Ω such that (up to a subsequence) yβ converges, as β → +∞,

to a point ȳ ∈ ∂Ω and the rescaled function (supΩ uβ)−1 uβ

(
yβ + x√

β

)
converges to a

function Ū such that

∆Ū + Ū+ = 0, Ū+ 6≡ 0, Ū− 6≡ 0 in H, Ū = 0 on ∂H (3.21)

with H = {x ∈ RN : (x · ν̄) < 0}, where ν̄ denotes the outward normal to ∂Ω in ȳ.
Moreover (arguing as in [37]) for β large enough one can construct multibumps eigen-
functions for the Fuč́ık spectrum, having an arbitrarily large number of bumps localized
near prescribed connected components of ∂Ω.
In fact, if Ω is a smooth bounded connected domain of RN with N ≥ 2, arguing as
in [37], ∀k ∈ N one can construct, for β > 0 large enough, a k-bumps eigenfunction
ūk,β, corresponding to a pair (ᾱk,β, β) ∈ Σ, with k bumps localized near ∂Ω and having
asymptotic profile described by the functions Ū . Here ᾱk,β depends continuously on
β and, for β > 0 large enough, we have ᾱk,β < ᾱk+1,β ∀k ∈ N and ᾱk1,β < αk2,β

∀k1, k2 ∈ N. Thus, if N ≥ 2, we obtain a new class of infinitely many curves in Σ,
asymptotic to the lines {λ1} × R and R × {λ1}, while in the case N = 1 there exist
only two curves having this property.

Remark 3.6 Notice that the difference between the cases N = 1 and N ≥ 2 is even
more evident if we replace the Dirichlet boundary condition by the Neumann condition
∂u
∂ν

= 0 on ∂Ω. In fact, if we denote by λ̃1 < λ̃2 ≤ λ̃3 ≤ . . . and by Σ̃, respectively,
the eigenvalues of the Laplace operator −∆ and the Fuč́ık spectrum with Neumann
boundary conditions, we have λ̃1 = 0 and, if N = 1, no curve of Σ̃ is asymptotic to
the lines {0} × R or R × {0}. Indeed, a direct computation shows that, for N = 1,

every nontrivial pair (α, β) of Σ̃ satisfies α > 1
4
λ̃2 and β > 1

4
λ̃2, with λ̃2 > 0. On

the contrary, in the case N ≥ 2 there exist infinitely many curves contained in Σ̃ and
asymptotic to the lines {0} × R or R × {0}. The corresponding eigenfunctions have
an arbitrarily large number of bumps localized in the interior of Ω or near prescribed
connected components of ∂Ω. Both, interior and boundary bumps, present the same
asymptotic profile, described by the function U introduced in Proposition 3.2 (while,
in case of Dirichlet boundary conditions, the asymptotic profile is described by the
function U for the interior bumps and by the function Ū for the boundary bumps).
Notice that, as pointed out in [3, 15, 20], in case of Neumann boundary conditions

there exists a strict connection between the nonexistence of curves in Σ̃, asymptotic to
the lines {0}×R and R×{0}, and the fact that the antimaximum principle (see [14])
holds uniformly (in a suitable sense).
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Remark 3.7 For the sake of simplicity, in this paper we have considered only the case
of the Laplace operator, but the results we have presented may be easily extended to
cover the case of more general boundary conditions and elliptic operators in divergence
form. Moreover, the variational method we have used in this paper may be easily
adapted to deal also with quasilinear operators as the p-laplacian. Thus, we can obtain
also for the p-laplacian a variational characterization of the first nontrivial curve of the
Fuč́ık spectrum, similar to Theorem 2.1 (but the asymptotic behaviour depends on p,
on the spatial dimension N and on the boundary conditions we consider).
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[23] S. Fuč́ık, A. Kufner, Nonlinear differential equations. Studies in Applied Mechanics, 2.
Elsevier Scientific Publishing Co., Amsterdam-New York, 1980.

21
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