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ABSTRACT. - In this paper we present some results on the Fu¢ik spectrum for the Laplace
operator, that give new information on its structure. In particular, these results show that,
if Q is a bounded domain of RY with N > 1, then the Fuéik spectrum has infinitely many
curves asymptotic to the lines {A1} x R and R x {\1}, where A; denotes the first eigenvalue
of the operator —A in H}(Q). Notice that the situation is quite different in the case N = 1;
in fact, in this case the Fucik spectrum may be obtained by direct computation and one can
verify that it includes only two curves asymptotic to these lines.

RESUME. - Nous présentons des résultats qui donnent nouvelles informations sur la structure
du spectre de Fucik pour 'opérateur de Laplace. En particulier, ces résultats montrent que,
si © est un domaine borné de R avec N > 1, alors le spectre de Fuéik a un nombre infini de
courbes qui ont comme asymptotes les droites {A1} x R et R x {A\1}, o A\; est la premiere
valeur propre de 'operateur —A in H& (Q). La situation est bien différente dans le cas N = 1;
en effect, dans ce cas on peut vérifier qu’il y a seulement deux courbes dans le spectre de
Fuéik, qui ont ces droites comme asymptotes.
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1 Introduction

Let Q be a bounded connected domain of RY with N > 1 and set u™ = max{u, 0},
u~ = max{—u, 0}. The Fuéik spectrum of the Laplace operator —A in H}(€2) is defined
as the set ¥ of all the pairs (a, ) € R? such that the Dirichlet problem

Au—au +But =0 in Q, u=0 on 09, (1.1)
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has nontrivial solutions (i.e. u € H} (), u # 0).
The Fucik spectrum arises, for example, in the study of problems of the type

Au+g(x,u) =0 in Q, u=0 on 0f) (1.2)
where g is a Carathéodory function in 2 x R such that

g(z,t)

= Vr € Q (1.3)

lim = q, lim

t——o00 t t——+o00
with a and 8 in R. These problems may lack of compactness in the sense that the well
known Palais-Smale compactness condition fails if the pair (a, §) belongs to the Fuéik
spectrum 3.
After the pionering researches in [1, 8] and the first papers [12, 17], many works have
been devoted to study these problems (see, for example, the references in [27-29]). In
[27-29] we obtained new solutions of problems of this type using a method which does
not require to know wether or not (a, 8) € ¥ and, in addition, may be useful to obtain
new information on the structure of ¥ (a similar method is used also in [9, 10]).
Let us denote by A\; < Ay < A3 < ... the eigenvalues of —A in HJ (). It is clear that
Y. contains all the pairs (\;, A;) (which are the only pairs («, 5) in ¥ such that a = f3)
and includes the lines {A\;} X R and R x {\1}; if a # A\, 8 # A1 and (o, 8) € X, then
a > A, f > A1 and the eigenfunctions u corresponding to (a, 3) are sign changing
functions; moreover, (a, f) € X if and only if (5, ) € ¥ because a function u solves
(1.1) if and only if —u solves (1.1) with (5, «) in place of («a, f).
Several papers have been devoted to study the structure of ¥ and its relation with
existence and multiplicity of solutions for equations with asymmetric nonlinearities
(see, for example, [2-4, 6, 7, 11-25, 33-37] etc. ...). In [12] it is shown that the
two lines {\1} x R and R x {\;} are isolated in ¥. Many results concern the curve
in ¥ emanating from each pair (\;, \;) (local existence and multiplicity, variational
characterizations, local and global properties, etc. ... ).
Combining these results, one can infer, in particular, that 3 contains a first curve which
passes through (Ay, \2) and extends to infinity. In [15] the authors prove directly the
existence of such a first curve, show that it is asymptotic to the lines {A\;} x R and
R x {A1}, give a variational characterization of it and deduce that all the corresponding
eigenfunctions have exactly two nodal regions (extending the well known nodal domain
theorem of Courant).
In the case N = 1, ¥ may be obtained by direct computation. It consists of curves
emanating from the pairs (\;, \;) Vi € N; if 7 is an even positive integer, there exists only
one curve while, if i is odd, there exist exactly two curves emanating from (\;, ;). All
these curves are smooth, unbounded and decreasing (i.e., on each curve, o decreases as
[ increases); moreover, on each curve, a tends to an eigenvalue of —A in H}(Q) as § —
+00; conversely, for every eigenvalue \; there exist exactly three curves asymptotic to



the lines {\;} xR and R x {\; }; they pass, respectively, through the pairs (Ag;_1, A2i—1),
(A2i, A2i) and (Agit1, Aoir1). In particular, if N = 1, there are only two nontrivial curves
of ¥, asymptotic to {\} x R and R x {A\;}.

On the contrary, the situation is quite different in the case N > 1. In fact, using the
method developed in [27-29], we can show that, if Q is a domain of RY with N > 1,
there exist infinitely many curves of the Fucik spectrum X, asymptotic to the lines
{AM} xR and R x {\}. In the present paper we consider the case N > 3. The case
N = 2, which requires more refined estimates, is considered in [32].

The main result of this paper may be stated as follows.

Theorem 1.1 Let Q be a bounded domain of RN with N > 3. Then, there exists
a nondecreasing sequence (bg)r of positive numbers, having the following properties.
For every positive integer k and for all B > by there exists a3 > A\ such that the
pair (ou. g, B) belongs to the Fucik spectrum X. Moreover, for every positive integer
k, axps depends continuously on [ in |bg,+00[, axs < agi1s for all f > by and

lim oz =)\
G Qs = Al

The proof follows directly from Theorem 2.1. It is clear that, if we replace («, 3) and u
by (8, «) and —u, from Theorem 1.1 we obtain infinitely many curves of ¥ asymptotic
to the line R x {\1}.

Notice that, even for & = 1, Theorem 1.1 does not give the first curve of the Fucik
spectrum (see for istance [15]) since, for all 5 > by, the pair (oy g, 5) does not belong
to the first curve (see also Remark 5.8 for more details).

The method we use for the proof is completely variational. For all 5 > 0, we consider
the functional fgz defined by fs(u) = [,[|Dul*> — B(u")?]dz, constrained on the set
S ={ue HjQ): [,(u)?dz = 1}. For § > 0 large enough, the eigenfunction u is
obtained as a constrained critical point for fz on S, while o arises as the Lagrange
multiplier with respect to the constraint S.

For every positive integer k, the eigenfunction uy s corresponding to the pair (ay g, 8),
we obtain in this way, presents k& bumps; for § > 0 large enough, the set {xr € Q :
ug,p(x) < 0} is a connected open subset of {2 while the set {z € Q : u;g(z) > 0} has
exactly k£ connected components. As § — +oo, the bumps concentrate near points. We
describe the asymptotic behaviour of the concentration points and, in particular, we
show that, if the distance between two concentration points tends to zero as § — +oo,
then the approaching rate is less than the concentration rate, so that the bumps remain
quite distinct; moreover, we describe the asymptotic profile of the rescaled bumps.
Finally, let us point out a natural question: where come from the curves given by
Theorem 1.17 (they might come from bifurcations of the first curve of the Fuéik
spectrum, or from pairs (\;, \;) of higher eigenvalues, or may be they do not meet the
line {(a, ) € R? : a = B}, etc....). It is a widely open problem which perhaps might
produce interesting results (see also Remark 5.9 for a more detailed discussion of this
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question). The paper is organized as follows. In Section 2 we state the main results
which, in particular, imply and specify Theorem 1.1. In Section 3 we describe the
variational framework and introduce a functional fs., converging to fz as e — 0, which
for all € > 0 presents more manageable variational properties with respect to fz. In
Section 4 we obtain some useful asymptotic estimates as § — +oo. Finally, in Section
5 we let ¢ — 0, and prove the main results. Also we discuss some generalizations,
forthcoming results on related questions, open problems, etc. . ...

2 Statement of the main results

Let us denote by e; the positive eigenfunction related to the first eigenvalue \;, nor-
malized in L*(Q), i.e. e; € Hj(Q), e1 > 0, Ae; + Me; = 0in Q and [, efdr = 1 (since
() is a connected domain, e; is unique and strictly positive in €2). For every open subset
A of RN we denote by A\;(A) < A\y(A) < A3(A) < ... the eigenvalues of —A in H{(A);
every function in Hj(A) is extended outside A by the value zero. The main results
presented in this paper may be gathered in the following theorem (which contains and
specifies Theorem 1.1).

Theorem 2.1 Let Q2 be a bounded connected domain of RN with N > 3. Then, there
exists a nondecreasing sequence (by) of positive numbers, having the following prop-
erties. For every positive integer k and for all B > by, there exist au.p > A\ and
urp € Hy(), with uy 5 # 0 and uy 53 # 0, such that (1.1), with o = ay. g and u = uy,
is satisfied for all B > b,. Moreover, for every positive integer k, oy p depends con-
tinuously on B in by, 400, axs < agr1p VB > bpi1, axs — A1, as B — +oo, while
ug g — —ep in HJ(Q).

In addition, there exist r > 0 and, for all k > 1 and B > by, k points x14,..., T in
Q such that

1) dist(x;,08) > 5 Vi€ {1,... )k}, |zip —zj8] > \2/—% fori# j;

2) upg(z) < 0Ve € Q\U,B (%‘,mﬁ) and uf, # 0 in B<xi,6>\/LE> Vi €
{1,..., k};

3) lim ej(z;5) =maxqe; Vi € {1,...,k}, lim /Blzig—xs] = o0 fori#j;
B—r+o0 B—+o0

4) if ps > 0VB>by, lim pg=0 and lim (pgy/B) = oo, then
B—~+o00 B—+o0

Jim_sup {Jugs(@) +en(@)] 2 @€ Q\ULBlais pa)} = 0;



5) if, Vk e N, Vi € {1,...,k}, VB > by and Yz € /B (Q — ;) we set U,y p(x) =

5115 k.3 (\% + xm) where s;kp = sup {ukg(x) . rx€B <x25, T)} then the
rescaled function U,y p converges as B — 400 to the radial solution U of the
problem

AU+UT=0 inRY, U) =1 (2.1)

and the convergence is uniform on the compact subsets of RN .

The proof will be given in Section 5. Let us point out that Theorem 2.1 holds true
also for N = 2, but in this case the proof requires more refined estimates; moreover,
the asymptotic behaviour of uy g, as f — 400, is quite different in the cases N = 2
and N > 2. In fact, if N = 2, we have ﬁl_lgl sikpg =0VEk e N, Vie{l,... k} while,

if N > 2, ma sikpg = ¢ Vk € N, Vi € {1,...,k}, where ¢ is a positive constant
—+00

depending only on N and supg e;. This different behaviour is strictly related to the
fact that, if U is the radial solution of problem (2.1), then infgy U = —oo for N = 2,
while infgy U > —o0 for N > 2. The case N = 2 is presented in [32].

3 The variational framework

In order to prove Theorem 2.1, for every positive integer k we construct k-peaks eigen-
functions of the following type. For every 8 > 0, let us set rg = ‘j’% where 77 is the

radius of the balls in RY for which the first eigenvalue of the Laplace operator is equal
to 1, i.e.

min {/ |Dul*dz : u € H)(B(0,7)), / uide = 1} =1.
B(O,Fl) B(O,f1)

Let us consider the set
Qs ={(z1,...,mp) €QF  |wy— x| > 2rp if i # j, dist(;,0Q) > rgfori=1,...,k}.

It is clear that Qg5 # (0 for § large enough and that, if (z1,...,xx) € Qkg, the balls
B(zy,73), ..., B(xy,r3) are pairwise disjoint and included in €.

We say that a function u € Hj(€2) belongs to Ef (i.e. it is a k-peaks function
with respect to the balls B(zy,r3), ..., B(xk,rg)) if ut = 2121 uZ where, for all
ie{l,....k}, uf € H}(Q), uf 0, u} >0in Q, ||uf||L2 fQ zdx—xZ and
uf () =0Vz € Q\ Bz, rp).

)

For all 8> 0 and € > 0, let us consider the functional f5. : Hj(2) — R defined by

i

fp.2(u /|DU| dﬁf_?/Gﬁa( )dz, (3.1)
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where Gg.(t) = [o gs(r)dr Vt € R, with gs.(t) = 0Vt < ¢ and gg.(t) = B(t — ¢)
Vt > e.

Now, our aim is to find k-peaks functions that are Constrained critical points for the
functional fz. constrained on the set S = {u € Hj(Q) : [,(u™)?dz = 1}.

Let us consider the set M/ 5 ° .z, consisting of all the functlons u € Eflxk such that
1w [ L2 —1andfﬁg( )[ ]—Oforz-l k.

One can easﬂy verify that for all ¢ > 0, if a functlon u € Eflz is a critical point for
fs. constrained on S, then u € MP< and, for every i € {1,...,k}, fi_(u+tu])[u]
is positive for ¢ €] — 1,0[ and negative for ¢ > 0 (since 1gz.(7) is strictly increasing
with respect to 7 in e, +00[); so the function w is the unique maximum point for fz.
on the set {u + tu; : t € [-1,+00[} (notice that, for e = 0, fs0 and MZ° . do not

have the same properties; it is the reason for which we first introduce the parameter
e > 0 and then let € — 0).

Proposition 3.1 Let k be a positive integer, § > 0 large enough so that Qg # 0
and consider a point (z1,...,x;) € Q. Then, for all ¢ > 0, Mfka # () and the

mainimum of the functional fﬁg on the set MP € .z 18 achieved.

Proof We have MJ* . # () because of the choice of the radius 5. In fact, taking into

account that \/3rg > 7, one can find k+1 nonnegative functions vl, U, 0 in HY(Q)
such that v; = 0 in Q\ B(z;,73), [, |Dvi|*de < B [, vidz, [, x - v} dx =z, [, vide,
fQ vvider =0 fori=1,...,k and fQ v2dx = 1. Thus, taking into account that

lim fga(tvl) = / | Dv;|*dx — B/ vZdr < 0 (3.2)
Q 0

t—>+oo 2

and that (since € > 0)

tl_l)]gl+ 3 fge tv;) = / | Dv;|*dz > 0, (3.3)
we infer that for all € > 0 there exist k positive numbers ¢;.,...,%;. such that the

function u = Zle ticvi — 0 belongs to M[*

Notice that inf{ fa.(u) : ue MZ  }> /\1’f(7)rkall f>0,e>0,(x1,...,2) € Q. In
fact, if u € MP< . we have fs.(u) = fae(—u")+ ZZ L fse(uh), Where foe(—u) =
Jo |Du™Pdz > Ay (since |[u™[|r2@) = 1) and fa(uf) > 0 for i = 1,...,k (because
we MPs. . implies fgo(u) = max{fz(tu;]) : £ >0} >0 for e > 0).

Now, let us consider a minimizing sequence (u,), for fgz. on Mfka The same
arguments as above show that (since sup{fs.(u,) : n € N} < 400) we have

A1 <liminf fz.(—u,) < limsup fz.(—u,) < 00 (3.4)
n—oo

n—o0



and, fori=1,... k,

0 < liminf f5.((u;);) <limsup fs.((u;);) < +o0. (3.5)

n—00 n—o00

Notice that fs.(—
bounded in H} ().
Now, let us prove that also the sequences [(u});],, are bounded in H&(Q) Vie{l,...,k}.
Taking into account that fj _(u,)[(u}):] =0Vn € N, Vi € {1,...,k}, we have

/|D |dx—/gﬁg(( ) (u d:c<6/ (3.6)

Thus, it suffices to prove that the sequences [(u.));],, are bounded in L?(Q) for i =

uy) = [ |Duy, [*dz, so (3.4) implies that the sequence (us,), is

n

1,..., k. Arguing by contradiction, assume that (up to a subsequence) llm 1 (wh)ill 220
= oo for some i € {1,...,k} and set (u,);= 1;”) —. Then, (3.6) 1mphes JolD(,)i|?
L2(Q)

||(ui(

dv < B Vn € N; so (up to a subsequence) [(u,)i], converges weakly in H}(f2), in
L?(Q) and ae. in Q to a function 4; € Hy(Q). It follows that [, |Du[*dx < 3,
Jouide =1,4; > 0in Q and @; = 0 in Q\ B(x;,7g). Moreover, one can verify by direct
computation that the properties fj _(u,)[(u,! )] = 0 ¥n € N and nhﬁr{.lo | (w;h)ill 20 = o0

imply nango Jo | D(@,)s|*dz = . As a consequence,

i f5(t(a))l ()] =206 =2 [ gac(em)(@ds W20, (3.7)

Then, since [, u?dx = 1, we obtain for all € > 0

lim inf [tﬂ - / gga(tu,)uzdx] = lim mf/[ﬁtui — gp.e(tu;)|u;de > 0. (3.8)
Q

t——+o0 t—4o00

Notice that, if we set t,; = ||(u})il|12(), we have [ (1)) [(Un)i] > 0Vt €]0,t,,].
Since lim t,,; = +o0, it follows
n—oo

ot o)) = Tt [ () )

> 2/ {tﬂ—/gﬂﬁ(tui)uidw] dt V7 > 0. (3.9)
0 Q

Then, as 7 — +o00, from (3.8) we obtain lim fz.((u});) = +o0, in contradiction with
n—o0

(3.5). Thus, we can say that also the sequences [(u,});], are bounded in HJ(2) for
i=1,...,k As a consequence, there exist u™,u;,...,u} in H}(Q) such that (up to a

7



subsequence) u,, converges as n — oo to u~ and (u;"); converges to u}, fori =1,... k,
weakly in H}(Q), in L*(Q) and a.e. in Q.

Now, let us prove that u;” # 0 Vi € {1,...,k}. Arguing by contradiction, assume that
uf =0 for some i € {1,...,k}. Then (because of the L?(2) convergence) from (3.6)
we infer that 711220 Jo ID(w))i|?dz = 0, which implies nhi& fse((w});) = 0. Therefore,

we obtain a contradiction if we prove that

] . 575
inf{fzc(v;) - veMyS ,}>0 Ve>0. (3.10)

.....

Taking into account that fz.(v;") = max{fs.(tv;") : t > 0}, it is clear that it suffices
to prove that there exist two positive constants pg. and cg. such that fs.(v) > cs.
Vv € Si(ppg.), where

s¢<pﬁ,€>={veH3<B<x@-,m>> vz 0in Blary), |Dv12dx=p%,€}
B(

xi,7r3)
(3.11)
In order to prove the existence of cz. > 0 and pg. > 0 with these properties, let us
consider the positive integer j such that

N(B(1,37)) < 1< A5y (Blwi, 3m)). (3.12)

J

Taking into account the choice of 74, it follows that
Ni(B(ziyrp)) < B < Ajyy (B(wi, 7). (3.13)

Now, let us denote by X3 and Y3 the closed subspaces of Hy(B(x;,75)) spanned by the
eigenfunctions of the Laplace operator —A in Hg(B(xz;,7g)), corresponding to eigen-
values \;(B(z;,73)) with, respectively, 1 < j <jand j>j+1.

For all § > 0 and & > 0, there exists vg. > 0 such that, if v € ¥} and fB(%m) |Dv|?dx <
V5., then |v(z)| < e Vo € B(zy,7p).

For all v € Hj(B(x;,rg)) such that fB(IMﬁ) |DvfPdx < vj_, set v = v1 5 + V5, With
v15 € Xp and vy 5 € X3 Then, taking into account that fB(m’rﬁ) | Dvy g|*dx < v5_ and
as a consequence v g < &, we have

f8.:(0) = foe(vig+v28) = fo-(v1,8 +v2,8) — fe(v1,8) + f5.2(v1,8) (3.14)
where fg.(v143) = fB(gC”B) | Dvy g|*dz and

foe(vig +v28) = fae(vig) > fo.(vip)[vag] + / | Dy s> — 8 vj gdx
B(wi,rg) B(zi,rg)

- / (1 Dvs gl — o plda
B(Cvivrﬂ)

8 ) / :
1— Dv dx 3.15
( % B Jown ! (3.15)

8
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because f5 _(v15)[v2,5] = 0 and fB(:ci,r[;) | Dvg glPdx > Ny (B(i,m5)) fB(:cmﬁ) v3 gd.

It follows that, for a suitable constant ¢g. > 0, we have f5.(v) > ¢g. fB(%rﬁ) | Dv|?dx
Vo € Hy(B(z;,75)) such that fB(zﬁﬁ) |Dv?dz < vj_. Therefore, it follows easily
that there exist two constants pg. €]0,v5.] and cz. > 0 satisfying all the required
properties.

Thus, we can say that u;” # 0 Vi € {1,...,k}. Moreover, as a further consequence of
the L?(Q) convergence, we have

Hu:FHZQQ(Q) /[u:r(x)]zx dv=x; Vie{l,... k}. (3.16)
Q

From the weak Hj(2) convergence, it follows that f5_(u)[u/] < 0 Vi € {1,... k}.

(2

Therefore, for all ¢ € {1,...,k} there exists t; €]0,1] (¢; depends also on 5 and ¢)

such that the function @ = —u™ + Zle t;uj belongs to Mfka Moreover, since
fae(ti(uy)i) < fpe((uy)i) Vn € N, we have
liminf f5.(¢;(u);) < liminf fa.((wh);) Vie{i, ... k} (3.17)
n—oo n—o0

It follows that

k
~ . . _ — ) + .
fae(a) < hggggf fae ( u, + ;tz(un)l)

n—o0

k
< liminf fs, (—un + Z(u,f)z> =inf{fs.(u) : we M . }.(3.18)
i=1

.....

q.e.d.

Proposition 3.1 allows us to introduce the function ¢y g, : €2 5 — R defined by

Vepe(®r, .. x,) = min  fz. V(z1,...,2) € Qp, V€N, V5 >0, Ve > 0.

B,
MEE.

(3.19)

Proposition 3.2 For every positive integer k, for all 5 > 0 and € > 0 (with 8 large
enough so that Q.3 # 0), there exists (T15¢,...,Tkpe) € Qg such that pi (21 5.,

e ,ilj‘kﬁ,g) = maXQk’B gﬁkﬁ7€.

Proof Let us consider a sequence (1, .., Zky) in Qf 3 such that
lIm 0 ge(T1p, .- s Thn) = SUDP Pk ge- (3.20)
n—oo Qk,B



Then, there exists (1 ¢, ...,Tr:) € (g such that, up to a subsequence, (1, ...,
Tkn) = (T1e, .-, Thpe) @8 N — 00.
By Proposition 3.1, there exists uy 5. € M2 such that fz.(urge) = min

T1,8,e1+5Tk,B,e

{fs.(w) : u € MPe }. For every n € N, let us consider the function u, €

Z1,8,e5-+:%k,B,e
Mffnxkn such that (@ );(x) = (uzﬂe)l(m + ;g — Tip) and 4, is the minimizing

function for the minimum

min{/\Dv\zd:p : v € Hy(), v>0in Q, /’L)Qd:ﬂ:L
Q Q

/v(ﬁ:)idaszofori:1,...,1{:}. (3.21)
Q
One can verify by standard arguments that , — ugp. in Hy(Q) and fz.(4,) —
fse(uppe) as n — o0o. Moreover, we have min{fs.(u) : v € Mflanxm} < foe(tn)
because @, € M2 ¥n e N. Thus, we obtain

SUP Prge = M Qpge(Tim, ... Trn) (3.22)

Qk,B n—oo

< lm fae(tn) = fpe(urpe) = rpe(@pe, - Thpe),
n—0o0

which implies vr gc(T18e,- - Thge) = MaXQ, 5 Pk e

4 Asymptotic estimates

In this section we describe the asymptotic behaviour as § — +o0o of the mini-max
function uy g . obtained in Section 3. Here we need some notion on the capacity. For
every bounded domain A of RY, with N > 3, the capacity of A is defined by

cap A = min {/N |Du*dz : u € DY*(RY), u>1ae. in A} : (4.1)
R
It is well known that there exists a unique minimizing function u4. Moreover, if
Ay, ..., A, with s > 1, are pairwise disjoint bounded domains of RY, then we have
cap <O AZ-) < icap(Ai). (4.2)
i=1 i=1
In fact, if we set @(z) = max{uga, : i =1,...,s}, we obtain

12 9 o
cap (Z:LJl Ai) < /RN |Da|*dz < ;/}RN | Dug,|*dx = ;cap(Ai). (4.3)
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Proposition 4.1 For all positive integer k and for all sequences (Bn)n, (€n)n of positive

numbers, let us consider a sequence (T1.5, e,y - -, Tk g, .2n) 0f points in QF and a sequence
of functions (urp, e )n in Ho(Q) such that (v1p,c0- s Thpre,) € Qs Unpoc, €
Mf;éi’tsnv“wmkyﬁn,in and fﬁnﬁn(uk,ﬂn,én) = mln{fﬁnvsn(u) - U E Mf{f’ﬁizenﬂ“wrk,ﬁn,in} vn 6

N. Moreover assume that, as n — oo, 5, — +oo and &, — € such that 0 < ¢ <

U (371) max . 1
lim‘z‘i:)l](;f;%%). Then, ukp, -, — —e1 in Hy(2) and

N_2 2
limsup B 7 [fs, -, (th,5,.2,) = M] < kcap(r) (= +maxer ), (4.4)
n—oo
where, for short, we denote by cap(7,) the capacity of the balls of radius 71 in RN,
If we assume in addition that fg, ., (Urg,e,) = MaXq, , Prp.e, YN € N, we can say
that

N—2 2
1i_>m Bn? [fonen(Ukp,en) — A1) = kcap(ry) <€ + max el> , (4.5)
lim ey (25, c,) = max e, Vie{l,... k}, (4.6)
n—oo
nh—>r£lo V ﬁn |xi,6n,€n - xj,5n75n| =0 fO’I” i 7£ j? (47)

moreover, if we set U.(x) = ¢ — w—xf’;a) U(x) Vo € RY, Ve > 0, as n — oo we have

€T
Uk Bnen | —= + Tipen | — Uel® Ve e RN, Vie{1,...,k}, 4.8
" (w— ; ) (2) (Lo k) (48)

and the convergence is uniform on the compact subsets of RN .

Proof In the proof, for short, let us write x;, and u, instead of z;, ., and ugg, c,-
Taking into account that r5, — 0, standard arguments show that u,, — e; in Hj(Q).

Notice that sup{U.(x) : |z| > 3r} < 0 if and only if ¢ < hm‘U‘(?’Flg?j)Xflstm, as one

can verify by direct computation. Then, in order to prove (4.4), we can consider the
sequence (&), in M2 defined as follows. Fori=1,... k,

sEn
nyLkn

(@H)i(z) = U, (VB (x — 210)]  Vz€B (mn 5%) , (4.9)

where p,, is the radius of supp(U.") (which, for large n, is a ball strictly contained in
B(0, 37;) because of the assumptions on ¢) and @, is the function in Hg(€2) such that

k
/Q(ﬂ;)de =1, 4,(x)=0Vz € Z:le B (xm, 565%) , (4.10)

/ | D, |*de = min {/ |Dul?dxr : u € Hy(), /u2dx =1, u>0in Q,
0 0 0
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w=0 in QB (xn GE)} (4.11)

It is clear that ,, € Mflnfn o (since fi o (@n)[(@})i] = 0 for i =1,... k, as one can
easily verify taking into account the properties of U). It follows that
fonen(un) = min{fs, ., (u) : ue Mﬁn . . }
S fﬁnﬁn(/&/n) fﬁn En + Zfﬁn En N+ (412)

A direct computation shows that

Tim 5 f, e, (i )):/ DUPde fori=1,... k  (4.13)
B(0,0:)\B(0,71)

Moreover, i, — e; in Hj(Q) and fs, ., (—=0,) = [, |Du, [*de — \i. If we set 0, =
—u,, + ej, we obtain

froea =) =N [ D8, =2\ [ i (4.14)
Q Q

and, after rescaling,

N-2

N-2 2\ -
B naloi) =N = [ pVpas =T [ o () e, (as)

where f/n(x) =0, (ﬁ) Vo € /B

Clearly, there exist xq,...,z; in Q such that, up to a subsequence, Tim — Tj, as
n — oo, for i = 1,... k. Moreover, arguing as in [27-29], one can find h (h < k)
pairwise disjoint subsets Si,...,S, of {1,...,k} such that U?lej ={1,...,k} and
VBn|Tin — xjn| — o0 if i and j belong to different subsets while it remains bounded
if 4 and j both belong to the same subset (it is clear that in this case x; = z;). In
addition, if S; (for j = 1,...,h) consists of k; elements, these arguments allow us to
say that there exist k; pairwise disjoint balls in RY, By, p), -, B(y,z_, pe), such that

i [ |07 @P - 25 () T ]dx—zmcap UByz,pe ,

n—oo \/EQ

(4.16)
where m; = e;(x;) for i € S; (it is clear that different choices of 7 in S; give the same
constant m;). Thus, from (4.12),(4.13) and (4.16) we obtain

h k;
hmsupﬁn [fgn e () — A = k/ |DUE\2dw+Zm§ cap UB(yf,pE)
B(0,p:)\B(0,71)

n—o00 j=1 =1

(4.17)
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Since m; < maxgq e; for j = ,h and

k; k;
cap (| JBW!.p-) | <D cap B(y!, p.) = k; cap(B(0, p.)), (4.18)
=1

=1

it follows
lim sup ﬁn [f,Bn en (Un) — Ai

n—o0

k / |DU.|*d i zh:k:
< -|°dz + <max 61> cap(B(0, p:))
B(0,p:)\B(0,7) @ !
2
= k:/ |DU.|?dx = k cap() <€ + max el) , (4.19)
RN\ B(0,71) Q

that is (4.4). Let us point out that in (4.4) we have the strict inequality if m; < maxq e;
or k; > 1 for some j € {1,...,h} (because of (4.2)).

Now, let us prove that, if we assume in addition that fs, ., (u,) = maxq, , @k, .,
Vn € N, then we have (4.5). In fact, in this case we can show that

lim 1nf ﬁn [fgn en(Un) — M| > K cap(r) <5 + max 61)2 : (4.20)

n—

In order to prove (4.20), let us choose = € 2 such that e;(z) = maxg e; and a sequence
(Z1my - Thm)n in QF such that (Zy,,...,Tk,) € Qup, Vn €N,

lim |7, — 2| =0  Vie{l,...,k} (4.21)
n—oo

and
W /By [Tim — Tjn| =00 if i # j. (4.22)
n—o0

Taking into account Proposition 3.1, for every n € N there exists u,, € Mg—cﬁff"fk . such
that fs, o, (4n) = @rpnen(Tin, -, Trn). Notice that

f/B’ny‘ETL (ﬂn) f/Bn 877, + Z fﬁn E'n (423)
where f5, .. ((@});)) >0Vn € N, Vi e {1,...,k}. Moreover, since lim rg, = 0, we have
n—oo
w, — e in H}(Q) and f3, ., (—4,) — A\ as n — oo. If we set w, = —u, + e1, we
obtain
Topen(—Uy) = A1 + /(|Dwn|2 — 2\ e1wy)dx. (4.24)
Q

13



Hence, taking into account (4.4), it follows that

N—-2
limsup B 7 / (D2 — 2\ye115,)dz < +00, (4.25)
n—00 0
namely
limsup/ [\DW @) = 2 Ae ( v )v‘v( )] do < +o0, (4.26)
n - 5 1 o )
n—o0 VB2 Bn ! ﬁn
where W, (z) = w, (ﬁ)
As a consequence, arguing as in [27-29], one can verify that, for ¢ = 1,... k, there

exists W € DY2(RY) such that (up to a subsequence) W, (x + /B, Zin) — Wi(x);
moreover, the convergence is uniform on the compact subsets of RY and

k

. _ 2 _
S j/ IDW|2dx < liminf/ [|DWn(x)| e <1) Wn(:z:)] dv.  (4.27)
i—1 RN n—oo /FnQ

n n

Now, we examine the asymptotic behaviour of the functions (@;); for i = 1,... k.

_ _N
Let us set V; ,(x) = (@), (W —l—xzn) Vo € /B, Q where ¢,; = [, ° ||(l_t+)||221 Q)"
Then, ‘_/m € H}(B(0,3r)) fB 3_1) 2dr =1 and fB |DVm|2dx < 1Vn €N,
Vi€ {1,...,k} (because fz _ (un [(a )] 0). Therefore up to a subsequence, V,
converges to a function V; € H (B(0, 37“1)) in L, weakly in Hg and a.e. in B(0,37).
Thus, we have fB(0,3F1)‘/i2dx = 1 and fB(0,3F1) |IDVi|?’de < 1 fori =1,...,k. As a
consequence, we obtain

_ . 2
/ DW'Pde > cap(r) (macer) Vi€ (1.} (4.28)
RN

because the balls of radius 7; have the smallest capacity among the domains whose

first eigenvalue is less than or equal to 1. Moreover, since only these balls have

this property, in the case ¢ = lim ¢, = 0, (4.4) and (4.28) allow us to say that
n—oo

Wi = maxgq e [1 + ;} and V' = cUT Vi € {1,...,k}, where ¢ = ||UF|| L.

hm|a:|4>oo U(JI)

Furthermore, the minimality property of u,, implies that u, (ﬁ + mm> — Up(x) =
—1

maxg € | l‘im U(z)| U(z) uniformly on the compact subsets of RY (as one can verify
T|—00

arguing as in [27-29]). In the case ¢ > 0, arguing as in the proof of Proposition 3.1,
one can verify that there exist k positive numbers ¢, ..., %, such that

3 / DV dz = / G (EVVide  Vie{l,.. .k} (4.29)
B(0,371) B(0,371)
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and
512/ |D17i|2d:v — 2/ G’lja(t}‘_/)daj < hm mf ﬁn fﬂn o ((@h)s). (4.30)
B(0,371) B(0,371)

Thus, taking into account (4.27), we obtain

k
lim inf B [fonn (i) — M] > Y F(W+ V), (4.31)

=1

where F. : DV2(RY) — R is the functional defined by
F(v) = / | Dof2dz — 2 / I (v)dz (4.32)
RN RN

with T'( fo Ye(T)dT, where 7.(T) = T — (¢ + maxge;) V7 > ¢ + maxqe; and
Ye(T) = 0 VT < E+maXQel.
Now, notice that

(W' +1,V;) > F. (UE + mgxel) S0 Ve>0,Vie{l,... .k} (4.33)

because F.(U.+maxg e1) is the mountain pass level for the functional F. while FE(V_Vi+
t;V;) is the maximum of F, on the continuous path II : [0, +-00[— D2(RY) defined by
() = tWifor t € [0,1], II(t) = Wi+ (t—1)t;V; Vt € [1, +00[, which satisfies T1(0) = 0,
lim [|II(¢)||pr2@yy = +oo, FL(II(0)) = 0 and tEeroo F.(II(t)) = —o0, as one can verify

t—+oo
by direct computation.

Thus, we finally obtain (4.20) taking into account that fs, ., (u,) = maxq, , @kg, e, >
Ok Bpen (T1ims - -+ Thin) = fa,.e0(Un) and that F, (U +maxg e1) = (¢ +maxq e;)? cap(ry).
Let us point out that, indeed, we must have W’ 4 t;V; = U, + maxq e; otherwise in
(4.20) we have the strict inequality, in contradiction with (4.4). In fact, the radial
function U, 4+ maxg ey is the unique mountain pass type critical point for F. (as one
can show by radial symmetrization arguments) while W* + #;V; is the maximum point
for F. on the continuous path II. Therefore, taking also into account the minimality
properties of 1, it follows that @, (ﬁ + :Tcm> — U.(z)Vz e RN, Vie {1,...,k} and
the convergence is uniform on the compact subsets of RY.
Thus, we can say that (4.5) is satisfied and that (4.6), (4.7) hold otherwise in (4.4) we
have the strict inequality; as a consequence, arguing as before for u,,, we can say that
also (4.8) must hold otherwise we have the strict inequality in (4.20), in contradiction
with (4.5).
Finally, notice that u,” — 0 in HJ(£2), which implies u,, — —e; in HJ(£); so the proof
is complete.

q.e.d.
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Proposition 4.2 For all positive integer k, for B > 0 such that Qs # 0 and for all

e €]0,2] with 0 < & < lim;f’:};?j;‘f;;%

Uk, Be 1N Mffg,s,...,mk,a,s such that fa.(Urpe) = Ok pe(T18e: - Thpe)s

L let us choose (x18e,...,Tkpe) in Qs and

ﬁl_l}r_{loo inf{ey(x;pe) @ i€{1,...,k}, €€]0,&]} = max e, (4.34)
BhT VBint{|zig. — xjp.] ;€ €]0,8]} =400 fori . (4.35)
—+00

Then, there exists 7 €0, 37| and B, > 0 such that

k
sup§ ugge(xr) - x€Q\| |B (xz ,E,L), e €)0,¢], B> 7 } < 0. (4.36)
fons U8 (e 75 k

Proof By the minimality of uy 5., we have only to check near the spheres 0B(x; 5., 75).
Arguing as in the proof of Proposition 4.1, one can verify that

Uk, B.e <% + :L‘Z'”g’s) — Ug(x)

for every compact subset K of RY.
Therefore, in order to complete the proof, it suffices to notice that there exists 7 €]0, 37 [
such that

sz e K, 56]0,5‘]}:0 Vie{l,...,k}
(4.37)

lim sup {

B——+o0

sup{U.(x) : |z| > T, € €]0,&]} <0, (4.38)

as one can easily verify taking into account the choice of €.
q.e.d.

Remark 4.3 Let us point out that the strict inequality (4.36) given by Proposition
4.2 is important because the condition u < 0 in Q \ UYL, B(z;5.,75) is an unilateral
constraint that would give rise to a variational inequality if © = 0 somewhere in Q \
UY_ B(wige,r5). On the contrary, since (4.36) holds, u satisfies the equation Au+dau =
0in Q\ U, B(x; 4., rg) for a suitable Lagrange multiplier & > 0, as we show in next
lemma.

Lemma 4.4 Let us consider k,3,6,8,218¢,...,%p3e and ugg. satisfying the same
assumptions as in Proposition 4.2. Let By be the positive number given by Proposition
4.2. Then, for all 8> By and ¢ €]0,&], there exist Lagrange multipliers oy . € R and
pipe € RN fori=1,... k, such that

1 k
3 5euns 0] = [ {—anpatige+ 3o Mlnse - (0= wialyids Vi € HY(Q)
=1
(4.39)
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Moreover, agge = [ |Duy 5 |7dx, lim ags. =M\ Vk €N, Ve €]0,£] and
o B—4o00

lim B~ 2uz75520 Vie{l,... k}, Ve€]0,é]. (4.40)

B=+oo
Proof Unhke the case of the smooth constraints [,(u™)*dz =1 and [, [u] (z)]*x dz =
x; fQ F)2dx, for which the Lagrange multipliers theorem applies, the constramts
fa-(u )[ F1=0,fori=1,...,k, do not satisfy suitable regularity conditions. However,

they are “natural constraints”, in the sense that they do not give rise to Lagrange
multipliers (while the multipliers oy . and ;g come from the other constraints).
Notice that uy g - is the unique maximum point for fz . on the set {uy s, 6—1—22 1 (uig )i
1 t; > —1fori=1,...,k}; moreover, fj (ngg 3 ti(ugd 5. ) [(uf 5.):] is positive
for t; € [—1,0[ and negative for ¢; > 0.
In order to prove (4.39), arguing by contradiction, we assume that (4.39) is not satisfied
for any choice of the multipliers o 5. in R and 1 g, ..., fr e in RY. Then, it follows
by standard methods that there exists a continuous map 7 :] — 1, +o0]® — H3(€2), such
that nts, .. t) = epe + 0y it g )i 3 (s 8) & [=1/2,1/20%, [n(0) 220y =
1, n(t) € Eflﬁ rnpe VEE [=1 400l fe(n(t)) < foe(unpe) VE € [—1,+oo[".
Therefore, applymg Brouwer Theorem (see [5] and also [26]), we infer that there exists
€ [-1/2,1/2)* such that n(t) € MP* which gives a contradiction because

T1,8,e5+Tk,B,e’
fo.(m () < f.2(urp,e) and
fﬁ’g(ukﬁf) = gpk”375($17,375, Ce 7$k,678) = mln{f/j’g(U) Tu e Mflgﬁa STk Be } (441)

Thus, we can conclude that there exist the multipliers oy 5. in R and p; 5, in RN
satisfying (4.39).

Now, if in (4.39) we set ¢ = u, 5., we obtain ars. = [, |Du 5 |*dv; then, since
rg — 0, it follows that lim axs. = A\ Vk € N, Ve €]0,2].

B0
In order to prove (4.40), for every i € {1,...,k} we set ¢ = ¢, 5.(x) = %(u;fja)l(m)
[pipe - (x —xip.)]. Then, after rescaling, we obtain

ﬁ fﬂa( kﬁs)[wz,ﬁs]

Njw

i X
= B (ug g.e)i <— + %/ie) Vipe <— + xi,ﬁ,e) (ipe - w)dx
B(0,371) o VB VB

2 2
= + . i . Mi,,@,a )
— /B(o,:m) |:(Uk,,8,g)z (\/B +xz,5,5)] <_ﬁ§ x) dx. (4.42)
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Arguing by contradiction, assume that (up to a subsequence) hm 5~ ] wigel > 0. So,

taking into account the properties of the function U., from Proposmon 4.1 we infer
that

i (il VB f (kg ) [Wipe =0 Vie{l,...,k}, Ve €0,d] (4.43)

while

2 2
] - Y x Mi7ﬁ7€
lim  |p; 8¢ lﬁg / [ u;t )i <— + @, 5)] ( x> dx > 0. 4.44
B—>+oo| B | B(0,37) ( k.3, ) \/B B B% ( )

Thus, we get a contradiction and (4.40) is proved.

g.e.d.

Lemma 4.5 Let us consider k, B, €n, (T18, 205 - - - s Th pen)s Wk e SALISFYing the same
assumptions as in Proposition 4.1. Moreover, for all n € N, let us consider (21, ,,
S Thppen) Qs Uk g, e, N M P and assume that fg, o, (Ukp,.c.) =

T1,Bn,en s+ Tk ,Bn.en
Ok (T Bnens -+ + s ThBen) = MAXQ 5 Pk rens JBnien Uk fren) = Phfoen(T180ens -
xkaﬁnvan) Vn 6 N7

lim /By (Zig, en — Tipne,) =0 Vie{l,... k}. (4.45)
n—oo
Then, we have
lim sup |l g, e, — Uk g,.cn| = 0. (4.46)
n—oo ()
If we assume in addition that (T15,.c.y-- Tk ppen) 7 (T10ens s Thppen) N € N,

then supq |t g, e, — Uk,gpen| > 0 and the rescaled function Z;,, defined by

—1
Z'Lnx = sSu /&’ nan_u n,En ﬁ' nfn_u n,€n +xl n,En
o) = (s0p i, — sl ) (O, — i) (5 s
Vo € /B (=i ..), Vi€ {1,... k), (4.47)

up to a subsequence, converges as n — oo to a function Z; which is a weak solution of
the equation

AZ +a(x)Z =0 inRY (4.48)
where a(z) = 1 if v € B(0,71) and a(x) = 0 otherwise; moreover, the convergence is
uniform on the compact subsets of RN. Furthermore, there exists i € {1,...,k} such
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Proof For short, in the proof let us write t,, uy, Z;n, T;pn instead of g g, e, Uk ,.ens

xi:ﬁnﬁn’ ‘ringnﬁn .
From Proposition 4.1, we obtain

N-2 2
limsup Bn? [fs,.e0(Un) — M| < kcap(r) (5 + max el> . (4.49)

n—oo

Moreover, the assumptions on Z;, and x;, imply
im /By |Zin — Tjn| =00 fori#y, i,j€{l,... k}. (4.50)
n—oo

Hence, arguing as in the proof of Proposition 4.1, one can show that , <L\/F + itm> —

U.(x) Vxr € RN Vi € {1,...,k} and the convergence is uniform on the compact subsets
of RY (in fact, all the conditions we use in Proposition 4.1 to prove the similar property
for u,, are also satisfied by ).
It follows that
lim  sup |, —u,|=0 fori=1,...,k; (4.51)
n—00 B(xi,n,218,,)
moreover, taking into account the minimality properties of 4, and u,,, standard argu-
ments allow us to say that

lim sup | U, — up| = 0; (4.52)

OO O\UK_ B(wi, 0,27 5,,)

thus, (4.46) is proved. It is clear that supg |G, — u,| > 0 if z;,, # Z;, for some
i € {1,...,k}, otherwise we should have z;, = z;, Vi € {1,...,k}. Therefore, if
(T100s -y Thom) # (Timy - -5 Thp) VR € N, Z; . is well defined and, up to a subsequence,
it converges as n — oo to a function Z; € DY2(RY) such that supgwy | Z;] < 1.

For short, in next formulas we write s, instead of supgq |, — u,|.

From Lemma 4.4, if we denote by &y 3, , and [i; g, ., the Lagrange multipliers corre-
sponding to the function u,,, we obtain

1 1
ifén,an (an) [¢] - Efén,an (un) WJ]
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= [ Dl — ) D = | gp, i) = g5, (wa) s

Q Q

= (akaﬁnfn - OA(k:Bnﬁn) / ﬁ;¢d$ - ak:ﬁnyen /(r&n - u;>wd‘r
Q Q

k
A+i_ +iAi en " — Tin)|d
#3260~ (M o
k
+iAi en — Mi,Bn.en) _Ain d
#3000 s = s o = s

k
+ZL@MMMfmwmmwx Vo e HIQ).  (4.53)
=1

Taking into account the minimality properties of w, and uy, since agg, o, = [ | Du;, [?
dz and Ay g, c, = [, | Dy, [*dz, it follows that

1
lim sup — |G g, e, — Qk.B,.en| < +00. (4.54)

n—o0 STL

Moreover, since #;, = Uﬂ(ﬂz)?dm‘]_l Jol(@h)i(x))Pe de and ;,, = Uﬂ(u;[)?dx]_l
Jol(wh)i(2)]?x de, it follows by direct computation that

n

lim sup
n—o0 n

_3 _3
From Lemma 4.4 we have also lim 3, /i ,, =0 and lim 5, °p; s, ., = 0.
n—00 n—00

Now, we can prove that

3 A

1 B0 i, = i 5] = 0. (4.56)
Arguing by contradiction, assume that (up to a subsequence) the limit (4.56) is positive
for some i € {1,...,k}. Then, for n large enough, we can consider the function

_ 3

Zi7n - 67% Sn |/’Liaﬂn75n - Mi76n7€n |_IZi7n (457)

which, as 7 ,,, remains uniformly bounded as n — co. Moreover, there exists u, € RY,
1| = 1, such that, up to a subsequence, |fiig,.c, = tignenl ™ (lifncn = Hipnen) = Hi
as n — oo. Hence, after rescaling in (4.53) we infer that (up to a subsequence) Z; ,
converges as n — oo to a bounded function Z; € DM?(RY), such that

/R N [DZ; - DY — a(x)Zap)dx = / U (2)Y(z)(z - p))de Vi € DY(RY). (4.58)

B(073F1)
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Now, set ¥ = (DU - ;). Since this function satisfies the equation AV + a(z)¥ =0 in
RY, we obtain

/ [DZ; - DV — a(z)Z;V]dx = 0, (4.59)

while [ a7,y US (@) ¥(2)(2 - p)dz < 0.

Thus, we have a contradiction and we can conclude that (4.56) holds.

Now, after rescaling, we can let n — oo in (4.53); so, it follows by usual arguments
that (up to a subsequence) Z;,, converges as n — oo to a solution Z; of the equation
(4.48) and that the convergence is uniform on the compact subsets of R¥.

In order to prove that Z; # 0 for some ¢ € {1,...,k}, we argue by contradiction
and assume that Z; = 0 for ¢ = 1,...,k. In this case, Z;,, - 0 asn — oo, Vi €
{1,...,k}, uniformly on the compact subsets of R"; moreover, if we set z, = i(ﬂ” —
uy,), taking into account the minimality properties of @, and w,, we can say that (up
to a subsequence) (z,), converges uniformly in {2 to a function z. Now we prove that
z =0 1n €, so we have a contradiction because supg, |2,| =1 Vn € N.

In order to prove that z = 0 in 2, notice that

k
li : B(xin,2 = 0; 4.
I sup {rznmr v Bt m)} 0 (1.60)
moreover, for n large enough so that UY_, B(&;n,73,) C UL, B(xin, 2rs,), the function
2, satisfies in Q \ US| B(z;,,,2rg,) the equation Az, + i(dk”gmgnﬁn — QB enUn) = 0.
Let us consider the function w, € Hy(Q), such that w, = z, in UleB(xi’n, 2rg,) and
Aw, = 0in Q\ U¥_ | B(z;n,2rs,). Since lim sup{|z,(z) : * € U¥_B(xin,2r5,)} =0,
n—oo

it follows that also lim supg, |w,| = 0. If we set 2, = z, — w,, we obtain
n—oo

N N I . . . =
Azn + ak,ﬁn,anzn + ak»ﬁn75nwn + S_(ak76n75n - ak7ﬁn75n)un = 0 m Q \ U’];:ZIB(xiyn7 2Tﬁn)

! (4.61)

Taking into account that lim oy, ., = lim Ggg, ., = A1, that limsup * |G, ., —
n—oo n—oo n—soo M m

Qg en| < +00 and that 4, — —e; in Hg (), it follows that, up to a subsequence,

Qe By e Wi, + i(é\ékyﬁnﬁn — Qg g, e, )Un — cey for a suitable constant ¢ € R. Now, let us

set Zn1 = €1 [, Znerdz and Z, 5 = Z, — Z,1. From (4.61) we obtain

Ok B .en = 5
(1= 2525) zalye - allnallagor <O (4.62)
for a suitable sequence (¢,), in R such that lim ¢, = 0.
n—oo
Since lim ag g, .., = A1 < Az, it follows that lim ||Z, | g1 (q) = 0.
n—oo n—o00 ’ 0
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Therefore, we can say that (up to a subsequence) (Z,), and (z,), converge to the

function z = ée; where ¢ = li_)m fQ zZpe1d.
n o0

On the other hand, lim z,(x;,) =0 Vi € {1,...,k}. Therefore, we have
n—o0

0= lim z,(z;,) = lim 2(x;,) =¢ lim e;(x;,) = ¢ maxe, (4.63)
n—00 ’ n—00 ’ n—00 ’ Q
which implies ¢ = 0 because maxge; # 0. It follows that z = 0 in €, which gives a
contradiction.
Thus, we can conclude that Z; # 0 for some i € {1,...,k} and the proof is complete.
q.e.d.

Lemma 4.6 Let Z,...,7Zy be the functions obtained in Lemma 4.5. Then, for every
i€ {l,...,k}, there exists 7, € RN such that Z;(x) = (DU(z)-7;) Vo € RN. Moreover,
there ezists i € {1,...,k} such that 7; # 0.

Proof Notice that the function U is nondegenerate in the sense that, if Z € DV2(RY)
is a weak solution of the equation (4.48), then there exists 7 € RY such that Z(z) =
(DU (x)-7) Vo € RY (for the proof, see analogous results proved in [27-29]). Therefore,
since the function Z; satisfies the equation (4.48) for ¢ = 1,...,k as proved in Lemma
4.5, it follows that for every i € {1,...,k} there exists 7, € RY, having the required
property. Moreover, 7; # 0 for some i € {1,...,k} because Z; # 0 for some i €
{1,...,k}, as we proved in Lemma 4.5.

q.e.d.

Proposition 4.7 For all positive integer k, for > 0 large enough so that Q. # ()
and for all e > 0, let us consider (T1p¢,...,%Tkpe) in Qs and ugp. in Mffﬁ,swxmﬁ
such that

Joc(unpe) = Prpe(Tripe o Thpe) = Maxppp.. (4.64)
k,B

Then, there exists By > 0 such that, for all 8 > B and € € ]O, % 11m|U|(3mUn(l§)X?§%3ﬁ) [,

Upge @5 a constrained critical point for the functional fz. constrained on the set S =
{ue Hy(Q) : o llae =1}

Proof Clearly, it suffices to prove that the Lagrange multipliers ;5. given by Lemma
4.4 vanish for § large enough, namely that there exists f; > 0 such that p; 3. = 0

VB > fi, Vi € {L,... K}, Ve € |0, § prtlmmmac s ).
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Arguing by contradiction, assume that there exist a sequence (f,), of positive num-

: 1 U(371) maxg e1 . .
bers and a sequence (g), in |0, 5 T 0@ -0 (57 [ such that nhjEO Bn = +o0o and

(1.8 ens -+ s Mk en) 7 0 Vn € N. Whitout any loss of generality, we can assume that
|16, en| = max{|pig,c,| - i=1,...,k}  VneN. (4.65)

Up to a subsequence, ¢, — ¢ and m—“”' — [, as n — oo, for suitable £ €

[0 1___U@n)mexger ] and fi € RV, such that || = 1.

7 2 limg) 00 U(z)—U(371)
Now, let us choose (#1.6, ¢, -+, Zkp,e,) N Qe g, and dyg, o, in M such

T1,Bn,en - 7Ik ,Bn,en

that f,@n,gn (ak76n75n) Pk ﬁnﬁn( 1,Bn,ens « 7jk7/3na5n) and j;'iaﬁnyan = 'r%ﬁnysn for i = 2 . 7k
while 218, ., = 1,8, ., + Jﬁ—u with 6,, >0 Vn € N, lim d, = 0 and, in addition,

n—oo

hm (5an |,u1 oen] Tt =0. (4.66)

Notice that this choice of (Z14, .-,k gre,) 0 Qi p, is indeed possible because
lim /B, |%ig,.c, — T18,.,| = 00 for i # 1, as proved in Proposition 4.1. Moreover, we
n—oo

have supg |tk g, ., — Uk g, en| > 0 Vo € N because Uy g, o, # Uk g, ., since 6, > 0.
For short, let us write s, instead of supq, |t s, =, — k.8, .0 |-
One can verify by direct computation that

fﬁnﬁn( 7,Bn’5n) = f,Bn,En (ukyﬁnﬁn) + f;ﬁn,sn (uk75n75n>[ﬁk»ﬂn,€n - ukugnf'n] + Rn (467)
where

Rn Z _/Bn/(/akaﬁnysn - ukvﬁnaan)Qdm Z _Bn |Q|83L (468)
Q

From Lemmas 4.5 and 4.6, we infer that there exist 71,..., 7 in RY such that (up to a
subsequence) the rescaled function si(fbkﬁmgn — Uk By en) <L\/ﬂ— + xi75n7€n> converges as

n — oo to (DU(z) - 7;), for i = 1,..., k, uniformly on the compact subsets of R¥.
We say that 71 # 0 and 7; = 0 for ¢ # 1. In fact, for e = 1,... k, we have

2 2
Th ( +Tig, n)} :vdx:/ {qu 8 ( + Tigp, n)} xdr
/B(O,Sn) [ Fonen \ /B, e B(0,37) Fben \ /B, e

+2/ ul ( + x5, n) (4" — )( + 25, n)xdm+o(3 ).

B(0.37) ke \ /5 Pne Fobnen — Thfnen’ \ | /B Bne n
(4.69)

Taking into account the choice of (14, ., -, Tk gpen), if @ # 1, for n large enough we

obtain )
.4
u + xl,lgn» n>:| x dx
/B(o,sm) { omsen <\/ﬁn :
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2
= Th ( + 5, 5n):| xdr = 0. (4.70)
/B(0,3r1) { ke \ /By, ?

Therefore, as n — oo, we get
/ U (2)[DUs(z) - 7iJede =0 fori=2,...,k. (4.71)
B(0,371)

It follows that

1 %
[ vr@pve) nede =5 [ o) siedr = -2 [ ey o
B(0,3m) 2 JB(0.p2) 2 /B0,

(4.72)
where pz denotes the radius of supp UZ (which is a ball). Therefore, we have 7, = 0 for
i=2,...,k.

On the contrary, if « = 1, for n large enough we have

2
ul s . < + 2 nEn)} rdr =0 4.73
/B(o,?il) [ knen \ \/Bn 7 (4.73)

2
+
+ 258, e xdx
/;(0,3%1) |: kﬁn o (Vﬁn i’ >:|

2
:(Sn/]/ {a* . ( + M)} dz. 4.74
B(0,371) Fbnen \ /B, 7 ( )

So, as n — oo, we obtain

while

4]
lim = /1/ UZdxr = 2/ U:(2)[DU:(z) - 1] x dx = —7'1/ UZdx (4.75)
"0 Sn JB(0,pz) B(0,pz) B(0,pz)

where, taking into account Lemma 4.6, 73 # 0 because 7; = 0 for ¢ # 1. As a
consequence, lim % =|7| > 0 and 7 = —|7|fi.
n—oo °n

From (4.67), (4.68) and Lemma 4.4, we obtain

fﬁn,gn (l&kyﬁnygn) - fﬁnfn (uk75n75n>
k

Z 2/ {_&k:ﬁnﬁnuk,ﬂn,&n + Z(U’Zﬂn,sn)i[uiﬁnﬁn ’ (:C - xiyﬁnfn)]} (i\[’k‘,ﬁnﬁn - uk‘yﬁn,sn)dl‘
Q

i=1

— Ba |Qs2. (4.76)

Notice that, since [, (i, 5 . )?dz =1 and [, (uy 5 . )*dz =1, we have

2 /f; u];ﬁnyfn (ﬂ];/gnﬁn - ulz’/jnﬁn)d'x - \/g;(ak_:ngn’gn - ul;ﬁnyfn)de vn € N’ (477>
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moreover, U} 5 . < [Upg, e, + sn|" and supg(uy g . [Ukg,e, + 50]T) < s5; thus, we
get

/ uk_:’ﬁn,gn (ak76nvan - uk7ﬁn75n)da:
Q

S /Qulzvﬁnyfn (’&—ki_»ﬁnyfn B u;ﬂnﬁn)dx B [Zuiﬁnyan (a];ﬁnygn o ul;ﬂnyfn)dx
_ . 1 _ _ 9
- /ukvﬁnygnu;{tﬁnaendx _|_ 2 /( k,Bn,en - uk76n;€n) da’:
Q Q
3
< slals, ¥n € N. (4.78)

Therefore, after rescaling, it follows
I:f/B’ﬂygTL (ﬁkyﬁnygn) - fﬁnﬁn (ukyﬂn,gn )]

k
+x7q n,€n
2/03“ kﬁman(\/ﬂn g >
1

. z Hi B en Qsﬂﬂn
— Uk gp.en — Uk Bren) | —= + Tig,, n> <— :c) de — —— |Q| (4.79)
Sn( e e ) ( \% ﬁn fse ‘,ul,ﬁn,En‘ ’Ml,ﬂn,en’

for n large enough. Then, as n — 0o, we obtain

‘Ml,ﬁn,en |5

N+1
lim inf - en Uk, By 20 N (T
N— 00 Sn|1u1”6n’€n’ [fﬁru n( knB’Vly ) fﬁ ’ kﬁ ’ )]
> [ U @U@ o) =-Inl [ U @IDUG) - (- a)da > o
B(0,3f1) 037”1

(4.80)

which is a contradiction because

fﬁnﬁn (ﬂkyﬂnaen) SO]@ Brs 5n( 1,8n,ens - - - 7i‘k7;8n15n) S glaX (pkuﬁTMETL = fﬂnﬁn (ukngn)an)' (48]‘>

sPn

Thus, the proof is complete.
q.e.d.
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5 Proof of the main results and final remarks

In this section we study the behaviour as € — 0 of the function uy, g obtained by mini-
max methods in Sections 3 and 4. In particular, our aim is to show that for all g > By
(see Proposition 4.7) ags. — g, Ukge — upg as € — 0 (up to a subsequence)
for suitable ays € R, upps € H}(Q) and that uyp is an eigenfunction for the Fucik
spectrum, corresponding to the pair (ag g, 5), namely uy g solves the problem

Au—oagpgu” +But =0 inQ, ue H(Q), uz0in Q. (5.1)

Lemma 5.1 For all f >0 and € > 0, let us consider a point (x18e,...,Tpa.e) i Qkp
and a function ugpe in MP* such that fs-(Ukpe) = Prpe(T18e, - Thpe)-

T1,B,e1-9Lk,B,e
Moreover, assume that (up to a Subsequence) (T18e, - T pe) converges as e — 0 to

a point (18,...,%kp).
Then, up to a subsequence, —uy 5+ Zf_l(uzﬂs)H(uﬁﬂe)leg(Q) converges in H}(Q),

on G 8
as € — 0, to a function uy, € E, ey s TOTEOVET,

/|D Wl2de =8 Vie{l,... .k} (5.2)

/Q\Du,gﬂ\zdx = min{/Q \Du‘|2dx Cu € Ele, g |u™ |2 = 1,
/ | Duj |*dx = 3, /(u;r)de =1fori=1,... ,k} . (5.3)
Q Q

. . ﬁ £
Proof Notice that, since ugg. € M5 ., we have

[ 1Pt Pdn = [ gactunac)uiydide < 8 [ (i )i
Ve >0, Vie{l,...,k}. (54)

Let us set (i 5. )i = [[(uf 5.)i ||L2(Q (uj5.)i- Then, we have

/|D Dil*dr < B Ve >0, Vie{l,...,k}. (5.5)

It follows that, up to a subsequence, (ﬂ,f 5.)i converges as € — 0 to a function (ﬂg 5)i
in (), weakly in H}(Q) and a.e. in Q. Moreover, since

hmsup gl 1) < +00, (5.6)
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also u,, 5 converges as € — 0 to a function u; 4 in L*(Q2), weakly in Hg(2) and a.e. in
Q. As a consequence, the function 5 = —uy 5 + Zle(ﬁljﬁ) belongs to E’fl s

and ||t gll2) = 1. Notice that, indeed, (@ 4.)i — (4fg): Vi € {1,...,k} and
Up, 5. = Uy g strongly in Hj(Q) as € — 0. In fact, we have

/|D Wde =8 Vie{l,... k) (5.7)

and
ll_r)[(l)/g | Duye g P = /Q | Duy, ) da. (5.8)
For the proof, we argue by contradiction and assume that
/Q |Du,;ﬁ|2dx < lilgl_églf/ﬂ |Du,;ﬁ,a\2dx (5.9)
or
/ \D(@] ,);|*dx < B for some i € {1,...,k}. (5.10)
In this case, by slight modifications of the supports of u;_ 5 and (ﬂkF b’)i’ one can construct
a function 5 € Eflﬂ wp Such that [ sl r2) = 1, (@ 5)ill L2y = 1,
/Q | Dy, g da < 1121251% | Duy, g | da (5.11)
and
/ |D(a ,)il*dx < 3 for some i € {1,...,k}. (5.12)

Without any loss of generality, we can assume that (5.12) is satisfied for i = 1.
Then, for all € > 0, let us consider the function 5. € MP* such that

T1,B,esTk,B,e
(ugﬁe) = (ugg)i for i = 2, .k, (U5 )1(x) = te(@f )i (x xl,gyg +x15) Vo €
Q, where t. is the positive number such that f _(t (i 5)1)[(4 5)1] = 0 and @y 4 i
the nonnegative function in Hg(2) such that a, ,_(z) = 0 Vo € U} 1Supp(ukﬁs)

Hﬁ,;B’EHLz(Q) =1 and

/ | Dy, g |*dz = min {/ |Duldz : w € H}(Q), u>0in Q,
Q Q

k
u(z) =0Vr € Usupp('zlzﬁ’g)i, ullr2) = 1} . (5.13)

i=1
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Then, we have

fﬂ,a(uk,ﬁ,5> - f,@,a(ak,/ﬁ,s) = fﬁ,s((u]i:@g)l) - fﬁ,&((a;{j":ﬂ75>1) + fﬁ,s(u];ﬂ,s) - fﬁ,s(a];f,gg)? )
5.14

where fo.((uf5 ) = 0Ve > 0,1 fo (6 5.00) = 0 and i f(ui5.) > Jo Dt
dr > 1_1_{% Jo.e(tiypg.e)-

It follows that fs.(ugpe) > fo.e(Upe) for € > 0 small enough, which is a contradiction
because Uy p. € Mfl’;’smmwﬁ and fg.(upp:) = min{fz.(u) : u € Mmﬁf,sa,s,...,rk,a,s}'
Thus, we can conclude that u ;. — uy 4 in Hg(Q) as € — 0 and [, |D(a; 4)il*dz = 8
Vie{l,...,k}.

In a similar way we can prove (5.3). Arguing again by contradiction, assume that

there exists u € Efw 77777 2., Such that @ |2y = 1, Jo 1D Pde = B, ||u] || 12) = 1
Vie {l,....k} and [, |Du~*dx < [, |Duy gl*dx.

In this case, by slight modifications of the supports of 4~ and u; for i = 1,...,k, one
can find g € EJ | . such that [, [D(@] 5)il*de < B [o(iy g)ide Vi € {1,...,k},

s glliz) = 1 and [, [Dit s2da < [, | Duy *da. V V
It follows that there exist k positive numbers ¢;,...,¢;. such that fég(tw(azﬂ)l)
(@ 5)i] = 0 Vi e {1,...,k} and we can consider the function iz, in MJ*

Z1,8,e5--:%k,B,e

defined in the following way: for i = 1,...,k, (i3 4.)i(x) = (U 5)i(® — Tipe + Tip)
Vo € Q and 4y, 4 is the nonnegative function in Hg(Q) such that @, ;_(z) = 0 Vr €
Uiy supp(uy 5. )iy | 5cllr2(@) = 1 and

/ |Da,;ﬁ,a|2dx = min {/ |Duldz : w € Hy(), u>0in Q,
Q Q

k
u(zr) =0V € Usupp(ﬂiﬁ’g)i, lul|L2) = 1} . (5.15)

i=1

Then, by direct computation, we obtain
Soe(urpe) = fo.e(ieg,e)

k k
= fae(uppe) = oy ) + Z Joe((ugge)i) = Z foe(igg.)i), (5.16)

where fgo((ufz.)i) > 0Ve >0,Vie{l,... k}, lilréfﬂ,a((ﬂ:ﬁs)i) =0Vie{l,... k}
bl b E‘) bl )
and

lg%fﬁ,g(u,;ﬁyg):/\Dugﬂ\zdx>/\Da,;ﬁﬁdleii%fﬁ,g(a,;ﬂ’s). (5.17)
€ Q Q &
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It follows that fs.(uxpe) > fae(tnpe) for € > 0 small enough; so we have again

a contradiction because Uy p. € Mf{is,e,...,xm,s and fso(uppe) = min{fs.(u) : u €
MPe }.

T1,8,e5%k,B,e

q.e.d.

Now, notice that we can consider the function ¢y g : €2y 3 — R such that, for all
(.1'1, C. ,iEk) € Qkﬂ

opp(z1, ..., o) = min {/ |Du™Pdx : u € Ei,...,zy w2 = 1,
Q

/ |Duj dx = 8, |Juf || =1fori=1,..., k‘} . (5.18)
Q

In fact, this minimum exists as we can infer from Proposition 3.1 and Lemma 5.1
(where we choose (1 5¢, ..., Tk ge) = (T1,...,25) VB >0, Ve > 0).

Lemma 5.2 If in Lemma 5.1 we assume in addition that @rp-(T18z,. .., Thpe) =
maxg, , P,pe Ve > 0, then @rp(T1p, ..., Trp) = maxq, ; Prp-

Proof Arguing by contradiction, assume that there exists (y1.4,...,¥k3) € Qk s such

that (Pkﬂ(xl,ﬁa . ,ZL’&g) < @k,g(yl’g, ce 7yk,6)-
Taking into account Lemma 5.1, we have [, | Dy 4°dx = @rs(214,. .., 7rp). Then,

slight modifications of the supports of 4 5 and (ﬂ;ﬁ)i, for i = 1,...,k, allow us to
construct a function vy 5 € Efl,,37~~~,xk,5 such that (v sllz2) =1,
[ 1D e < st ) (5.19)
and
A\D(vgﬁ)i|2dx < 5L(u;5)§dx Vie{l,...,k}, (5.20)
which implies the existence of k positive numbers ¢, ., ..., ¢ such that fé’e(ti,g(vzﬁ)i)
[(vig)i] = 0 Vi€ {1,...,k}. Let us consider the function vy g. in M .~ such

that (v 5.)i(x) = (v z)i(x — ipe +2ip) Vo € Q, Vi€ {1,...,k}, Ve > 0 and v, 5,
is the nonnegative function in Hj(2) such that vy, _(z) = 0 Vo € UL, supp(vy 4.)s,
Hvk_,ﬁ,eHLQ(Q) =1 and

/ |Dv,;ﬁ7€|2dx = min {/ |Dvf*dx : v € Hy(2), v>0in ),
Q Q

k
v(x) =0Vr € Usupp(v,:r’ﬂﬁ)i, V]| L2y = 1} . (5.21)

i=1
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Moreover, let us consider a function wyg. in Mflf;

Orpe(Yrps - Yrp) Ve > 0.
Then, since fa-(ugpe) = Orpe(T1ge,- > Thpe) and vy 5. € MPe we obtain

T1,B,e905Tk,B,e”

b such that fs.(wrp:) =

k
Foelunge) < foe(vnpe) = foo(vpg) + ) focl(vig)) Ve >0 (5.22)
i=1

where l%fﬁvf((vljﬁ,e)i =0Vi € {1,...,k} and yi%fﬁ"f(v’;ﬁﬁ) — fQ|Dv,;ﬁ|2dx <

Prp(Y1,6: -5 Ye,p)-
Moreover, we have

k
foe(wipe) = fac(wes) + D> facl(whs.)s) (5.23)
=1

where fzo((wz.)i) > 0 Ve > 0 and, by Lemma 5.1, lim foclwez.) = orplyrp, -
) ) E% ) 2
yr.p). It follows that, for € > 0 small enough, @ -(T1,8es -, Thpe) < Chpe(Y15,-- -

Yr,s) which is a contradiction because i g:(T18e,- -, Trge) = MaXQ, 5 Pk ge-

q.e.d.
Prqpqsition 5.3 Let us CO@sider (@175’5, . ,%,@5) in Qg g and ug g in Mffﬁ,emxwle,
satisfying the same assumptions as in Proposition 4.7.
Then, up to a subsequence, (Tipe,- .., Trpe) — (T1,8,---,Trp) as € — 0 and upg,

converges in H} () to a function uxp € Eflﬁ _____ wp g0 JOr all B> By, (where f3y, is the

number obtained in Proposition 4.7). Moreover, for all f > Bk, uy, g solves the equation
Au— apgu” + But =0 in €, (5.24)
where agp = [ |Duy g*dx.

U(3771) maxg e1

Proof As we proved in Proposition 4.7, for all 3 > 85 and € € |0, % Ty U@)-U G |

uy g is a weak solution of the equation
Au— oy peu + gge(u) =0 in €, (5.25)

where ayg. = [ |Duy g [*de.

Moreover, by Lemma 5.1, —u; 5+ Zle(u:{ﬁE)lH(ugﬁs)ZHzg(Q) converges in Hg(Q), as

e — 0, to a function 4y 5 € Efl vz et us prove that
liminf || (w5, )ill @) >0 VB> B, Vie{l,...,k}. (5.26)
e— e
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Arguing by contradiction, assume that, up to a subsequence, hH(l) H(uzﬂs)lﬂ 2@ =0
e— o

for suitable 8 > (3, and i € {1,...,k}.
In this case, we have (u) )i — 0in Hg(Q) as ¢ — 0 (because fj _(urpe)[(uf5.)i] =0
Ve > 0). Therefore, if we let € — 0, from (5.25) we obtain

/ D DYl =0 Ve Hi () (527
B(z;,8,m8

where a3 = [, ]Dﬁ,;Bde. Thus, we have a contradiction because Dy # 0 on
B(z;p,7m5) N O(supp fa,;ﬁ).
Now, let us prove that

limsup ||(w) 5. )illr2@) < +00 VB> B, Vi€ {1,... k}. (5.28)
e—0

Arguing again by contradiction, assume that, up to a subsequence, lir% 1(u5.0)ill 2
e—> i

— 400 for suitable 8 > 3, and i € {1,...,k}. Then, as ¢ — 0, from (5.25) we obtain
/ Dt} )i D — Bt )dlde =0 Y€ HY(B(riprs).  (5.29)
Q

Thus, we still have a contradiction because Dy g 7 0 on d(supp(y 4)s)-

Therefore, we can say that for all g > Bk (up to a subsequence) uy . converges in
H}(Q), as € — 0, to a function uy 53 € E? Moreover, if we let € — 0 in (5.25),

N zl’ﬁ,...,mkwg'
we infer that, for all 8 > B, ui g is a weak solution of the equation

Au—apgu” +put =0 inQ (5.30)

with a s = [, [Duy 4°dz. So the proof is complete.
q.e.d.

Proposition 5.4 For all 8 > f, let Upg € EB » be the function obtained in

T1,B549T
Proposition 5.3 and set ayp = [ |Duy 4*dz.
Then, for every positive integer k, uyg — —ey in Hg(Q) as f — 400,

_ 2
lim 6¥(ak75 — A1) = kcap(ry) (max el> : (5.31)
B—+o0 Q
ﬁEToo e1(xip) = max e, Vie{l,...,k} (5.32)
and
ﬁhrf Vi3 |z — x| = 00 fori # j. (5.33)
— 400
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-1
Moreover, g (\/quwa) - — [ lim U(m)] maxge; U(z) Vo € RY, Vi € {1,

|z|—o00

..k} and the convergence is uniform on the compact subsets of RY.

For the proof, it suffices to argue as in the proof of Proposition 4.1, taking into
account Lemmas 5.1 and 5.2.

As a direct consequence of Proposition 5.4 (see (5.31)), we can state the following
corollary.

Corollary 5.5 For all positive integer k and for 5> [, let agg be as in Proposition
5.4. Then, there exists a sequence (bg)y such that

be > Br, b < ber and agp < apsrp Yk €N, VB > by (5.34)

Proposition 5.6 Let b, and oy p be as in Corollary 5.5 for every positive integer k
and for > by. Then, a3 depends continuously on § in |by, +oo] Yk € N.

Proof Taking into account Lemma 5.1, we have ayg = [, |Duy 5°dx = orp(218, - . .,

xrp) Yk € NS > by. )

Let us prove that lim oy, 3 = oy, 5 V3 €]y, +0o[. First notice that, by lower semicon-
B—p '

tinuity arguments with respect to the weak H}(2) convergence, we have liminf ay g

B—p
> oy, 5. Then, arguing by contradiction, assume that there exists a sequence (/3),),, such

that lim £/ = 3 and hm Qy.p, > oy 5, namely
n—oo

lim / |Duy g ?dx > / | Dy, |2dx (5.35)
n—00

Let us set @, = —u,;ml—l—zi:l(uk g )i ||(Uk,5;)i||22(9)' Since [, |D(4,);[*dz = 3, Vn € N,
i, converges to a function u € E;fl ey I L3(2), weakly in H}(Q) and a.e. in Q. It
follows that [, |Du; [*dz < 3 and ||u+||Lz @ = 1Vie{l,... k}. Therefore, if (5.35)
holds, one can find a function @ € EB such that [, |D1]Jr 2dr = B, || |2 = 1

Vie{l,...,k} and

T _

lim/|Dul;6, |2dx>/|Dﬂ_|2dx. (5.36)
Q " Q

n—oo

Now, let us consider the function @, € Efl ey, 5y, SUcCh that (@7)(z) = af (/B!
(x —wip ) +x;,5) Ve € Q, Vie{l,...,k}, Vn € N and 4, is the nonnegative function
in H}(2) such that a, (z ) =0Vz € Uz Lsupp(@))i, @, ||L2 @ =1 and

/ | D, |*dx = min {/ |Dul?dz : w € HY (), u>0in Q,
0

u(z) =0 Vz € Usupp iy ullz2) = 1} vn e N. (5.37)

=1
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Notice that lim Jo | D |*dx = [, | Di~|*dx; moreover, since H(&f{)lHZE(Q) Jo ID(@});|?

dx = 3], we have

Qg g, = /Q |Du,;ﬁ%|2dx = Sokaﬁh(xlﬁ&? . ,l’kﬁ;b) S /Q |Dﬁ;|2dx Vn € N (538)

and, as n — 00,

hm/|Dum, ?dr < lim/|Dan|2dx—/\D'&\2dx, (5.39)
n—oo Q n n—o0 Q Q

in contradiction with (5.36).
Thus, we can conclude that «y 3 depends continuously on 3 in ]by, +00.
q.e.d.

Proof of Theorem 2.1  For every positive integer k, for § > 0 large enough so that
Q. # 0 and for € > 0, let us consider a point (21 ¢, ..., Tk se) € Qkp and a function
Uk, Be € Mffﬁ,s,-ka,ﬁ,s such that fﬂﬁ(ukﬁ’s) = gokﬁjg(l’lﬁ’g, . 75Ek,,8,€> = Mmaxq, ; Pk,Be
(here we apply Propositions 3.1 and 3.2).

As e — 0 (up to a subsequece) (21 ge, ..., Tk p,e) tends to a point (z14,...,2kg) € Qg
and uy g . converges in H}(Q) to a function uyz € Eflg,...,:vkg which, for § > 0 large
enough, satisfies the equation Au — aggu™ + fut = 0 in Q with aps = falupg) =
Jo | Duy gl?de = @pg(x18,. .., 0x3) = maxq, , wrps > A (here we apply Lemmas 5.1
and 5.2 and Proposition 5.3).

Thus (ag g, ) belongs to the Fuéik spectrum ¥ for § > 0 large enough. Moreover,
from Proposition 5.4 we infer that, for every positive integer &, o, 3 — A1 as 8 — +oo
while u, 5 — —e; in Hj(2). Corollary 5.5 guarantees the existence of a nondecreasing
sequence (by )y of positive numbers such that oy g < agi1,58 VB > byy1. Proposition 5.6
shows that oy 3 depends continuously on § in ]by, +0o0.

All the other assertions in Theorem 2.1 follow directly from Proposition 5.4 as one can
easily verify.

q.e.d.

Remark 5.7 Assume that the domain €2 satisfies in addition the following condition:
there exists an open subset A of €2 such that supy, €1 < sup, e;. Then, the method used
to prove Theorem 2.1 may be easily adapted in order to construct eigenfunctions wuy, g as
in Theorem 2.1, with & bumps localized near k concentration points x; g, . . ., i g, with
rescaled bumps having the same asymptotic profile (still described by the radial solution
U of (2.1)), but with the concentration points that, as f — +o00, approach maximum
points of e; in A (i.e. x;3 — z; as f — +o0, with 2; € A and e;(z;) = max, e; for
i=1,...,k).
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Remark 5.8 Notice that (as we show in a paper in preparation) one can also obtain
infinitely many curves of the Fué¢ik spectrum ¥, asymptotic to the lines {A;} x R and
R x {A\1} and corresponding to eigenfunctions of different type, with bumps localized
near points of the boundary of 2 (while the eigenfunctions wuy g given by Theorem 2.1
present k& bumps localized near the maximum points of e;).

In fact, under the same assumptions as in Theorem 2.1, there exists a nodecreasing
sequence (by) of positive numbers, having the following properties. For all 8 > by
there exists arg > A\ and vr s € Hg(Q), vy 5 # 0 and vy 5 # 0, such that (1.1), with
a = app and u = vy, is satisfied for all B > b,. Moreover, for every k € N, a4
depends continuously on B, ans < @pi1s VB > by and aps — i, as B — +oo,
while v, 53 — —e; in H3(€2). Furthermore, v; s present k& bumps that, as 8 — +oo,
concentrate near k points approaching the boundary of €2; the concentration rate is
greater than the approaching rate between two distinct concentration points or between
the concentration points and the boundary (so that the £ bumps remain quite distinct).
The eigenfunctions vy s have lower energy and they have a different variational nature
compared to the eigenfunctions uy . In fact, their bumps present a different asymptotic
profile which is not described by the function U, as it happens for the eigenfunctions
uy,p (see Theorem 2.1). Notice that, since vy g has lower energy than uy g, we can also
say that, even in the case k = 1, Theorem 2.1 does not give the first curve of the
Fuéik spectrum (see for istance [15]) because, for all 8 > by, the pair (o g, 5) does not
belong to the first curve; the eigenfunctions corresponding to pairs («, 3) of the first
curve have lower energy and only one bump which, for a or § large enough, is localized
near the boundary of € (see [31] and [32]).

Remark 5.9 It is interesting to know from where the curves of the Fucik spectrum
we obtain come from. They might come from bifurcations of the first curve of the
Fuéik spectrum, which emanates from the pair (A2, Ay), or they might come from pairs
(Ai, \;) of higher eigenvalues, or might be they do not meet the line {(«,3) € R?
: a =}, ete. .... The fact that the corresponding eigenfunctions present several
nodal regions (as the Fucik eigenfunctions related to pairs («, ) close to pairs (A;, \;)
of higher eigenvalues) seems to suggest that they might be curves emanating from
the pairs (A;, \;). However notice that, for the Fucik eigenfunctions we obtained in
this paper, only the positive part presents several nodal regions while the negative
part has only one nodal region (on the contrary, it is natural to expect that for the
Fucik eigenfunctions corresponding to pairs («, ) close to pairs (\;, \;), both positive
and negative parts present several nodal regions); on the other hand, also in the case
N > 1, one can find simple examples of curve in the Fucik spectrum that pass through
pairs (\;, \;) of higher eigenvalues and are asymptotic to lines {A\} x R and R x {A}
whith A > A;. Thus, the problem is widely open and might give rise to interesting
results. Most probably, if € is a bounded domain of RY with N > 1, for each pair
(Ai, \i) of eigenvalues, the smallest curve of the Fucik spectrum emanating from (\;, \;),
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corresponding to lower energy eigenfunctions, is asymptotic to {\} x R and R x {\;}
while the other curves passing through (\;, \;) are asymptotic to lines {\} x R and
R x {\} whith A > A

Remark 5.10 The difference between the case of dimension N = 1 and the case N > 1
becomes even more evident if in (1.1) we replace the Dirichlet boundary condition by
the Neumann condition % =0 on 0f2.

In fact, if we denote by A < A < A3 < ... and by %, respectively, the eigenvalues
of —A and the Fué¢ik spectrum with Neumann boundary conditions, we have M =0
and, if N = 1, no curve of ¥ is asymptotic to the lines {0} x R and R x {0}. Indeed,
if N =1, a direct computation shows that the Fucik spectrum consists of the lines
{0} x R and R x {0} and of infinitely many curves Cy,Cj, ... having the following
properties: for every ¢ > 2, C; is a smooth, unbounded, decreasing curve, emanating

from (A;, \;) and asymptotic to the lines {/\I} x R and R x {)\Z} (notice that 3 is an

eigenvalue of —A in H(2) if and only if 4 is an odd positive integer and, in this case,
2 = Ait1)/2). Therefore, if N = 1, no curve of > is asymptotic to the lines {0} x R
and R x {0} and every nontrivial pair (a, §) of 3 satisfies o > 2 and 8 > 2 (with
;\2 > :\1 = 0)

On the contrary, the situation is quite different in the case N > 1. In fact (as we show
in a paper in preparation) in this case there exist infinitely many curves contained in
5. and asymptotic to the lines {0} x R and R x {0}; the corresponding eigenfunctions
have an arbitrarily large number of bumps which may be localized in the interior of €2
or near prescribed connected components of 9€2; both, interior and boundary bumps,
present the same asymptotic profile (still described by the function U).
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