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ABSTRACT. - In this paper we present a new variational characteriztion of the first non-
trival curve of the Fucik spectrum for elliptic operators with Dirichlet boundary conditions.
Moreover, we describe the asymptotic behaviour and some properties of this curve and of the
corresponding eigenfunctions. In particular, this new characterization allows us to compare
the first curve of the Fuc¢ik spectrum with the infinitely many curves we obtained in previous
works (see [36, 37]): for example, we show that these curves are all asymptotic to the same
lines as the first curve, but they are all distinct from such a curve.

MSC: 35J20; 35J25; 35J61.

Keywords: Elliptic operators, Fuéik spectrum, first curve.

1 Introduction

The Fucik spectrum, first introduced in [22] and [17], plays an important role in the
study of some elliptic problems with linear growth. Let us consider, for example, the
Dirichlet problem

Au+g(z,u) =0 in Q, u=0 on Jf, (1.1)

where Q is a bounded connected domain of RY with N > 1 and g is a Carathéodory
function in 2 x R such that

t——o0 t ’ t— 400
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with «, f in R. Existence and multiplicity of solutions for problems of this type are
strictly related to the position of the pair (o, 5) with respect to the Fuéik spectrum 3
which is defined as the set of all the pairs (a, 8) € R? such that the Dirichlet problem

Au—ou” +pBut =0 inQ, u=0 on JdQ (1.3)

has nontrivial solutions (here, u* = max{4wu,0} and u nontrivial means u € H}(Q),

u #Z 0). In fact, these problems may lack compactness in the sense that the well
known Palais-Smale compactness condition fails if the pair (a, 8) belongs to the Fuéik
spectrum 2; moreover, the topological properties of the sublevels of the corresponding
energy functional depend on the position of (a, #) with respect to 3.

After the pionering papers [10] and [1] on these problems, the important role of the
Fuéik spectrum has been pointed out in [22] and [17]. Then, several works have been
devoted to describe the structure of ¥ (see, for example, [2, 5, 6, 8, 9, 16-30, 39-43]
etc. ...).

Let us denote by A\; < Ay < A3 < ... the eigenvalues of —A in H} (). It is clear that 2
includes the lines {\;} x R and R x {\;}, contains all the pairs (\;, \;) Vi € N (that are
the only pairs (a, 8) of 3 such that a = ) and is symmetric with respect to the line
{(a,8) € R?* : a = B} (because a function u satisfies (1.3) if and only if —u satisfies
(1.3) with (8, ) in place of (a, 3)). Moreover, if a # A\, f # A and (o, ) € X,
then o« > Ay, § > A; and the eigenfunctions corresponding to the pair («, 5) are sign
changing functions.

In the case N = 1, ¥ is completely known and may be obtained by direct computation.
It consists of curves emanating from the pairs (\;, A;); if 7 is an even positive integer,
there exists only one curve while, if 7 is odd, there exist exactly two curves emanating
from (A;, A;). All these curves are smooth, unbounded and decreasing. Moreover, on
each curve, o tends to an eigenvalue of —A in H(Q) as 8 — +oo. Conversely, for
every eigenvalue ); there exist exactly three curves asymptotic to the lines {\;} x R
and R x {\;}; they pass, respectively, through the pairs (Ay;_1, A2i—1), (Aas, Ag;) and
(A2it1; A2ig1)-

On the contrary, in the case of higher dimensions the known results are much less
complete and the description of ¥ remains a largely open question. It is known that
Y is a closed set and that the lines {\;} x R and R x {A\;} (the trivial part of X) are
isolated in ¥ (see [17]). Many results concern the curves of ¥ emanating from each
pair (A, A;) (local existence and multiplicity, local and global properties, etc. ...).
In particular, if \; has multiplicity m, i.e. A1 < A = ... = Nitm—1 < Airm, from
the point (\;, A;) arises a continuum composed by a lower and an upper curve, both
decreasing (and maybe coincident) such that 3 N (X1, Ai1.n)? lies between these two
curves, so the open squares (A;_1, A;)® and (A, Airm)? do not contain any point of ¥
(see, for example, [24, 29, 41, 42] and the references therein).

Combining these results, one can infer that ¥ contains a first nontrivial curve, which
passes through (A2, A\y) and extends to infinity. In [20] the authors prove directly the
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existence of such a first curve, give a variational characterization of it and derive several
properties. In particular, they show that this curve is asymptotic to the lines {A;} x R
and R x {\;}, give a new proof of the fact that these lines are isolated in ¥ and deduce
that all the eigenfunctions corresponding to points of the first curve have exactly two
nodal domains (extending the well known Courant nodal domains theorem).

Recently (see [33-35]) we have obtained new existence and multiplicity results for a class
of Dirichlet problems of type (1.1) (in particular for semilinear problems with jumping
nonlinearities) using a variational method that does not require to know whether or
not the pair (a, #) belongs to ¥ and, in addition, may be used to give new information
on the structure of ¥. In fact (see [36, 37]) using this method we have proved that if
N > 2 there exist infinitely many curves in X, asymptotic to the lines {\;} x R and
R x {A1} (while, if N = 1, ¥ has only two curves asymptotic to these lines). More
precisely (see also Theorem 3.1) we have proved that, if N > 2 and k € N, for § > 0
large enough there exists ag 3 > A; such that (g, 5) € X; moreover, for all k € N,
limg_, 1o a3 = A1, oy g depends continuously on 8 and oy g < aj41,5 (notice that the
method developed in [33-35] has been also used in the study of some nonlinear scalar
field equations (see [11-13])).

The following natural question remains still open: where do these curves come from?
Most probably, they come from bifurcations of the first nontrivial curve of ¥ or from
pairs (A;, A;) of higher eigenvalues.

The results obtained in [32] seem to confirm our conjecture. In fact, in [32] the authors
study the Fuéik spectrum of the laplacian on a two-dimensional torus 7 with periodic
conditions and, exploiting the invariance properties of 72 with respect to translations,
they prove that at least two global curves emanate from every pair of eigenvalues:
a global curve which can be obtained explicitely and a global curve which can be
characterized variationally using a suitable topological index (see [4, 7, 31]). The
explicit curves are asymptotic to lines {A\} x R and R x {A} for suitable constants
A > 0, while the variational curves are all asymptotic to {0} x R and R x {0}, the
trivial lines of the Fuéik spectrum in 7. Therefore, the explicit and the variational
curves cannot coincide globally and many curve crossings must occur. Moreover, on
the first explicit curve there exist infinitely many points of bifurcations (associated to
symmetry breaking phenomena).

These results suggest that, in higher dimensions, ¥ has a quite complicated struc-
ture even if, for example, 2 is a ball of RY with N > 2 (where we observed similar
phenomena that motivated our conjecture).

In the present paper we give a new variational characterization of the first nontrivial
curve of X. We prove that the infimum

inf {/ |Du™*dz : we Hy(Q), [ut|lr20) = v |20 = 17/ |Dut|?dx = 5}
Q Q
(1.4)



is achieved for all 8 > A;; moreover we prove that, if we denote by agz the above
infimum, then ag is continuous and strictly decreasing with respect to 5 in |y, +o0l,
limgy 100 g = A1, limg,y, ag = 400, (g, 5) € ¥ VB > Ay and

{(a,3) €T - a>A, B>M}C{(a,) €ER* : B> A, a>az V8> N} (L5)

Therefore (using  as parameter) the first nontrivial curve of 3 may be described as
the set {(a,8) € R?: 3> A\, a = ag VB > A} (a similar description holds if we use
« as parameter).

The eigenfunctions corresponding to (ag, 8) are suitable smooth functions ug € H} (),
such that uy # 0, uy # 0 in Q and the function g = —Hu;HZQl(Q)ug - HUE”;(Q)UE is
a minimizing function for (1.4).

This variational characterization of the first nontrivial curve of ¥, which is different
from the ones obtained in [20] and in [32], has been first announced in [38].

All the properties of the first curve and of the corresponding eigenfunctions may be
easily deduced from this new characterization. In the present paper, in particular, we
deduce that all the curves we obtained in [37] are distinct from the first curve. In
fact, suitable asymptotic estimates of ag, as  — 400, allow us to say that for every
positive integer k we have ag < oy g when f3 is large enough.

The asymptotic behaviour of the eigenfunctions ug corresponding to (ag,3), as f —
+00, shows that the support of ug is localized near the boundary of Q2 for £ large
enough and that ||u5||221(9)u5 — —ey in ), where e; denotes the positive eigenfunction

of —A in Hj (), corresponding to A; and normalized in L?(Q2). On the contrary, the
eigenfunctions wuy g corresponding to the pairs (ay g, 3), for § large enough, have the
support of u: g localized near the maximum points of e; (see [36, 37] and also Theorem
3.1 and Proposition 3.2). This fact suggests that, arguing as in [37], it is possible to
construct a new class of infinitely many curves of ¥, asymptotic to the lines {\;} x R
and R x {A\;}, corresponding to eigenfunctions having an arbitrarily large number of
bumps localized near the boundary of {2 (see Remark 3.5 for more details about this
construction).

The method we use in this paper is completely variational. For all § > \;, the
eigenfunction ug corresponding to the pair (ag, ) is obtained as critical point of the
functional f(u) = [,[|Dul* — B(u")?]dz constrained on the set S = {u € Hj(Q) :
Jo(u™)?dz = 1} (here, ag arises as the Lagrange multiplier with respect to the con-
straint S). In Section 2 we introduce also another functional fsz., converging to fs
as € — 0, which for all € > 0 presents more manageable variational properties with
respect to fsz; thus we first find constrained critical points for fz. and then we let
¢ — 0 in order to obtain the variational characterization of the first nontrivial curve of
Y (see Theorem 2.1). In Section 3 we analyse the asymptotic behaviour, as § — +o0,
of this curve and of the corresponding eigenfunctions, we compare this curve with the
infinitely many curves obtained in [37] and we discuss some possible generalizations,
forthcoming results on related questions, etc. ...
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2 Variational characterization of the first curve of
>

The following theorem gives a variational characterization of the first nontrivial curve
of the Fucik spectrum 3.

Theorem 2.1 Let Q be a bounded connected domain of RY with N > 1. For all
B > A1, let us set

ap = inf {/ |Du™Pdz - w e Hy(Q), |ut|r2) = v Iz = 1,/ |Dut |dx = 5} :
Q Q

(2.1)
Then, ag > A1, (ap, ) € L VB > A\ and ag < «a for every a« > A\ such that
(o, B) € . Moreover, ag is continuous and strictly decreasing with respect to [ in
A1, Foo[, an, = Ao, the infimum in (2.1) is achieved Y3 > A\ and an eigenfunction
corresponding to the pair (ag, B) is given by ug = —ﬂ§+ulgﬂg, where ug is a minimizing
function for (2.1) and pg is a suitable positive constant.
As B — 400, ag = A and ug — ey in Hi(Q); as B — A\, ag — +oo and
||u;||221(mu§ — €1 1n Hy(2).

In order to prove this theorem, for all 5 > 0 and € > 0 we consider the functional

fse: HY(2) — R defined by
foct) = [ 1DuPds =2 [ Goclupde, 29
Q Q

where G (t) = fot gp:(T)dr Vt € R, with gz.(7) = 0 Vr < ¢ and gg.(7) = (7 —
g) V7 > e. Our first aim is to find sign changing functions v € Hg(2) which are
constrained critical points for the functional fs. constrained on the set S = {u € HJ ()
. Jo(u™)?dz = 1}. Therefore, we consider the set M#* consisting of all the functions
u in S such that u™ # 0 and fj _(u)[u™] = 0.

One can easily verify that for all € > 0, if a sign changing function u € S is a critical
point for fs. constrained on S, then v € M”¢ and fj (—u~ + tu™)[u"] is positive for
t €]0, 1] and negative for ¢t > 1 (because % g(7) is strictly increasing with respect to 7 in
Je, +00[); so the function u is the unique maximum point for fs . on the set {—u~+tu™
: t > 0} which is included in S.

Notice that, for € = 0, the functional f3 = fso and the sets M?° do not have the
same properties; this is the reason for introducing first the functional fz. which, for
all € > 0, presents more manageable variational properties and then we let € — 0.



Proposition 2.2 For all € > 0, we have M? £ () if and only if B > M. If B > Ay,
the minimum of fs. on MP< is achieved for all € > 0 and every minimizing function
ug. satisfies the equation

Aug. + gp-(uge) — agetg, =0 in §Q, (2.3)
where ag. = [, |Dug [*dx Ve >0, VG > Ay

Proof Notice that gs.(7) < 87 V7 > 0, VS > 0, Ve > 0; moreover, if a function
u € S satisfies [(u")?dz > 0, then [, |Dut|*dx > Ay [(uT)?*dz. Thus, if § < Ay we
obtain [, |Du**dx > S [(ut)’dx > [, 9s(u™)uTdx, namely fj_(u)[u*] > 0, which
implies v & M?¢. Therefore, if 8 < A\;, we have M?¢ = () Ve > 0.
On the contrary, if 3 > \; we have M%< # (). In fact, if 8 > )1, one can easily construct
a function @ € S such that [, |Dut[*dz < f [,(a*)*dz. For example, fix zy € 09,
set Q, = Q\ B(zo,7), Q = QN B(xg,r) and, for r €]0, (1/2) diam(Q)[, consider the
positive eigenfunctions e;(€,) and e;(€,.), normalized in L?, corresponding to the first
eigenvalues of the operator —A in HZ(€,) and H}(Q,) respectively; then, the function
@ such that @ = e;(Q,) in Q, and @ = —eI(QT) in Q, has the required properties for r
small enough.
Notice that fg.(—u~ +tut) = fz.(—u") + fa.(tu") Vt > 0; moreover, one can easily
verify by direct computation that

lim t%fﬁ,g(mﬂ = /Q |Dut 2dw —ﬂ/ﬁ(a*)%x <0 (2.4)

t—+o00

and (since € > 0)
1
lim — fo (ta) = / Dt Pdz > 0. (2.5)
Q

t—0 12

Therefore, we infer that for all € > 0 there exists ¢ > 0 such that fz.(—a~ +ta") >
fae(—u~ +tu") Vt > 0, which implies —u~ + tu™ € M. Thus, MP< £ ) VS > Ay,
Ve > 0.

Now, let us prove that the infimum inf)s- fg. is achieved for all 8 > A\; and ¢ > 0.
Let us consider a minimizing sequence (u,),. Notice that fg.(u,) = fs(—u,) +
fae(ut) ¥n € N, where = fs.(—u,) = [, |Duy, [*dz > A\ (because |uy, ||r2@) = 1)
and fs.(ul) > 0 since u, € MP< implies fs.(u)) = max{fs (tu}) : t > 0} > 0
Ve > 0 (because Lgg () is strictly increasing with respect to 7 in Je, +o0[). Taking
into account that sup{ fs.(u,) : n € N} < +o0, it follows that

A <liminf fz.(—u, ) <limsup fz.(—u, ) < +oo0 (2.6)
n—00 n—00
and
0 < liminf fa.(u}) < limsup fs.(u)) < +o0. (2.7)
n—0o n—00



Since fae(—u,) = [, |Du,|*dz, (2.6) implies that the sequence (u,), is bounded in
H} (). Now, let us prove that also the sequence (u;),, is bounded in H{(f2). Taking
into account that fj _(u,)[u,;] =0 Vn € N, we have

/|Du+| d:c—/ggs( +dx<ﬁ/ (2.8)

Therefore, it suffices to prove that the sequence (u;}), is bounded in L?*(§2). Arguing
by contradiction, assume that (up to a subsequence) lim, , [, (u;)*dz = oo and
set v, = ||u,f||£21(9)u;r Then, (2.8) implies [, |Dv,|?dz < 8 ¥n € N. So (up to a
subsequence) (v,), converges in L%(Q), weakly in H} () and a.e. in  to a function
v € Hi(Q). It follows that [, |Dv]*dz < 8, [,v*dz =1 and v > 0 in Q Moreover,
taking into account that fj_(u,)[uf] = 0 Vn € N, and that lim, o [, (u])?dz = oo,
one can verify by direct computation that lim, .« [, |Dv,|*dz = . Tt follows that

lim fp (tv,)[vn] = 2t6 — 2/ gpe(tv)vde YVt > 0. (2.9)

n—oo

Since [, v*dx =1, for all € > 0 we obtain

t—+o00 t——+o00

lim inf [tﬁ - / gpe(tv)v dx} = lim 1nf/[,6’tv — gpe(tv)vdr > 0. (2.10)
Q Q

Now, let us set t, = [|u,|[z2(o) and notice that f; (tv,)[v,] > 0 V¢ €]0,%,[ (because
29p,-(7) is strictly increasing with respect to 7 in ]e, +00[). Since we are assuming
lim,,_,o t, = 400, we obtain

hmmf foe(ul) = hmmf/ fo.(ton)[v]dt > Z/T {tﬁ - / gp.(tv)v dx} dt vt >0.
Q

’ (2.11)
Then, as 7 — +o0, from (2.10) we obtain lim, , f5:(u,) = 400, in contradiction
with (2.7). Therefore, we can say that also the sequence (u.), is bounded in HJ (). It
follows that there exists u € Hj () such that (up to a subsequence) (u,), converges to
win L*(Q), Weakly in H}(Q) and a.e. in Q. As a consequence of the L*({2) convergence,
we have fQ )2dz = 1. Let us prove that u™ # 0. Arguing by contradiction, assume
that u™ = 0. Then (because of the L*(2) convergence) from (2.8) we infer that
limy, o0 [, [Duf|*de = 0, so we have lim, o fg-(u;}) = 0. Therefore, we obtain a
contradiction if we prove that

inf{fs.(w") : we M} >0 Ve>0. (2.12)

Since w € M€ implies fz.(w") = max{fs.(tw™) : ¢ > 0}, it is clear that it suffices
to prove that there exist two positive constants pg. and cg. such that fsz.(w) > ¢z,
Yw € Hy(Q) such that [, [Dw[*dz = pg..



In order to prove the existence of these constants cg. and pg., notice that, since
B > Ay, there exists jz € N such that \j, < 3 < Xj,11. Let us denote by S} and S3
the closed subspaces of H}(€)) spanned by the eigenfunctions of the Laplace operator
—A in H}(Q), corresponding to eigenvalues \; with, respectively, 1 < j < jz and
J > jg+ 1. For all B > A and € > 0, there exists vg. > 0 such that, if w € Sé and
Jo |Dw]Pdx < vj_, then |w(z)| < e Vo € Q.

For all w € Hj(Q) such that [, [Dw|*dx < v, set w = wy g+ws g, with wy 3 € Sj and
wyg € S3. Then, taking into account that [, [Dw, g|*dx < vj, and as a consequence
wig < e in Q, we have fz(wy5) = [, [Dwigl*dx and f} (wyg)[wse] = 0. Therefore,
we obtain

fae(w) = fae(wip +wap) = fac(wi g +wap) — foc(wig) + /Q |Dwy gdx,  (2.13)

where
foe(wip +wap) — fae(wig) > fé,e(wl,ﬁ)[wwH/ |Dw2,ﬂ|2dl’—5/w§,ﬂdl’
Q Q

- / | Duwnsl? — pud ,lda

> (1— )/Q|wa|2dg; (2.14)

because [, [Dwy g*de > Xj, 41 [ w3 gdx. It follows that, for a suitable éz. > 0, we
have fg.(w) > és. [, |Dw|*dx Yw € Hy(Q) such that [, |[Dw|*dz < v . Therefore, it
follows easily that there exist two constants ps. €]0,v3.[ and ¢z, > 0 satisfying the
required properties. Thus, we can say that u™ # 0.

From the weak Hg(€2) convergence, it follows that fj _(u")[u"] < 0; on the other hand,
a direct computation shows that limy o 15 (tu")[ut] = 2 [, |Du*|*dz, so we infer
that f5 _(tu™)[u™] > 0 for ¢ > 0 small enough (because u*™ # 0). Therefore, there
exists £ €]0, 1] such that the function % = —u~ +tu™ belongs to M?<. Moreover, since
fac(tuf) < fs.(ut) Vn € N, we have

B
)‘j5+1

liminf f5.(fu,}) < liminf fs5.(u;). (2.15)
n—oo n—oo
It follows that
foe(@) < liminf f5.(—u, +tu) <liminf fs.(u,) = inf{fs.(u) : ue M?}. (2.16)
n—oo n—oo

Thus, we can say that the infimum of fz. on MP< is achieved and that fs.(4) =
minyse fae.



Let 8 > A1, € > 0 and ug,. be a minimizing function for f5. on M?<. Our aim is to
prove that ug. is a constrained critical point for the functional fz. constrained on the
set S, namely that there exists a Lagrange multiplier ag. such that

350 = —an. [wwde o€ HY® (217)
Q

(that is, ug. is a weak solution of the equation (2.3)).
Let us point out that, unlike the case of the smooth constraint [,(u™)*dz = 1, for
which the Lagrange multipliers theorem applies (and gives the multiplier ag.), the
constraint fj (u)[u*] = 0 does not satisfy the regularity conditions required in that
theorem. However, it is a “natural constraint” in the sense that it does not give rise
to Lagrange multipliers.
Notice that (as we observed before) fj (u + tu™)[u*] is positive for ¢ €] — 1,0[ and
negative for ¢ > 0. Therefore, ug. is the unique maximum point for fz. on the set
{uge + tug, : t > —1}. Then, arguing by contradiction, assume that (2.17) is not
satisfied for any choice of the multiplier ag. in R. It follows by standard arguments
that there exists a continuous map 7 :] — 1, +oo[— Hg(€) such that 7(t) = ug. +tuj_
if [t] > 5, ()" 2@ =1, n(6)" # 0, fo(n(t)) < foe(upe) V¢ = —1.
Therefore, we infer that there exists ¢t € [—%, %} such that n(t) € M?<, which gives
a contradiction because fz.(1n(t)) < fse(us.e) and fse(uge) = minys. fz.. Thus, we
can conclude that there exists a multiplier az, in R such that (2.17) holds.
Finally, notice that, if in (2.17) we set 1 = uj_, we easily obtain ag. = [, |[Dug |*dx,
so the proof is complete.

q.e.d.

Now, our aim is to describe the behaviour as ¢ — 0 of the minimizing function wug,
given by Proposition 2.2.

Proposition 2.3 For all B > A\ and € > 0, let ug, be a minimizing function for
the functional fs. on the set MP< and put Ug. = —ugz_ + HUEEHZ;(Q)uE6 Then,
up to a subsequence, tig. converges in Hy(Q), as € — 0, to a function ug such that
Jo | DugPde = B and

/Q|Dulg|2d$ = min{/Q|Du_|2d$ D u € HY (), (2.18)

HUJFHLz(Q) = Hu*HLz(Q) = 1, / ’Dqu’Qdﬂﬁ = 5} .
Q
Proof Notice that, since ug, € MP?P# we have

/]DUEEIqu: :/95’5(u5,5)u/§75dx < ﬁ/(u;efdx Ve > 0. (2.19)
Q Q Q
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Therefore, we obtain [, [Duj |*dz < § Ve > 0.
Moreover, we have also

limsup/ |Du§€|2da: < +00. (2.20)
e—0 (e} ’
In fact, since 3 > Ay, there exists 4 € Hj(Q) such that [,(47)*de = [, (07)*dz = 1,

Jo IDutPdz < 3. As a consequence, we obtain
Fonlug.) < / D Pdz + max{ fo.(t0) 1 t>0}  Ves0  (221)
Q
and, as ¢ — 0, since [, |Du"|*dz < 3,

limsup f5.(ug.) / |Di~ *dx < 400, (2.22)
e—0

which implies (2.20) because fz(uge) = [ [Dug |*de + fge(ug,) with fs (uf ) >0
Ve > 0.

It follows that, up to a subsequence, g, converges as ¢ — 0 to a function ug € Hy ()
in L?(Q), weakly in H}(Q2) and a.e. in €.

Let us prove that, indeed, 4. — g strongly in H}(Q) as € — 0. In fact, we have

p
/ Dt [P = g%/ \Du i = / \Du [2d. (2.23)
For the proof, we argue by contradiction and assume that [, |Dag|*dx < 3 or (up to a
subsequence) [, |Dug|*dx <lim. g [, [Dug [*dz. In this case, by slight modifications
of the supports of uz and ﬁg, one can construct a function a5 € Hg(2) such that
a5 |22y = [lf |2 = 1, Jq |Duf|Pde < 8 and [, |[Dig|*de < lime_ [, |Dug |*dz.
Then, for all € > 0, let us consider the function ug,. € MP?# such that Ug, =ug Ve >0
and ﬂg}s = tgﬂ; where, for all ¢ > 0, ¢. is the (unique) positive number such that
fhe(teuf)[ug] = 0 (such a number t, exists because [, |Duf[*dx < f).

Thus, we have

foelupe) — fpellipe) = fﬂ,e(u;a) - fﬂ,e(ﬂ;a) + fﬂ,e(ug,a) - fﬂ,a(ﬂg,a)a (2.24)

where fg(uz.) > 0 Ve > 0, limeyo fz(tj.) = 0 (because [, |Diy[*dr < ) and
lim. o fpe(ug.) > [o|DiglPde = fg(us,.) Ve > 0.

It follows that fz.(uge) > fz.(tg,) for e > 0 small enough, which gives a contradiction
because . € MP< and fs.(us.) = minys. fs.. Thus, we can conclude that g, —
tig strongly in Hy(Q) as € — 0 and that [, |Duf[*dx = §.

In a similar way, now we prove (2.18). Arguing again by contradiction, assume that
there exists a function v € Hj(Q) such that [|[v"||12q) = [[v7||22¢) = 1, [, |DvTPdx =
Band [, [Dv~|*dz < [, |Diug [*dz.
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In this case, by slight modifications of the supports of v and v~, one can find 95 €
Hg(Q) such that [|0F |2y = 105 ll22) = 1, [ |DO[Pdz < B and [, |Dog [Pdz <
Jo |Dug|d.

Since [, |Dig|*dr < B and |[0F]|r2@) = 1, it follows that for all ¢ > 0 there exists
t. > 0 such that f} _(£.0})[04] = 0, namely, the function 05, = —05 + .0} belongs to
MPe.

Then, by direct computation, we obtain

foc(use) = fac(tpe) = foe(uz.) = fac(Vz.) + foc(us.) — fae(vs.), (2.25)

where fgo(uj.) >0, fae(05.) = [ |Dog [Pdz Ve > 0, lim. o fg(05,.) = 0 and

: - 2 A2
lim i (u5,) = /Q Dt [*dr > /Q Do [2da. (2.26)

It follows that fs.(ug.) > fze(0sc) for € > 0 small enough; so we have again a
contradiction because 9g. € M? and f5.(up.) = minys. fz. Ve > 0.
q.e.d.

Proposition 2.4 For all B > A\ and € > 0, let ug, be a minimizing function for the
functional fz. on the set MP<. Then, as e — 0 (up to a subsequence) uz. converges
in H3 () to a sign changing function ug which solves the equation

Aug — aguy + fuy =0 in €2, (2.27)

where ag s the positive number introduced in Theorem 2.1. Moreover, the function
g = —ug + ||u§\|221(9)u2§ is a minimizing function for ag (see (2.1)) and \; < ag < «
for every o > Ay such that (o, 5) € 3.

Proof As we proved in Proposition 2.2, for all > A\; and € > 0, ug. is a weak
solution of the equation

Aug. — apeug + gpe(uge) =0 in €, (2.28)

where ag. = [, |Dug [*dz.

Moreover, by Proposition 2.3, g, = —ug. + ||u§7€||221(Q)u;;E converges, as € — 0, to a
function ug in H} ().

Let us prove that
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Arguing by contradiction, assume that (up to a subsequence) lim. o [lug_|lz2@) = 0
for some § > A;. In this case, since f} _(uge)uf ] =0, we infer that uj_ — 0in Hg(Q)
as € — 0. Therefore, if we let ¢ — 0, from (2.28) we obtain

/[DagD@z) —apugYldr =0 VY€ H (), (2.30)
Q

where ag = [, |Dig[*dz. Thus, we have a contradiction because Dy # 0 on QN

O(supp g ).
Now, let us prove that

lim sup [|ug |2 < +00 VB > . (2.31)
e—0 ’

Arguing again by contradiction, assume that (up to a subsequence) lim._q Huge | 22(0) =
+oo for some 8 > A;. Then, as e — 0, from (2.28) we obtain

/ [DatDy — fubyldr =0 Vi € HH(Q). (2.32)
Q

Thus, we again have a contradiction because Dﬂér % 0 on 2N J(supp ﬂ}')

Therefore, we can say that for all 5 > A; (up to a subsequence) ug . converges as ¢ — 0
to a sign changing function ug strongly in Hj(2). Moreover, if we let € — 0 in (2.28),
because of the minimality property (2.18) given by Proposition 2.3, we infer that ug is
a weak solution of the Dirichlet problem

Aug — agug + BUE =0 inQ, ug =0 on 0. (2.33)

It follows that [, |Duj|*dz = B [,(uj)*dz > 0 and [, |Dug[*dz = ag V3 > Ay (notice
that [, [Dug[*dz > X\ because uy # 0). So we can say that the function @ =
—ug + ||u2§||£21(9)u§ is a minimizing function for the infimum in (2.1) and ag < « for
every a > A; such that («, 5) € ¥, which completes the proof.

q.e.d.

Proposition 2.5 For all B > Ay, let ag be the positive number introduced in Theorem
2.1. Then ag is continuous and strictly decreasing with respect to B in |\, +o0l.
Moreover, limg_, o ag = A\; and limg_, 5, ag = +00.

Proof First, let us prove that ag depends continuously on 3 in JA;, +-00[, namely,
limg 503 = ag V3 €]\, +00].
Let us set g = —ug + HugHzgl(Q)ug VB > Ai, where ug is the eigenfunction, corre-
sponding to the pair (ag, 3), given by Proposition 2.4.

12



In order to prove that liminfs_,5 s > az, we argue by contradiction and assume that
there exists a sequence (/3,), such that lim, . 3, = 8 and lim,_. ag, < az.

Since ag, = [, |Dig, [*dx and [, |Dug [*dx = B, ¥n € N, it follows that the sequence
(g, )n is bounded in H}(Q2), so (up to a subsequence) it converges to a function 4 in
L*(2), weakly in Hj(€2) and a.e. in 2. Then, we have

lim / | Dy, ?dx > / |Da~|*dr and / |DatPdr < lim / | D [*dx = .
n—oo [ n Q Q n—oo [ "

(2.34)
As a consequence, there exists a function 0 € H} () such that 0 < 9 < 4" in 2 and
Jo |DOPdz = § [, 9*dx > 0.
Therefore, by (2.1) we have

_ ol P 1 TR = 1
ap < /Q |Da~ |*dx < nh—>nolo/9 |Duy |*dr = nh_)noloagn, (2.35)

which is a contradiction. Thus we can say that liminfs ,5a3 > ag.
Now, let us prove that limsupg_,5 a3 < az. By slight perturbations of the function ug,
one can construct V3 > Ay a function @g € Hy(Q2) such that ||af| 2y = lluz]lr2@) =

1, [o|Dug|Pde = B VB > A\ and 5 — g in Hi () as f — B. It follows that
ag < [o|DiugPde VB > Ay and

limsup ag < lim/ |Dig |*da = / \Dﬂ§|2dx = a3 (2.36)
B—pB B=BJ0 Q

Thus, we can conclude that az depends continuously on 3 in |\, +00].

Now, we prove that ag is strictly decreasing with respect to § in [A;, +oo[. Let us
consider 4 and f; in JA;, oo such that 8 < fa. Since ag, = [, |Dug [*dr and
Bi < s, there exists i, € Hj(Q) (with supp(aj) € supp(ug,) and supp(ig,) 2
supp(ug, )) such that [|ig,[l2) = g, |2 = 1, [o|Dif,[Pde = Ba, [, [Dig, [*dr <
Jo |Dug [Pdz = ag, .

Therefore, taking into account Proposition 2.3 (see (2.18)), we obtain

ag, = min {/ |Du_|2dx T uE H&(Q), ||u+||L2(Q) = ||u" |2 = 1,
Q

/|Du+|2dx:52} < / | Dug, [*da (2.37)
Q Q
that is ag, < ag,.

Let us prove that limg_,;. ag = A1. Since ag is decreasing with respect to 3, from
Proposition 2.3 we obtain

A\ < ag = inf {/ |Du™Pdx : u € H&(Q), ||u+||L2(Q) = [|u" |2 = 1,
Q
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/ Dt Pdz < 5} | (2.38)
Q
As  — 400, it follows that

< =
A < ﬁl_lgloo@g inf{ag : B> \}

< inf{/ |Du_|2da7 CuE H&(Q), ||U/+||L2(Q) = [Ju™ || 2) = 1}
Q

< |Dei(Q)2dz Vr € }0, % diam(£2) [, (2.39)
Qr

where . and e1(€2,) are defined in the following way: we fix xg € 09, set Q, =
Q \ B(zo,7) and denote by e;(€,) the positive eigenfunction, normalized in L?(,),
corresponding to the first eigenvalue of the operator —A in H{(£2,). Then, as r — 0,
we obtain limg_, | ag = A;. Notice that, as a consequence, we have also limg_,, ag =
+00, because the set {(ag, ) € R? : 8 > A} (the first nontrivial curve of ¥) is
symmetric with respect to the line {(«, 8) € R? : a = S} (since a pair (a, 3) € ¥ if
and only if (8, a) € X0).

q.e.d.

Proof of Theorem 2.1 For all 3 > \; and € > 0, let ug, be a minimizing function
for the functional fs. on the set M? (here we use Proposition 2.2). From Propositions
2.3 and 2.4 we deduce that, as e — 0, ug. converges in H;(2) to a function ug such that
uy # 0 and |lug |2y = 1, satisfying the equation Aug — aguy + fuj = 0 in Q, with
ag = [o|Dug*dz > Ay Thus (ag, ) € X. Moreover, from Proposition 2.3 we infer

that the function g = —ug +|[luj ||L2 uﬁ is a minimizing function for (2.1) and az < «
for every @ > A; such that («, B) € Z Notice that the eigenfunction ug corresponding
to the pair (ag, 3) may be written as ug = —ty + gty with ps = [[uf L2

By Proposition 2.5, we know that ag is continuous and strictly decreasing with respect
to f in |A;, oo and that limg , o g = Ay, limg,), ap = +00. As a consequence,
we can infer that ), = Ag. In fact, because of the minimality property (2.1), since
(A2, A9) € X, we have ay, < A\y. Arguing by contradiction, assume that ay, < As.
Then, the continuous curve {(ag, ) € R* : 8 €]y, +00[} meets the line {(«a, 3) € R?
: a = B} in a point (A, \) € R? with \; < X\ < g, which is impossible because A must
be an eigenvalue for the Laplace operator —A in H} (). Thus, we can conclude that
Ay, = )\2.

Now let us prove that, as 8 — 400, ug — e in Hy(Q). In fact, [|uzllr2@) = 1
and ag = [, |Dug[*dx V3 > Ai. Since limg, 1o s = A1, uj converges to a function
u € Hi(Q) in L*(2), weakly in Hj(Q2) and a.e. in ; moreover,

= lim /]Duﬂl d:z:</|Du] dx (2.40)

B—+o0
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because a € Hy(2) and [[@|z2) = 1. Tt follows that uy — @ strongly in Hj(€2) and
u = ep. Finally, taking into account that a function u satisfies (1.3) if and only if —u
satisfies (1.3) with (8, @) in place of (o, §), we infer that [juj HL2 uﬂ — ey in HY(Q),
as 3 — Aq, so the proof is complete.

g.e.d.

3 Comparison with other curves of > and final re-
marks

Now, our aim is to use the variational characterization of the first nontrivial curve of
the Fucik spectrum 32, obtained in Section 2, in order to prove that this curve is distinct
from all the infinitely many curves of ¥ obtained in previous papers (see [36, 37] and
the references therein).

In the next theorem we gather the main results presented in [36] and [37].

Theorem 3.1 Let Q be a bounded connected domain of RN with N > 2. Then, there
exists a nondecreasing sequence (by) of positive numbers, having the following proper-
ties. For every positive integer k and for all B > by, there exist apg > A\ and up g €
Hg(Q), with u 3 # 0 and uy g # 0, such that the equation Auy g — ay, guy 5+ fuy 5 =0
in ) 1s satisfied for all B > bk Moreover, for every positive integer k, oy g depends
continuously on [ in |by, +00[, arps < agy1,8 VB > bri1, appg — A\ as f — +oo, while
ugp — —ep in HY(Q).

Thus, the continuous curves {(ay5,3) € R? : 8 > by} and {(8,arp) € R* : B > by}
are included in the nontrivial part of the Fucik spectrum X for all £ € N and, as the
first nontrivial curve of 3, are all asymptotic to the lines {\;} x R and R x {\;}.

In addition, these curves and the corresponding eigenfunctions have the properties
described in the following proposition (see [36, 37] and the references therein).

Proposition 3.2 Let Q be a bounded connected domain of RN with N > 2. For every
positive integer k, let by > 0 and, for > by, let az > A\ and up s € HJ () be the
positive number and the function given by Theorem 3.1. Then, the following properties
hold. There exist v > 0 and, for all k > 1 and 8 > by, k points x18, ..., 2, s in §) such

that the balls B <:L'1 3 \/LB>’ ..., B <:17k 3, \/LB> are pairwise disjoint and all included in

Q, urp(xr) <0OVr e Q\UF B <x15,7> and uy 5 # 0 mB(a:Zﬁ,—6> Vie{l,...,k}.
As 8 — 400, we have

ﬁl_lglooel(x,g) max e, Vie{l,... k} (3.1)
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and

Sim VB lwig — a5l =00 fori# j. (3.2)
If, Vk e N, Vi € {1,...,k}, VB > by, we set s; 13 = sup {uk/g(x) T E€B (:pw, \%)}
and define Uy, () = Si_,]iﬁuk,ﬂ (\/iﬁ + l‘iﬂg) V€ /B(Q —xip), then the rescaled func-
tion Uy i, 3 converges as 3 — +oo to the radial solution U of the problem

AU+UT=0 inRY, U)=1 (3.3)
and the convergence is uniform on the compact subsets of RN .

If N > 3, we have

_ 2
lim 5¥(Oék’g — A1) = cap(7y) (max 61) k (3.4)
B——o00 Q

where Ty is the radius of the balls in RN for which the first eigenvalue of —A in H} is
equal to 1 and cap(ry) denotes the capacity of these balls.

Finally, in the case N = 2 we have

2
Jim g Bl — M) = 4 (maxe) k. (3.5)

In Proposition 2.5 we proved that ag converges to A\; as 8 — +00; now, we need to
estimate the rate of convergence.

Proposition 3.3 For all B > A\, let ag be the positive number introduced in Theorem
2.1. Then, for N > 3 we have

N-—-2
li 2 (ag— A1) = :
Jm ST (o — M) =0 (3.6)
while, for N = 2,
61—15?00 lg B(ap — A1) = 0. (3.7)

Proof Let 7; be the positive number introduced in Proposition 3.2. For all y €
Q, let us consider the function ug, € HJ(f2), defined as follows. First notice that

B (y, %) C Q for B large enough and the first eigenvalue of —A in H; (B (y, %))

is equal to 3 (because of the choice of 7). Then, for § > 0 large enough, in the ball

B (y, 5—%) we define g, to be the positive eigenfunction corresponding to the first
eigenvalue of —A in H} <B (y, \’;—%)), normalized in L2 (B Y, ;—%)) Now, in order to

define ug,, inQ\B(y,j—%),set eg=pB71 Withqe}%—%,%[if]\fz?)andeﬁ:lg%ﬂif
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N = 2. Then, for 8 > 0 large enough, consider the function s, in H} (Q \ B <y, %) ),
such that Atug, = 0 in the annulus A <y, 75 f + 56) B <y, 5—13 + 55> \ B (y, 5—%)
and g, (r) = —e1(z) Vo € Q\ B <y, \’;—13 + 55>. Finally, we complete the definition of
tg, by setting g, (z) = ||aﬁ,y||221(Q\§(y77:1/\/3))ﬂ/3,y(x) vz e Q\ B <y7 %)

Since ||ug,llz2@) = llug,ll2@) = 1 and [, [Dug |*de = B, taking into account (2.1)
we infer that ag < [, |Dﬁ§7y|2dx for 8 > 0 large enough so that B <y, 5—% + 55> c Q.

Let us estimate the integral [, |Dig |*dr. We have

|Dig, |*dx = ||tg,,||; 2 / |Diig ,|*dx (3.8)
/ ol 5]l 2 Buurs vm By, 75) By
where
||uﬁy||L2(Q\B(yr1/f)) 1 _/ 7y efdx—k/ o uﬁydx (3.9)
B(v J+es) v T htes)
and
/ |\ Diig,|2dr = )\1—/ 7 ]D61]2d:z:+/ Dy, Pdz. (3.10)
o (0%) (24121 A(n 25 24ves)

Since limg ;o £3v/8 = +00, one can easily verify that there exists a positive number
c(y) (depending only on y) such that

lim 5™ / (2 + |Der|?)dz < e(y) (3.11)
proo B(y. T +es
VB
and
limsupa/gN/ L g, dr < c(y). (3.12)
Aytoo Alw T dhtes)

Now, let us estimate the integral [, + & |Diig ,|*dx. Let us write ug, as g, =
(b ten)
Vg, +Wp, Where Ug, and wg, satisfy Avg, =0, Awg, =0in A (y, 75 \F + 55> with
boundary condition vg, = ey, Ws, = —e; on 0B <y, 5—%) and vg, = 0, wg, = —e; on
T
0B <y, 75T 55>.
If N > 3, one can verify by standard arguments that

im 67 [ DmPde=d) [ DV = () capr),
Brtoo Ay, T, Thteg RN\B(0,71)
(3.13)
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where V satisfies AV =0 in RN \ B(0,7,), V =1 on 9B(0, 7) limjg| oo V() =0
| Diiig, |*dx < c(y), (3.14)

Moreover,
lim sup EgN /
B—r+00 A( T
where ¢(y) is the positive number appearing in (3.11) and (3.12). Taking into account
the choice of €5, we obtain also
lim ﬁ by / . ’Dﬁﬂyy‘ | Dg | dz = 0. (3.15)
Al e

B——+o0

Thus, since ag < [, |Du§y|2dx for # > 0 large enough so that B <y, 75t 6/3) C it
Yy € Q, (3.16)

7 (ag — M) < €X(y) cap(i)

B——400
which (as y tends to the boundary of Q) implies (3.6).
If N =2, we argue in analogous way (but with lg 3 in place of 6¥) Since g = 57

follows that
lim sup ﬁ

for N = 2, one can verify by direct computation that
lim lgﬁ/ \Dﬁﬁ,yﬁdx = drel(y). (3.17)
f—+o0 L
vE Vet
Moreover,
lim sup lg” 3 | Diog, |*dx < c(y) (3.18)
e Ja(u oy e
(where ¢(y) is the same as in (3.11) and (3.12)) and
lim lgg ) |Dog | | Dwg,| de = 0. (3.19)
S Sty e
Therefore, it follows that
limsuplg f(apg — A1) < 4mei(y) Yy € Q, (3.20)
B—+o0
q.e.d.

which clearly implies (3.7)

As a consequence of Propositions 3.2 and 3.3 we can state the following corollary.

Corollary 3.4 For every positive integer k, there exists by, > 0 such that ag < oyg

V3 > i)k
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The proof follows directly by comparing formulas (3.4) and (3.5) with (3.6) and (3.7).

Remark 3.5 The proof of Proposition 3.3 suggests that, for 5 > 0 large enough, the
support of ug is localized near the boundary of €. Indeed, a more careful analysis
of the asymptotic behaviour of ug as § — 400 (arguing as in [37]) shows that for all
£ > 0 there exists yz €  such that (up to a subsequence) yz converges, as  — +o0,

to a point g € 02 and the rescaled function (sup, ufg)fl ug (yg + \%) converges to a
function U such that

AU+ U =0, UT#0, U"#0 in H, U=0 ondH (3.21)

with H = {z € RV : (z-7) < 0}, where ¥ denotes the outward normal to 9 in .
Moreover (arguing as in [37]) for 8 large enough one can construct multibumps eigen-
functions for the Fucik spectrum, having an arbitrarily large number of bumps localized
near prescribed connected components of 0.

In fact, if Q is a smooth bounded connected domain of RY with N > 2, arguing as
in [37], Vk € N one can construct, for 5 > 0 large enough, a k-bumps eigenfunction
Uy, g, corresponding to a pair (ay g, ) € X, with k£ bumps localized near 02 and having
asymptotic profile described by the functions U. Here &y 3 depends continuously on
B and, for 8 > 0 large enough, we have ays < apr18 V& € N and ag, 3 < g,
Vky, ko € N. Thus, if N > 2, we obtain a new class of infinitely many curves in 3,
asymptotic to the lines {A\;} x R and R x {\;}, while in the case N = 1 there exist
only two curves having this property.

Remark 3.6 Notice that the difference between the cases N =1 and N > 2 is even
more evident if we replace the Dirichlet boundary condition by the Neumann condition
% = 0 on 09Q. In fact, if we denote by A, < Ay < A3 < ... and by X, respectively,
the eigenvalues of the Laplace operator —A and the Fucik spectrum with Neumann
boundary conditions, we have M =0 and, if N = 1, no curve of ¥ is asymptotic to
the lines {0} x R or R x {0}. Indeed, a direct computation shows that, for N = 1,
every nontrivial pair («, ) of Y satisfies a > }1:\2 and 5 > %5\2, with 5\2 > (0. On
the contrary, in the case N > 2 there exist infinitely many curves contained in 3 and
asymptotic to the lines {0} x R or R x {0}. The corresponding eigenfunctions have
an arbitrarily large number of bumps localized in the interior of {2 or near prescribed
connected components of 9€). Both, interior and boundary bumps, present the same
asymptotic profile, described by the function U introduced in Proposition 3.2 (while,
in case of Dirichlet boundary conditions, the asymptotic profile is described by the
function U for the interior bumps and by the function U for the boundary bumps).
Notice that, as pointed out in [3, 15, 20], in case of Neumann boundary conditions
there exists a strict connection between the nonexistence of curves in i, asymptotic to
the lines {0} x R and R x {0}, and the fact that the antimaximum principle (see [14])
holds uniformly (in a suitable sense).
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Remark 3.7 For the sake of simplicity, in this paper we have considered only the case
of the Laplace operator, but the results we have presented may be easily extended to
cover the case of more general boundary conditions and elliptic operators in divergence
form. Moreover, the variational method we have used in this paper may be easily
adapted to deal also with quasilinear operators as the p-laplacian. Thus, we can obtain
also for the p-laplacian a variational characterization of the first nontrivial curve of the
Fucik spectrum, similar to Theorem 2.1 (but the asymptotic behaviour depends on p,
on the spatial dimension N and on the boundary conditions we consider).
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