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Abstract. - In this paper we present some results on the Fuč́ık spectrum for the Laplace
operator, that give new information on its structure. In particular, these results show that,
if Ω is a bounded domain of RN with N > 1, then the Fuč́ık spectrum has infinitely many
curves asymptotic to the lines {λ1} ×R and R× {λ1}, where λ1 denotes the first eigenvalue
of the operator −∆ in H1

0 (Ω). Notice that the situation is quite different in the case N = 1;
in fact, in this case the Fuč́ık spectrum may be obtained by direct computation and one can
verify that it includes only two curves asymptotic to these lines.

Résumé. - Nous présentons des résultats qui donnent nouvelles informations sur la structure
du spectre de Fuč́ık pour l’opérateur de Laplace. En particulier, ces résultats montrent que,
si Ω est un domaine borné de RN avec N > 1, alors le spectre de Fuč́ık a un nombre infini de
courbes qui ont comme asymptotes les droites {λ1} × R et R × {λ1}, où λ1 est la première
valeur propre de l’operateur −∆ in H1

0 (Ω). La situation est bien différente dans le cas N = 1;
en effect, dans ce cas on peut vérifier qu’il y a seulement deux courbes dans le spectre de
Fuč́ık, qui ont ces droites comme asymptotes.
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1 Introduction

Let Ω be a bounded connected domain of RN with N ≥ 1 and set u+ = max{u, 0},
u− = max{−u, 0}. The Fuč́ık spectrum of the Laplace operator −∆ in H1

0 (Ω) is defined
as the set Σ of all the pairs (α, β) ∈ R2 such that the Dirichlet problem

∆u− αu− + βu+ = 0 in Ω, u = 0 on ∂Ω, (1.1)
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has nontrivial solutions (i.e. u ∈ H1
0 (Ω), u 6≡ 0).

The Fuč́ık spectrum arises, for example, in the study of problems of the type

∆u+ g(x, u) = 0 in Ω, u = 0 on ∂Ω (1.2)

where g is a Carathéodory function in Ω× R such that

lim
t→−∞

g(x, t)

t
= α, lim

t→+∞

g(x, t)

t
= β ∀x ∈ Ω (1.3)

with α and β in R. These problems may lack of compactness in the sense that the well
known Palais-Smale compactness condition fails if the pair (α, β) belongs to the Fuč́ık
spectrum Σ.
After the pionering researches in [1, 8] and the first papers [12, 17], many works have
been devoted to study these problems (see, for example, the references in [27–29]). In
[27–29] we obtained new solutions of problems of this type using a method which does
not require to know wether or not (α, β) ∈ Σ and, in addition, may be useful to obtain
new information on the structure of Σ (a similar method is used also in [9, 10]).
Let us denote by λ1 < λ2 ≤ λ3 ≤ . . . the eigenvalues of −∆ in H1

0 (Ω). It is clear that
Σ contains all the pairs (λi, λi) (which are the only pairs (α, β) in Σ such that α = β)
and includes the lines {λ1} × R and R× {λ1}; if α 6= λ1, β 6= λ1 and (α, β) ∈ Σ, then
α > λ1, β > λ1 and the eigenfunctions u corresponding to (α, β) are sign changing
functions; moreover, (α, β) ∈ Σ if and only if (β, α) ∈ Σ because a function u solves
(1.1) if and only if −u solves (1.1) with (β, α) in place of (α, β).
Several papers have been devoted to study the structure of Σ and its relation with
existence and multiplicity of solutions for equations with asymmetric nonlinearities
(see, for example, [2–4, 6, 7, 11–25, 33–37] etc. . . . ). In [12] it is shown that the
two lines {λ1} × R and R × {λ1} are isolated in Σ. Many results concern the curve
in Σ emanating from each pair (λi, λi) (local existence and multiplicity, variational
characterizations, local and global properties, etc. . . . ).
Combining these results, one can infer, in particular, that Σ contains a first curve which
passes through (λ2, λ2) and extends to infinity. In [15] the authors prove directly the
existence of such a first curve, show that it is asymptotic to the lines {λ1} × R and
R×{λ1}, give a variational characterization of it and deduce that all the corresponding
eigenfunctions have exactly two nodal regions (extending the well known nodal domain
theorem of Courant).
In the case N = 1, Σ may be obtained by direct computation. It consists of curves
emanating from the pairs (λi, λi) ∀i ∈ N; if i is an even positive integer, there exists only
one curve while, if i is odd, there exist exactly two curves emanating from (λi, λi). All
these curves are smooth, unbounded and decreasing (i.e., on each curve, α decreases as
β increases); moreover, on each curve, α tends to an eigenvalue of −∆ in H1

0 (Ω) as β →
+∞; conversely, for every eigenvalue λi there exist exactly three curves asymptotic to
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the lines {λi}×R and R×{λi}; they pass, respectively, through the pairs (λ2i−1, λ2i−1),
(λ2i, λ2i) and (λ2i+1, λ2i+1). In particular, if N = 1, there are only two nontrivial curves
of Σ, asymptotic to {λ1} × R and R× {λ1}.
On the contrary, the situation is quite different in the case N > 1. In fact, using the
method developed in [27–29], we can show that, if Ω is a domain of RN with N > 1,
there exist infinitely many curves of the Fuč́ık spectrum Σ, asymptotic to the lines
{λ1} × R and R × {λ1}. In the present paper we consider the case N ≥ 3. The case
N = 2, which requires more refined estimates, is considered in [32].
The main result of this paper may be stated as follows.

Theorem 1.1 Let Ω be a bounded domain of RN with N ≥ 3. Then, there exists
a nondecreasing sequence (bk)k of positive numbers, having the following properties.
For every positive integer k and for all β > bk there exists αk,β > λ1 such that the
pair (αk,β, β) belongs to the Fuč́ık spectrum Σ. Moreover, for every positive integer
k, αk,β depends continuously on β in ]bk,+∞[, αk,β < αk+1,β for all β > bk+1 and
lim

β→+∞
αk,β = λ1.

The proof follows directly from Theorem 2.1. It is clear that, if we replace (α, β) and u
by (β, α) and −u, from Theorem 1.1 we obtain infinitely many curves of Σ asymptotic
to the line R× {λ1}.
Notice that, even for k = 1, Theorem 1.1 does not give the first curve of the Fuč́ık
spectrum (see for istance [15]) since, for all β > bk, the pair (αk,β, β) does not belong
to the first curve (see also Remark 5.8 for more details).
The method we use for the proof is completely variational. For all β > 0, we consider
the functional fβ defined by fβ(u) =

∫
Ω

[|Du|2 − β(u+)2]dx, constrained on the set
S = {u ∈ H1

0 (Ω) :
∫

Ω
(u−)2dx = 1}. For β > 0 large enough, the eigenfunction u is

obtained as a constrained critical point for fβ on S, while α arises as the Lagrange
multiplier with respect to the constraint S.
For every positive integer k, the eigenfunction uk,β corresponding to the pair (αk,β, β),
we obtain in this way, presents k bumps; for β > 0 large enough, the set {x ∈ Ω :
uk,β(x) < 0} is a connected open subset of Ω while the set {x ∈ Ω : uk,β(x) > 0} has
exactly k connected components. As β → +∞, the bumps concentrate near points. We
describe the asymptotic behaviour of the concentration points and, in particular, we
show that, if the distance between two concentration points tends to zero as β → +∞,
then the approaching rate is less than the concentration rate, so that the bumps remain
quite distinct; moreover, we describe the asymptotic profile of the rescaled bumps.
Finally, let us point out a natural question: where come from the curves given by
Theorem 1.1? (they might come from bifurcations of the first curve of the Fuč́ık
spectrum, or from pairs (λi, λi) of higher eigenvalues, or may be they do not meet the
line {(α, β) ∈ R2 : α = β}, etc.. . . ). It is a widely open problem which perhaps might
produce interesting results (see also Remark 5.9 for a more detailed discussion of this
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question). The paper is organized as follows. In Section 2 we state the main results
which, in particular, imply and specify Theorem 1.1. In Section 3 we describe the
variational framework and introduce a functional fβ,ε, converging to fβ as ε→ 0, which
for all ε > 0 presents more manageable variational properties with respect to fβ. In
Section 4 we obtain some useful asymptotic estimates as β → +∞. Finally, in Section
5 we let ε → 0, and prove the main results. Also we discuss some generalizations,
forthcoming results on related questions, open problems, etc. . . . .

2 Statement of the main results

Let us denote by e1 the positive eigenfunction related to the first eigenvalue λ1, nor-
malized in L2(Ω), i.e. e1 ∈ H1

0 (Ω), e1 > 0, ∆e1 + λ1e1 = 0 in Ω and
∫

Ω
e2

1dx = 1 (since
Ω is a connected domain, e1 is unique and strictly positive in Ω). For every open subset
A of RN , we denote by λ1(A) ≤ λ2(A) ≤ λ3(A) ≤ . . . the eigenvalues of −∆ in H1

0 (A);
every function in H1

0 (A) is extended outside A by the value zero. The main results
presented in this paper may be gathered in the following theorem (which contains and
specifies Theorem 1.1).

Theorem 2.1 Let Ω be a bounded connected domain of RN with N ≥ 3. Then, there
exists a nondecreasing sequence (bk)k of positive numbers, having the following prop-
erties. For every positive integer k and for all β > bk, there exist αk,β > λ1 and
uk,β ∈ H1

0 (Ω), with u+
k,β 6≡ 0 and u−k,β 6≡ 0, such that (1.1), with α = αk,β and u = uk,β,

is satisfied for all β > bk. Moreover, for every positive integer k, αk,β depends con-
tinuously on β in ]bk,+∞[, αk,β < αk+1,β ∀β > bk+1, αk,β → λ1, as β → +∞, while
uk,β → −e1 in H1

0 (Ω).
In addition, there exist r > 0 and, for all k ≥ 1 and β > bk, k points x1,β, . . . , xk,β in
Ω such that

1) dist(xi,β, ∂Ω) > r√
β
∀i ∈ {1, . . . , k}, |xi,β − xj,β| > 2r√

β
for i 6= j;

2) uk,β(x) ≤ 0 ∀x ∈ Ω \ ∪ki=1B
(
xi,β,

r√
β

)
and u+

k,β 6≡ 0 in B
(
xi,β,

r√
β

)
∀i ∈

{1, . . . , k};

3) lim
β→+∞

e1(xi,β) = maxΩ e1 ∀i ∈ {1, . . . , k}, lim
β→+∞

√
β |xi,β − xj,β| =∞ for i 6= j;

4) if ρβ > 0 ∀β > bk, lim
β→+∞

ρβ = 0 and lim
β→+∞

(ρβ
√
β) =∞, then

lim
β→+∞

sup
{
|uk,β(x) + e1(x)| : x ∈ Ω \ ∪ki=1B(xi,β, ρβ)

}
= 0;
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5) if, ∀k ∈ N, ∀i ∈ {1, . . . , k}, ∀β > bk and ∀x ∈
√
β (Ω − xi,β) we set Ui,k,β(x) =

1
si,k,β

uk,β

(
x√
β

+ xi,β

)
where si,k,β = sup

{
uk,β(x) : x ∈ B

(
xi,β,

r√
β

)}
, then the

rescaled function Ui,k,β converges as β → +∞ to the radial solution U of the
problem

∆U + U+ = 0 in RN , U(0) = 1 (2.1)

and the convergence is uniform on the compact subsets of RN .

The proof will be given in Section 5. Let us point out that Theorem 2.1 holds true
also for N = 2, but in this case the proof requires more refined estimates; moreover,
the asymptotic behaviour of uk,β, as β → +∞, is quite different in the cases N = 2
and N > 2. In fact, if N = 2, we have lim

β→+∞
si,k,β = 0 ∀k ∈ N, ∀i ∈ {1, . . . , k} while,

if N > 2, lim
β→+∞

si,k,β = c ∀k ∈ N, ∀i ∈ {1, . . . , k}, where c is a positive constant

depending only on N and supΩ e1. This different behaviour is strictly related to the
fact that, if U is the radial solution of problem (2.1), then infRN U = −∞ for N = 2,
while infRN U > −∞ for N > 2. The case N = 2 is presented in [32].

3 The variational framework

In order to prove Theorem 2.1, for every positive integer k we construct k-peaks eigen-
functions of the following type. For every β > 0, let us set rβ = 3r̄1√

β
where r̄1 is the

radius of the balls in RN for which the first eigenvalue of the Laplace operator is equal
to 1, i.e.

min

{∫
B(0,r̄1)

|Du|2dx : u ∈ H1
0 (B(0, r̄1)),

∫
B(0,r̄1)

u2dx = 1

}
= 1.

Let us consider the set

Ωk,β = {(x1, . . . , xk) ∈ Ωk : |xi−xj| ≥ 2rβ if i 6= j, dist(xi, ∂Ω) ≥ rβ for i = 1, . . . , k}.

It is clear that Ωk,β 6= ∅ for β large enough and that, if (x1, . . . , xk) ∈ Ωk,β, the balls
B(x1, rβ), . . . , B(xk, rβ) are pairwise disjoint and included in Ω.
We say that a function u ∈ H1

0 (Ω) belongs to Eβ
x1,...,xk

(i.e. it is a k-peaks function

with respect to the balls B(x1, rβ), . . . , B(xk, rβ)) if u+ =
∑k

i=1 u
+
i where, for all

i ∈ {1, . . . , k}, u+
i ∈ H1

0 (Ω), u+
i 6≡ 0, u+

i ≥ 0 in Ω, ‖u+
i ‖−2

L2(Ω)

∫
Ω
x · [u+

i (x)]2dx = xi and

u+
i (x) = 0 ∀x ∈ Ω \B(xi, rβ).

For all β > 0 and ε > 0, let us consider the functional fβ,ε : H1
0 (Ω)→ R defined by

fβ,ε(u) =

∫
Ω

|Du|2dx− 2

∫
Ω

Gβ,ε(u)dx, (3.1)
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where Gβ,ε(t) =
∫ t

0
gβ,ε(τ)dτ ∀t ∈ R, with gβ,ε(t) = 0 ∀t ≤ ε and gβ,ε(t) = β(t − ε)

∀t ≥ ε.
Now, our aim is to find k-peaks functions that are constrained critical points for the
functional fβ,ε constrained on the set S = {u ∈ H1

0 (Ω) :
∫

Ω
(u−)2dx = 1}.

Let us consider the set Mβ,ε
x1,...,xk

consisting of all the functions u ∈ Eβ
x1,...,xk

such that
‖u−‖L2(Ω) = 1 and f ′β,ε(u)[u+

i ] = 0 for i = 1, . . . , k.

One can easily verify that for all ε > 0, if a function u ∈ Eβ
x1,...,xk

is a critical point for
fβ,ε constrained on S, then u ∈Mβ,ε

x1,...,xk
and, for every i ∈ {1, . . . , k}, f ′β,ε(u+ tu+

i )[u+
i ]

is positive for t ∈] − 1, 0[ and negative for t > 0 (since 1
τ
gβ,ε(τ) is strictly increasing

with respect to τ in ]ε,+∞[); so the function u is the unique maximum point for fβ,ε
on the set {u + tu+

i : t ∈ [−1,+∞[} (notice that, for ε = 0, fβ,0 and Mβ,0
x1,...,xk

do not
have the same properties; it is the reason for which we first introduce the parameter
ε > 0 and then let ε→ 0).

Proposition 3.1 Let k be a positive integer, β > 0 large enough so that Ωk,β 6= ∅
and consider a point (x1, . . . , xk) ∈ Ωk,β. Then, for all ε > 0, Mβ,ε

x1,...,xk
6= ∅ and the

minimum of the functional fβ,ε on the set Mβ,ε
x1,...,xk

is achieved.

Proof We have Mβ,ε
x1,...,xk

6= ∅ because of the choice of the radius rβ. In fact, taking into

account that
√
β rβ > r̄1, one can find k+1 nonnegative functions v1, . . . , vk, v̄ in H1

0 (Ω)
such that vi = 0 in Ω \ B(xi, rβ),

∫
Ω
|Dvi|2dx < β

∫
Ω
v2
i dx,

∫
Ω
x · v2

i (x)dx = xi
∫

Ω
v2
i dx,∫

Ω
v̄vidx = 0 for i = 1, . . . , k and

∫
Ω
v̄2dx = 1. Thus, taking into account that

lim
t→+∞

1

t2
fβ,ε(tvi) =

∫
Ω

|Dvi|2dx− β
∫

Ω

v2
i dx < 0 (3.2)

and that (since ε > 0)

lim
t→0+

1

t2
fβ,ε(tvi) =

∫
Ω

|Dvi|2dx > 0, (3.3)

we infer that for all ε > 0 there exist k positive numbers t1,ε, . . . , tk,ε such that the

function u =
∑k

i=1 ti,εvi − v̄ belongs to Mβ,ε
x1,...,xk

.
Notice that inf{fβ,ε(u) : u ∈Mβ,ε

x1,...,xk
} ≥ λ1 for all β > 0, ε > 0, (x1, . . . , xk) ∈ Ωk,β. In

fact, if u ∈ Mβ,ε
x1,...,xk

, we have fβ,ε(u) = fβ,ε(−u−) +
∑k

i=1 fβ,ε(u
+
i ), where fβ,ε(−u−) =∫

Ω
|Du−|2dx ≥ λ1 (since ‖u−‖L2(Ω) = 1) and fβ,ε(u

+
i ) > 0 for i = 1, . . . , k (because

u ∈Mβ,ε
x1,...,xk

implies fβ,ε(u
+
i ) = max{fβ,ε(tu+

i ) : t ≥ 0} > 0 for ε > 0).
Now, let us consider a minimizing sequence (un)n for fβ,ε on Mβ,ε

x1,...,xk
. The same

arguments as above show that (since sup{fβ,ε(un) : n ∈ N} < +∞) we have

λ1 ≤ lim inf
n→∞

fβ,ε(−u−n ) ≤ lim sup
n→∞

fβ,ε(−u−n ) < +∞ (3.4)
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and, for i = 1, . . . , k,

0 ≤ lim inf
n→∞

fβ,ε((u
+
n )i) ≤ lim sup

n→∞
fβ,ε((u

+
n )i) < +∞. (3.5)

Notice that fβ,ε(−u−n ) =
∫

Ω
|Du−n |2dx, so (3.4) implies that the sequence (u−n )n is

bounded in H1
0 (Ω).

Now, let us prove that also the sequences [(u+
n )i]n are bounded inH1

0 (Ω) ∀i ∈ {1, . . . , k}.
Taking into account that f ′β,ε(un)[(u+

n )i] = 0 ∀n ∈ N, ∀i ∈ {1, . . . , k}, we have∫
Ω

|D(u+
n )i|2dx =

∫
Ω

gβ,ε((u
+
n )i)(u

+
n )idx ≤ β

∫
Ω

(u+
n )2

i dx. (3.6)

Thus, it suffices to prove that the sequences [(u+
n )i]n are bounded in L2(Ω) for i =

1, . . . , k. Arguing by contradiction, assume that (up to a subsequence) lim
n→∞

‖(u+
n )i‖L2(Ω)

=∞ for some i ∈ {1, . . . , k} and set (ūn)i=
(u+
n )i

‖(u+
n )i‖L2(Ω)

. Then, (3.6) implies
∫

Ω
|D(ūn)i|2

dx ≤ β ∀n ∈ N; so (up to a subsequence) [(ūn)i]n converges weakly in H1
0 (Ω), in

L2(Ω) and a.e. in Ω to a function ūi ∈ H1
0 (Ω). It follows that

∫
Ω
|Dūi|2dx ≤ β,∫

Ω
ū2
i dx = 1, ūi ≥ 0 in Ω and ūi = 0 in Ω\B(xi, rβ). Moreover, one can verify by direct

computation that the properties f ′β,ε(un)[(u+
n )i] = 0 ∀n ∈ N and lim

n→∞
‖(u+

n )i‖L2(Ω) =∞
imply lim

n→∞

∫
Ω
|D(ūn)i|2dx = β. As a consequence,

lim
n→∞

f ′β,ε(t(ūn)i)[(ūn)i] = 2tβ − 2

∫
Ω

gβ,ε(tūi)(ūi)dx ∀t ≥ 0. (3.7)

Then, since
∫

Ω
ū2
i dx = 1, we obtain for all ε > 0

lim inf
t→+∞

[
tβ −

∫
Ω

gβ,ε(tūi)ūidx

]
= lim inf

t→+∞

∫
Ω

[βtūi − gβ,ε(tūi)]ūidx > 0. (3.8)

Notice that, if we set tn,i = ‖(u+
n )i‖L2(Ω), we have f ′β,ε(t(ūn)i)[(ūn)i] > 0 ∀t ∈]0, tn,i[.

Since lim
n→∞

tn,i = +∞, it follows

lim inf
n→∞

fβ,ε((u
+
n )i) = lim inf

n→∞

∫ tn,i

0

f ′β,ε(t(ūn)i)[(ūn)i]dt

≥ 2

∫ τ

0

[
tβ −

∫
Ω

gβ,ε(tūi)ūidx

]
dt ∀τ > 0. (3.9)

Then, as τ → +∞, from (3.8) we obtain lim
n→∞

fβ,ε((u
+
n )i) = +∞, in contradiction with

(3.5). Thus, we can say that also the sequences [(u+
n )i]n are bounded in H1

0 (Ω) for
i = 1, . . . , k. As a consequence, there exist u−, u+

1 , . . . , u
+
k in H1

0 (Ω) such that (up to a
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subsequence) u−n converges as n→∞ to u− and (u+
n )i converges to u+

i , for i = 1, . . . , k,
weakly in H1

0 (Ω), in L2(Ω) and a.e. in Ω.
Now, let us prove that u+

i 6≡ 0 ∀i ∈ {1, . . . , k}. Arguing by contradiction, assume that
u+
i ≡ 0 for some i ∈ {1, . . . , k}. Then (because of the L2(Ω) convergence) from (3.6)

we infer that lim
n→∞

∫
Ω
|D(u+

n )i|2dx = 0, which implies lim
n→∞

fβ,ε((u
+
n )i) = 0. Therefore,

we obtain a contradiction if we prove that

inf{fβ,ε(v+
i ) : v ∈Mβ,ε

x1,...,xk
} > 0 ∀ε > 0. (3.10)

Taking into account that fβ,ε(v
+
i ) = max{fβ,ε(tv+

i ) : t > 0}, it is clear that it suffices
to prove that there exist two positive constants ρβ,ε and cβ,ε such that fβ,ε(v) ≥ cβ,ε
∀v ∈ Si(ρβ,ε), where

Si(ρβ,ε) =

{
v ∈ H1

0 (B(xi, rβ)) : v ≥ 0 in B(xi, rβ),

∫
B(xi,rβ)

|Dv|2dx = ρ2
β,ε

}
.

(3.11)
In order to prove the existence of cβ,ε > 0 and ρβ,ε > 0 with these properties, let us
consider the positive integer j̃ such that

λj̃(B(xi, 3r̄1)) ≤ 1 < λj̃+1(B(xi, 3r̄1)). (3.12)

Taking into account the choice of rβ, it follows that

λj̃(B(xi, rβ)) ≤ β < λj̃+1(B(xi, rβ)). (3.13)

Now, let us denote by Σ1
β and Σ2

β the closed subspaces of H1
0 (B(xi, rβ)) spanned by the

eigenfunctions of the Laplace operator −∆ in H1
0 (B(xi, rβ)), corresponding to eigen-

values λj(B(xi, rβ)) with, respectively, 1 ≤ j ≤ j̃ and j ≥ j̃ + 1.
For all β > 0 and ε > 0, there exists νβ,ε > 0 such that, if v ∈ Σ1

β and
∫
B(xi,rβ)

|Dv|2dx ≤
ν2
β,ε, then |v(x)| ≤ ε ∀x ∈ B(xi, rβ).

For all v ∈ H1
0 (B(xi, rβ)) such that

∫
B(xi,rβ)

|Dv|2dx ≤ ν2
β,ε, set v = v1,β + v2,β, with

v1,β ∈ Σ1
β and v2,β ∈ Σ2

β. Then, taking into account that
∫
B(xi,rβ)

|Dv1,β|2dx ≤ ν2
β,ε and

as a consequence v1,β ≤ ε, we have

fβ,ε(v) = fβ,ε(v1,β + v2,β) = fβ,ε(v1,β + v2,β)− fβ,ε(v1,β) + fβ,ε(v1,β) (3.14)

where fβ,ε(v1,β) =
∫
B(xi,rβ)

|Dv1,β|2dx and

fβ,ε(v1,β + v2,β)− fβ,ε(v1,β) ≥ f ′β,ε(v1,β)[v2,β] +

∫
B(xi,rβ)

|Dv2,β|2 − β
∫
B(xi,rβ)

v2
2,βdx

=

∫
B(xi,rβ)

[|Dv2,β|2 − βv2
2,β]dx

≥
(

1− β

λj̃+1(B(xi, rβ))

)∫
B(xi,rβ)

|Dv2,β|2dx (3.15)
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because f ′β,ε(v1,β)[v2,β] = 0 and
∫
B(xi,rβ)

|Dv2,β|2dx ≥ λĩ+1(B(xi, rβ))
∫
B(xi,rβ)

v2
2,βdx.

It follows that, for a suitable constant c̃β,ε > 0, we have fβ,ε(v) ≥ c̃β,ε
∫
B(xi,rβ)

|Dv|2dx
∀v ∈ H1

0 (B(xi, rβ)) such that
∫
B(xi,rβ)

|Dv|2dx ≤ ν2
β,ε. Therefore, it follows easily

that there exist two constants ρβ,ε ∈]0, νβ,ε[ and cβ,ε > 0 satisfying all the required
properties.
Thus, we can say that u+

i 6≡ 0 ∀i ∈ {1, . . . , k}. Moreover, as a further consequence of
the L2(Ω) convergence, we have

‖u+
i ‖−2

L2(Ω)

∫
Ω

[u+
i (x)]2x dx = xi ∀i ∈ {1, . . . , k}. (3.16)

From the weak H1
0 (Ω) convergence, it follows that f ′β,ε(u

+
i )[u+

i ] ≤ 0 ∀i ∈ {1, . . . , k}.
Therefore, for all i ∈ {1, . . . , k} there exists ti ∈]0, 1] (ti depends also on β and ε)
such that the function ũ = −u− +

∑k
i=1 tiu

+
i belongs to Mβ,ε

x1,...,xk
. Moreover, since

fβ,ε(ti(u
+
n )i) ≤ fβ,ε((u

+
n )i) ∀n ∈ N, we have

lim inf
n→∞

fβ,ε(ti(u
+
n )i) ≤ lim inf

n→∞
fβ,ε((u

+
n )i) ∀i ∈ {i, . . . , k}. (3.17)

It follows that

fβ,ε(ũ) ≤ lim inf
n→∞

fβ,ε

(
−u−n +

k∑
i=1

ti(u
+
n )i

)

≤ lim inf
n→∞

fβ,ε

(
−u−n +

k∑
i=1

(u+
n )i

)
= inf{fβ,ε(u) : u ∈Mβ,ε

x1,...,xk
}. (3.18)

Thus, we can conclude that the minimum of fβ,ε on Mβ,ε
x1,...,xk

is achieved and fβ,ε(ũ) =
min{fβ,ε(u) : u ∈Mβ,ε

x1,...,xk
}.

q.e.d.

Proposition 3.1 allows us to introduce the function ϕk,β,ε : Ωk,β → R defined by

ϕk,β,ε(x1, . . . , xk) = min
Mβ,ε
x1,...,xk

fβ,ε ∀(x1, . . . , xk) ∈ Ωk,β, ∀k ∈ N, ∀β > 0, ∀ε > 0.

(3.19)

Proposition 3.2 For every positive integer k, for all β > 0 and ε > 0 (with β large
enough so that Ωk,β 6= ∅), there exists (x1,β,ε, . . . , xk,β,ε) ∈ Ωk,β such that ϕk,β,ε(x1,β,ε,
. . . , xk,β,ε) = maxΩk,β ϕk,β,ε.

Proof Let us consider a sequence (x1,n, . . . , xk,n) in Ωk,β such that

lim
n→∞

ϕk,β,ε(x1,n, . . . , xk,n) = sup
Ωk,β

ϕk,β,ε. (3.20)
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Then, there exists (x1,β,ε, . . . , xk,β,ε) ∈ Ωk,β such that, up to a subsequence, (x1,n, . . . ,
xk,n)→ (x1,β,ε, . . . , xk,β,ε) as n→∞.
By Proposition 3.1, there exists uk,β,ε ∈ Mβ,ε

x1,β,ε,...,xk,β,ε
such that fβ,ε(uk,β,ε) = min

{fβ,ε(u) : u ∈ Mβ,ε
x1,β,ε,...,xk,β,ε

}. For every n ∈ N, let us consider the function ûn ∈
Mβ,ε

x1,n,...,xk,n
such that (û+

n )i(x) = (u+
k,β,ε)i(x + xi,β,ε − xi,n) and û−n is the minimizing

function for the minimum

min

{∫
Ω

|Dv|2dx : v ∈ H1
0 (Ω), v ≥ 0 in Ω,

∫
Ω

v2dx = 1,∫
Ω

v (û+
n )idx = 0 for i = 1, . . . , k

}
. (3.21)

One can verify by standard arguments that ûn → uk,β,ε in H1
0 (Ω) and fβ,ε(ûn) →

fβ,ε(uk,β,ε) as n → ∞. Moreover, we have min{fβ,ε(u) : u ∈ Mβ,ε
x1,n,...,xk,n

} ≤ fβ,ε(ûn)

because ûn ∈Mβ,ε
x1,n,...,xk,n

∀n ∈ N. Thus, we obtain

sup
Ωk,β

ϕk,β,ε = lim
n→∞

ϕk,β,ε(x1,n, . . . , xk,n) (3.22)

≤ lim
n→∞

fβ,ε(ûn) = fβ,ε(uk,β,ε) = ϕk,β,ε(x1,β,ε, . . . , xk,β,ε),

which implies ϕk,β,ε(x1,β,ε, . . . , xk,β,ε) = maxΩk,β ϕk,β,ε.
q.e.d.

4 Asymptotic estimates

In this section we describe the asymptotic behaviour as β → +∞ of the mini-max
function uk,β,ε obtained in Section 3. Here we need some notion on the capacity. For
every bounded domain A of RN , with N ≥ 3, the capacity of A is defined by

capA = min

{∫
RN
|Du|2dx : u ∈ D1,2(RN), u ≥ 1 a.e. in A

}
. (4.1)

It is well known that there exists a unique minimizing function uA. Moreover, if
A1, . . . , As, with s > 1, are pairwise disjoint bounded domains of RN , then we have

cap

(
s⋃
i=1

Ai

)
<

s∑
i=1

cap(Ai). (4.2)

In fact, if we set ǔ(x) = max{uAi : i = 1, . . . , s}, we obtain

cap

(
s⋃
i=1

Ai

)
≤
∫
RN
|Dǔ|2dx <

s∑
i=1

∫
RN
|DuAi |2dx =

s∑
i=1

cap(Ai). (4.3)
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Proposition 4.1 For all positive integer k and for all sequences (βn)n, (εn)n of positive
numbers, let us consider a sequence (x1,βn,εn , . . . , xk,βn,εn) of points in Ωk and a sequence
of functions (uk,βn,εn)n in H1

0 (Ω) such that (x1,βn,εn , . . . , xk,βn,εn) ∈ Ωk,βn, uk,βn,εn ∈
Mβn,εn

x1,βn,εn ,...,xk,βn,εn
and fβn,εn(uk,βn,εn) = min{fβn,εn(u) : u ∈ Mβn,εn

x1,βn,εn ,...,xk,βn,εn
} ∀n ∈

N. Moreover assume that, as n → ∞, βn → +∞ and εn → ε such that 0 ≤ ε <
U(3r̄1) maxΩ e1

lim|x|→∞ U(x)−U(3r̄1)
. Then, uk,βn,εn → −e1 in H1

0 (Ω) and

lim sup
n→∞

β
N−2

2
n [fβn,εn(uk,βn,εn)− λ1] ≤ k cap(r̄1)

(
ε+ max

Ω
e1

)2

, (4.4)

where, for short, we denote by cap(r̄1) the capacity of the balls of radius r̄1 in RN .
If we assume in addition that fβn,εn(uk,βn,εn) = maxΩk,βn

ϕk,βn,εn ∀n ∈ N, we can say
that

lim
n→∞

β
N−2

2
n [fβn,εn(uk,βn,εn)− λ1] = k cap(r̄1)

(
ε+ max

Ω
e1

)2

, (4.5)

lim
n→∞

e1(xi,βn,εn) = max
Ω

e1 ∀i ∈ {1, . . . , k}, (4.6)

lim
n→∞

√
βn |xi,βn,εn − xj,εn,βn| =∞ for i 6= j; (4.7)

moreover, if we set Uε(x) = ε− (ε+maxΩ e1)
lim|x|→∞ U(x)

U(x) ∀x ∈ RN , ∀ε > 0, as n→∞ we have

uk,βn,εn

(
x√
βn

+ xi,βn,εn

)
−→Uε(x) ∀x ∈ RN , ∀i ∈ {1, . . . , k}, (4.8)

and the convergence is uniform on the compact subsets of RN .

Proof In the proof, for short, let us write xi,n and un instead of xi,βn,εn and uk,βn,εn .
Taking into account that rβn → 0, standard arguments show that u−n → e1 in H1

0 (Ω).

Notice that sup{Uε(x) : |x| ≥ 3r̄1} < 0 if and only if ε < U(3r̄1) maxΩ e1
lim|x|→∞ U(x)−U(3r̄1)

, as one

can verify by direct computation. Then, in order to prove (4.4), we can consider the
sequence (ũn)n in Mβn,εn

x1,n,...,xk,n
defined as follows. For i = 1, . . . , k,

(ũ+
n )i(x) = Uεn(

√
βn (x− xi,n)] ∀x ∈ B

(
xi,n,

ρεn√
βn

)
, (4.9)

where ρεn is the radius of supp(U+
εn) (which, for large n, is a ball strictly contained in

B(0, 3r̄1) because of the assumptions on ε) and ũ−n is the function in H1
0 (Ω) such that∫

Ω

(ũ−n )2dx = 1, ũ−n (x) = 0 ∀x ∈
k⋃
i=1

B

(
xi,n,

ρεn√
βn

)
, (4.10)

∫
Ω

|Dũ−n |2dx = min

{∫
Ω

|Du|2dx : u ∈ H1
0 (Ω),

∫
Ω

u2dx = 1, u ≥ 0 in Ω,
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u = 0 in
k⋃
i=1

B

(
xi,n,

ρεn√
βn

)}
. (4.11)

It is clear that ũn ∈Mβn,εn
x1,n,...,xk,n

(since f ′βn,εn(ũn)[(ũ+
n )i] = 0 for i = 1, . . . , k, as one can

easily verify taking into account the properties of U). It follows that

fβn,εn(un) = min{fβn,εn(u) : u ∈Mβn,εn
x1,n,...,xk,n

}

≤ fβn,εn(ũn) = fβn,εn(−ũ−n ) +
k∑
i=1

fβn,εn((ũ+
n )i). (4.12)

A direct computation shows that

lim
n→∞

β
N−2

2
n fβn,εn((ũ+

n )i) =

∫
B(0,ρε)\B(0,r̄1)

|DUε|2dx for i = 1, . . . , k. (4.13)

Moreover, ũ−n → e1 in H1
0 (Ω) and fβn,εn(−ũ−n ) =

∫
Ω
|Dũ−n |2dx → λ1. If we set ṽn =

−ũ−n + e1, we obtain

fβn,εn(−ũ−n ) = λ1 +

∫
Ω

|Dṽn|2 − 2λ1

∫
Ω

e1ṽndx (4.14)

and, after rescaling,

β
N−2

2
n [fβn,εn(−ũ−n )− λ1] =

∫
√
βn Ω

|DṼn|2dx−
2λ1

βn

∫
√
βn Ω

e1

(
x√
βn

)
Ṽn(x)dx, (4.15)

where Ṽn(x) = ṽn

(
x√
βn

)
∀x ∈

√
βnΩ.

Clearly, there exist x1, . . . , xk in Ω̄ such that, up to a subsequence, xi,n → xi, as
n → ∞, for i = 1, . . . , k. Moreover, arguing as in [27–29], one can find h (h ≤ k)
pairwise disjoint subsets S1, . . . , Sh of {1, . . . , k} such that ∪hj=1Sj = {1, . . . , k} and√
βn |xi,n − xj,n| → ∞ if i and j belong to different subsets while it remains bounded

if i and j both belong to the same subset (it is clear that in this case xi = xj). In
addition, if Sj (for j = 1, . . . , h) consists of kj elements, these arguments allow us to
say that there exist kj pairwise disjoint balls in RN , B(yj1, ρε), . . . , B(yjkj , ρε), such that

lim
n→∞

∫
√
βnΩ

[
|DṼn(x)|2 − 2

λ1

βn
e1

(
x√
βn

)
Ṽn(x)

]
dx =

h∑
j=1

m2
j cap

 kj⋃
i=1

B(yji , ρε)

 ,

(4.16)
where mj = e1(xi) for i ∈ Sj (it is clear that different choices of i in Sj give the same
constant mj). Thus, from (4.12),(4.13) and (4.16) we obtain

lim sup
n→∞

β
N−2

2
n [fβn,εn(un)−λ1] = k

∫
B(0,ρε)\B(0,r̄1)

|DUε|2dx+
h∑
j=1

m2
j cap

 kj⋃
i=1

B(yji , ρε)

 .

(4.17)
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Since mj ≤ maxΩ e1 for j = 1, . . . , h and

cap

 kj⋃
i=1

B(yji , ρε)

 ≤ kj∑
i=1

capB(yji , ρε) = kj cap(B(0, ρε)), (4.18)

it follows

lim sup
n→∞

β
N−2

2
n [fβn,εn(un)− λ1]

≤ k

∫
B(0,ρε)\B(0,r̄1)

|DUε|2dx+
(

max
Ω

e1

)2

cap(B(0, ρε))
h∑
j=1

kj

= k

∫
RN\B(0,r̄1)

|DUε|2dx = k cap(r̄1)
(
ε+ max

Ω
e1

)2

, (4.19)

that is (4.4). Let us point out that in (4.4) we have the strict inequality if mj < maxΩ e1

or kj > 1 for some j ∈ {1, . . . , h} (because of (4.2)).
Now, let us prove that, if we assume in addition that fβn,εn(un) = maxΩk,βn

ϕk,βn,εn
∀n ∈ N, then we have (4.5). In fact, in this case we can show that

lim inf
n→∞

β
N−2

2
n [fβn,εn(un)− λ1] ≥ k cap(r̄1)

(
ε+ max

Ω
e1

)2

. (4.20)

In order to prove (4.20), let us choose x̄ ∈ Ω such that e1(x̄) = maxΩ e1 and a sequence
(x̄1,n, . . . , x̄k,n)n in Ωk such that (x̄1,n, . . . , x̄k,n) ∈ Ωk,βn ∀n ∈ N,

lim
n→∞

|x̄i,n − x̄| = 0 ∀i ∈ {1, . . . , k} (4.21)

and
lim
n→∞

√
βn |x̄i,n − x̄j,n| =∞ if i 6= j. (4.22)

Taking into account Proposition 3.1, for every n ∈ N there exists ūn ∈Mβn,εn
x̄1,n,...,x̄k,n such

that fβn,εn(ūn) = ϕk,βn,εn(x̄1,n, . . . , x̄k,n). Notice that

fβn,εn(ūn) = fβn,εn(−ū−n ) +
k∑
i=1

fβn,εn((ū+
n )i) (4.23)

where fβn,εn((ū+
n )i) > 0 ∀n ∈ N, ∀i ∈ {1, . . . , k}. Moreover, since lim

n→∞
rβn = 0, we have

ū−n → e1 in H1
0 (Ω) and fβn,εn(−ū−n ) → λ1 as n → ∞. If we set w̄n = −ū−n + e1, we

obtain

fβn,εn(−ū−n ) = λ1 +

∫
Ω

(|Dw̄n|2 − 2λ1e1w̄n)dx. (4.24)
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Hence, taking into account (4.4), it follows that

lim sup
n→∞

β
N−2

2
n

∫
Ω

(|Dw̄n|2 − 2λ1e1w̄n)dx < +∞, (4.25)

namely

lim sup
n→∞

∫
√
βnΩ

[
|DW̄n(x)|2 − 2

βn
λ1e1

(
x√
βn

)
W̄n(x)

]
dx < +∞, (4.26)

where W̄n(x) = w̄n

(
x√
βn

)
.

As a consequence, arguing as in [27–29], one can verify that, for i = 1, . . . , k, there
exists W̄ i ∈ D1,2(RN) such that (up to a subsequence) W̄n(x +

√
βn x̄i,n) → W̄ i(x);

moreover, the convergence is uniform on the compact subsets of RN and

k∑
i=1

∫
RN
|DW̄ i|2dx ≤ lim inf

n→∞

∫
√
βnΩ

[
|DW̄n(x)|2 − 2

βn
λ1e1

(
x

βn

)
W̄n(x)

]
dx. (4.27)

Now, we examine the asymptotic behaviour of the functions (ū+
n )i for i = 1, . . . , k.

Let us set V̄i,n(x) = cn,i(ū
+
n )i

(
x√
βn

+ x̄i,n

)
∀x ∈

√
βn Ω where cn,i = β

−N
2

n ‖(ū+
n )i‖−1

L2(Ω).

Then, V̄i,n ∈ H1
0 (B(0, 3r̄1)),

∫
B(0,3r̄1)

V̄ 2
i,ndx = 1 and

∫
B(0,r̄1)

|DV̄i,n|2dx < 1 ∀n ∈ N,

∀i ∈ {1, . . . , k} (because f ′βn,εn(ūn)[(ū+
n )i] = 0). Therefore, up to a subsequence, V̄i,n

converges to a function V̄i ∈ H1
0 (B(0, 3r̄1)) in L2, weakly in H1

0 and a.e. in B(0, 3r̄1).
Thus, we have

∫
B(0,3r̄1)

V̄ 2
i dx = 1 and

∫
B(0,3r̄1)

|DV̄i|2dx ≤ 1 for i = 1, . . . , k. As a

consequence, we obtain∫
RN
|DW̄ i|2dx ≥ cap(r̄1)

(
max

Ω
e1

)2

∀i ∈ {1, . . . , k} (4.28)

because the balls of radius r̄1 have the smallest capacity among the domains whose
first eigenvalue is less than or equal to 1. Moreover, since only these balls have
this property, in the case ε = lim

n→∞
εn = 0, (4.4) and (4.28) allow us to say that

W̄ i = maxΩ e1

[
1 + U−

lim|x|→∞ U(x)

]
and V̄ i = cU+ ∀i ∈ {1, . . . , k}, where c = ‖U+‖−1

L2 .

Furthermore, the minimality property of ūn implies that ūn

(
x√
βn

+ xi,n

)
→ U0(x) =

maxΩ e1

∣∣∣∣ lim
|x|→∞

U(x)

∣∣∣∣−1

U(x) uniformly on the compact subsets of RN (as one can verify

arguing as in [27–29]). In the case ε > 0, arguing as in the proof of Proposition 3.1,
one can verify that there exist k positive numbers t̄1, . . . , t̄k such that

t̄i

∫
B(0,3r̄1)

|DV̄i|2dx =

∫
B(0,3r̄1)

g1,ε(t̄iV̄i)V̄idx ∀i ∈ {1, . . . , k} (4.29)

14



and

t̄2i

∫
B(0,3r̄1)

|DV̄i|2dx− 2

∫
B(0,3r̄1)

G1,ε(t̄iV̄i)dx ≤ lim inf
n→∞

β
N−2

2
n fβn,εn((ū+

n )i). (4.30)

Thus, taking into account (4.27), we obtain

lim inf
n→∞

β
N−2

2
n [fβn,εn(ūn)− λ1] ≥

k∑
i=1

Fε(W̄
i + t̄iV̄i), (4.31)

where Fε : D1,2(RN)→ R is the functional defined by

Fε(v) =

∫
RN
|Dv|2dx− 2

∫
RN

Γε(v)dx (4.32)

with Γε(t) =
∫ t

0
γε(τ)dτ , where γε(τ) = τ − (ε + maxΩ e1) ∀τ ≥ ε + maxΩ e1 and

γε(τ) = 0 ∀τ ≤ ε+ maxΩ e1.
Now, notice that

Fε(W
i + t̄iV̄i) ≥ Fε

(
Uε + max

Ω
e1

)
> 0 ∀ε > 0, ∀i ∈ {1, . . . , k} (4.33)

because Fε(Uε+maxΩ e1) is the mountain pass level for the functional Fε while Fε(W̄
i+

t̄iV̄i) is the maximum of Fε on the continuous path Π : [0,+∞[→ D1,2(RN) defined by
Π(t) = tW̄ i for t ∈ [0, 1], Π(t) = W̄ i+(t−1)t̄iV̄i ∀t ∈ [1,+∞[, which satisfies Π(0) = 0,
lim
t→+∞

‖Π(t)‖D1,2(RN ) = +∞, Fε(Π(0)) = 0 and lim
t→+∞

Fε(Π(t)) = −∞, as one can verify

by direct computation.
Thus, we finally obtain (4.20) taking into account that fβn,εn(un) = maxΩk,βn

ϕk,βn,εn ≥
ϕk,βn,εn(x̄1,n, . . . , x̄k,n) = fβn,εn(ūn) and that Fε(Uε+maxΩ e1) = (ε+maxΩ e1)2 cap(r̄1).
Let us point out that, indeed, we must have W̄ i + t̄iV̄i = Uε + maxΩ e1 otherwise in
(4.20) we have the strict inequality, in contradiction with (4.4). In fact, the radial
function Uε + maxΩ e1 is the unique mountain pass type critical point for Fε (as one
can show by radial symmetrization arguments) while W̄ i + t̄iV̄i is the maximum point
for Fε on the continuous path Π. Therefore, taking also into account the minimality

properties of ūn, it follows that ūn

(
x√
βn

+ x̄i,n

)
→ Uε(x) ∀x ∈ RN , ∀i ∈ {1, . . . , k} and

the convergence is uniform on the compact subsets of RN .
Thus, we can say that (4.5) is satisfied and that (4.6), (4.7) hold otherwise in (4.4) we
have the strict inequality; as a consequence, arguing as before for ūn, we can say that
also (4.8) must hold otherwise we have the strict inequality in (4.20), in contradiction
with (4.5).
Finally, notice that u+

n → 0 in H1
0 (Ω), which implies un → −e1 in H1

0 (Ω); so the proof
is complete.

q.e.d.
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Proposition 4.2 For all positive integer k, for β > 0 such that Ωk,β 6= ∅ and for all

ε ∈]0, ε̄] with 0 < ε̄ < U(3r̄1) maxΩ e1
lim|x|→∞ U(x)−U(3r̄1)

, let us choose (x1,β,ε, . . . , xk,β,ε) in Ωk,β and

uk,β,ε in Mβ,ε
x1,β,ε,...,xk,β,ε

such that fβ,ε(uk,β,ε) = ϕk,β,ε(x1,β,ε, . . . , xk,β,ε),

lim
β→+∞

inf{e1(xi,β,ε) : i ∈ {1, . . . , k}, ε ∈]0, ε̄]} = max
Ω

e1, (4.34)

lim
β→+∞

√
β inf{|xi,β,ε − xj,β,ε| : ε ∈]0, ε̄]} = +∞ for i 6= j. (4.35)

Then, there exists r̄ ∈]0, 3r̄1[ and β̄k > 0 such that

sup

{
uk,β,ε(x) : x ∈ Ω \

k⋃
i=1

B

(
xi,β,ε,

r̄√
β

)
, ε ∈]0, ε̄], β ≥ β̄k

}
< 0. (4.36)

Proof By the minimality of uk,β,ε, we have only to check near the spheres ∂B(xi,β,ε, rβ).
Arguing as in the proof of Proposition 4.1, one can verify that

lim
β→+∞

sup

{∣∣∣∣uk,β,ε( x√
β

+ xi,β,ε

)
− Uε(x)

∣∣∣∣ : x ∈ K, ε ∈]0, ε̄]

}
= 0 ∀i ∈ {1, . . . , k}

(4.37)
for every compact subset K of RN .
Therefore, in order to complete the proof, it suffices to notice that there exists r̄ ∈]0, 3r̄1[
such that

sup{Uε(x) : |x| ≥ r̄, ε ∈]0, ε̄]} < 0, (4.38)

as one can easily verify taking into account the choice of ε̄.
q.e.d.

Remark 4.3 Let us point out that the strict inequality (4.36) given by Proposition
4.2 is important because the condition u ≤ 0 in Ω \ ∪ki=1B(xi,β,ε, rβ) is an unilateral
constraint that would give rise to a variational inequality if u = 0 somewhere in Ω \
∪ki=1B(xi,β,ε, rβ). On the contrary, since (4.36) holds, u satisfies the equation ∆u+α̃u =
0 in Ω \ ∪ki=1B(xi,β,ε, rβ) for a suitable Lagrange multiplier α̃ > 0, as we show in next
lemma.

Lemma 4.4 Let us consider k, β, ε, ε̄, x1,β,ε, . . . , xk,β,ε and uk,β,ε satisfying the same
assumptions as in Proposition 4.2. Let β̄k be the positive number given by Proposition
4.2. Then, for all β > β̄k and ε ∈]0, ε̄], there exist Lagrange multipliers αk,β,ε ∈ R and
µi,β,ε ∈ RN , for i = 1, . . . , k, such that

1

2
f ′β,ε(uk,β,ε)[ψ] =

∫
Ω

{−αk,β,εu−k,β,ε +
k∑
i=1

(u+
k,β,ε)i[µi,β,ε · (x− xi,β,ε)]}ψdx ∀ψ ∈ H1

0 (Ω).

(4.39)
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Moreover, αk,β,ε =
∫

Ω
|Du−k,β,ε|2dx, lim

β→+∞
αk,β,ε = λ1 ∀k ∈ N, ∀ε ∈]0, ε̄] and

lim
β→+∞

β−
3
2µi,β,ε = 0 ∀i ∈ {1, . . . , k}, ∀ε ∈]0, ε̄]. (4.40)

Proof Unlike the case of the smooth constraints
∫

Ω
(u−)2dx = 1 and

∫
Ω

[u+
i (x)]2x dx =

xi
∫

Ω
(u+

i )2dx, for which the Lagrange multipliers theorem applies, the constraints
f ′β,ε(u)[u+

i ] = 0, for i = 1, . . . , k, do not satisfy suitable regularity conditions. However,
they are “natural constraints”, in the sense that they do not give rise to Lagrange
multipliers (while the multipliers αk,β,ε and µi,β,ε come from the other constraints).

Notice that uk,β,ε is the unique maximum point for fβ,ε on the set {uk,β,ε+
∑k

i=1 ti(u
+
k,β,ε)i

: ti ≥ −1 for i = 1, . . . , k}; moreover, f ′β,ε

(
uk,β,ε +

∑k
i=1 ti(u

+
k,β,ε)i

)
[(u+

k,β,ε)i] is positive

for ti ∈ [−1, 0[ and negative for ti > 0.
In order to prove (4.39), arguing by contradiction, we assume that (4.39) is not satisfied
for any choice of the multipliers αk,β,ε in R and µ1,β,ε, . . . , µk,β,ε in RN . Then, it follows
by standard methods that there exists a continuous map η :]−1,+∞]k → H1

0 (Ω), such
that η(t1, . . . , tk) = uk,β,ε +

∑k
i=1 ti(u

+
k,β,ε)i if (t1, . . . , tk) 6∈ [−1/2, 1/2]k, ‖η(t)−‖L2(Ω) =

1, η(t) ∈ Eβ
x1,β,ε,...,xk,β,ε

∀t ∈ [−1,+∞[k, fβ,ε(η(t)) < fβ,ε(uk,β,ε) ∀t ∈ [−1,+∞[k.

Therefore, applying Brouwer Theorem (see [5] and also [26]), we infer that there exists
t ∈ [−1/2, 1/2]k such that η(t) ∈ Mβ,ε

x1,β,ε,...,xk,β,ε
, which gives a contradiction because

fβ,ε(η (t)) < fβ,ε(uk,β,ε) and

fβ,ε(uk,β,ε) = ϕk,β,ε(x1,β,ε, . . . , xk,β,ε) = min{fβ,ε(u) : u ∈Mβ,ε
x1,β,ε,...,xk,β,ε

}. (4.41)

Thus, we can conclude that there exist the multipliers αk,β,ε in R and µi,β,ε in RN

satisfying (4.39).
Now, if in (4.39) we set ψ = u−k,β,ε, we obtain αk,β,ε =

∫
Ω
|Du−k,β,ε|2dx; then, since

rβ → 0, it follows that lim
β→+∞

αk,β,ε = λ1 ∀k ∈ N, ∀ε ∈]0, ε̄].

In order to prove (4.40), for every i ∈ {1, . . . , k} we set ψ = ψi,β,ε(x) = 1
β

(u+
k,β,ε)i(x)

[µi,β,ε · (x− xi,β,ε)]. Then, after rescaling, we obtain

1

2
β
N−2

2 f ′β,ε(uk,β,ε)[ψi,β,ε]

= β−
3
2

∫
B(0,3r̄1)

(u+
k,β,ε)i

(
x√
β

+ xi,β,ε

)
ψi,β,ε

(
x√
β

+ xi,β,ε

)
(µi,β,ε · x)dx

=

∫
B(0,3r̄1)

[
(u+

k,β,ε)i

(
x√
β

+ xi,β,ε

)]2(
µi,β,ε

β
3
2

· x
)2

dx. (4.42)
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Arguing by contradiction, assume that (up to a subsequence) lim
β→+∞

β−
3
2 |µi,β,ε| > 0. So,

taking into account the properties of the function Uε, from Proposition 4.1 we infer
that

lim
β→+∞

|µi,β,ε|−1β
N+1

2 f ′β,ε(uk,β,ε)[ψi,β,ε] = 0 ∀i ∈ {1, . . . , k}, ∀ε ∈]0, ε̄] (4.43)

while

lim
β→+∞

|µi,β,ε|−1β
3
2

∫
B(0,3r̄1)

[
(u+

k,β,ε)i

(
x√
β

+ xi,β,ε

)]2(
µi,β,ε

β
3
2

· x
)2

dx > 0. (4.44)

Thus, we get a contradiction and (4.40) is proved.
q.e.d.

Lemma 4.5 Let us consider k, βn, εn, (x1,βn,εn , . . . , xk,βn,εn), uk,βn,εn satisfying the same
assumptions as in Proposition 4.1. Moreover, for all n ∈ N, let us consider (x̂1,βn,εn ,

. . . , x̂k,βn,εn) in Ωk,βn, ûk,βn,εn in Mβn,εn
x̂1,βn,εn ,...,x̂k,βn,εn

and assume that fβn,εn(uk,βn,εn) =

ϕk,βn,εn(x1,βn,εn , . . . , xk,βn,εn) = maxΩk,βn
ϕk,βn,εn, fβn,εn(ûk,βn,εn) = ϕk,βn,εn(x̂1,βn,εn , . . . ,

x̂k,βn,εn) ∀n ∈ N,

lim
n→∞

√
βn (x̂i,βn,εn − xi,βn,εn) = 0 ∀i ∈ {1, . . . , k}. (4.45)

Then, we have
lim
n→∞

sup
Ω
|ûk,βn,εn − uk,βn,εn| = 0. (4.46)

If we assume in addition that (x̂1,βn,εn , . . . , x̂k,βn,εn) 6= (x̂1,βn,εn , . . . , xk,βn,εn) ∀n ∈ N,
then supΩ |ûk,βn,εn − uk,βn,εn| > 0 and the rescaled function Zi,n defined by

Zi,n(x) =

(
sup

Ω
|ûk,βn,εn − uk,βn,εn|

)−1

(ûk,βn,εn − uk,βn,εn)

(
x√
βn

+ xi,βn,εn

)
∀x ∈

√
βn (Ω− xi,βn,εn), ∀i ∈ {1, . . . , k}, (4.47)

up to a subsequence, converges as n→∞ to a function Zi which is a weak solution of
the equation

∆Z + a(x)Z = 0 in RN (4.48)

where a(x) = 1 if x ∈ B(0, r̄1) and a(x) = 0 otherwise; moreover, the convergence is
uniform on the compact subsets of RN . Furthermore, there exists i ∈ {1, . . . , k} such
that Zi 6≡ 0.
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Proof For short, in the proof let us write ûn, un, x̂i,n, xi,n instead of ûk,βn,εn , uk,βn,εn ,
x̂i,βn,εn , xi,βn,εn .
From Proposition 4.1, we obtain

lim sup
n→∞

β
N−2

2
n [fβn,εn(ûn)− λ1] ≤ k cap(r̄1)

(
ε+ max

Ω
e1

)2

. (4.49)

Moreover, the assumptions on x̂i,n and xi,n imply

lim
n→∞

√
βn |x̂i,n − x̂j,n| =∞ for i 6= j, i, j ∈ {1, . . . , k}. (4.50)

Hence, arguing as in the proof of Proposition 4.1, one can show that ûn

(
x√
βn

+ x̂i,n

)
→

Uε(x) ∀x ∈ RN , ∀i ∈ {1, . . . , k} and the convergence is uniform on the compact subsets
of RN (in fact, all the conditions we use in Proposition 4.1 to prove the similar property
for un, are also satisfied by ûn).
It follows that

lim
n→∞

sup
B(xi,n,2rβn )

|ûn − un| = 0 for i = 1, . . . , k; (4.51)

moreover, taking into account the minimality properties of ûn and un, standard argu-
ments allow us to say that

lim
n→∞

sup
Ω\∪ki=1B(xi,n,2rβn )

|ûn − un| = 0; (4.52)

thus, (4.46) is proved. It is clear that supΩ |ûn − un| > 0 if xi,n 6= x̂i,n for some
i ∈ {1, . . . , k}, otherwise we should have x̂i,n = xi,n ∀i ∈ {1, . . . , k}. Therefore, if
(x̂1,n, . . . , x̂k,n) 6= (xi,n, . . . , xk,n) ∀n ∈ N, Zi,n is well defined and, up to a subsequence,
it converges as n→∞ to a function Zi ∈ D1,2(RN) such that supRN |Zi| ≤ 1.
For short, in next formulas we write sn instead of supΩ |ûn − un|.
From Lemma 4.4, if we denote by α̂k,βn,εn and µ̂i,βn,εn the Lagrange multipliers corre-
sponding to the function ûn, we obtain

1

2
f ′βn,εn(ûn)[ψ]− 1

2
f ′βn,εn(un)[ψ]
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=

∫
Ω

D(ûn − un) ·Dψ dx−
∫

Ω

[gβn,εn(ûn)− gβn,εn(un)]ψdx

= (αk,βn,εn − α̂k,βn,εn)

∫
Ω

û−nψdx− αk,βn,εn
∫

Ω

(û−n − u−n )ψdx

+
k∑
i=1

∫
Ω

[(û+
n )i − (u+

n )i][µ̂i,βn,εn · (x− x̂i,n)]ψdx

+
k∑
i=1

∫
Ω

(u+
n )i[(µ̂i,βn,εn − µi,βn,εn) · (x− x̂i,n)]ψdx

+
k∑
i=1

∫
Ω

(u+
n )i[µi,βn,εn · (xi,n − x̂i,n)]ψ dx ∀ψ ∈ H1

0 (Ω). (4.53)

Taking into account the minimality properties of ûn and un, since αk,βn,εn =
∫

Ω
|Du−n |2

dx and α̂k,βn,εn =
∫

Ω
|Dû−n |2dx, it follows that

lim sup
n→∞

1

sn
|α̂k,βn,εn − αk,βn,εn| < +∞. (4.54)

Moreover, since x̂i,n =
[∫

Ω
(û+

n )2
i dx
]−1 ∫

Ω
[(û+

n )i(x)]2x dx and xi,n =
[∫

Ω
(u+

n )2
i dx
]−1∫

Ω
[(u+

n )i(x)]2x dx, it follows by direct computation that

lim sup
n→∞

√
βn
sn
|x̂i,n − xi,n| < +∞. (4.55)

From Lemma 4.4 we have also lim
n→∞

β
− 3

2
n µ̂i,βn,εn = 0 and lim

n→∞
β
− 3

2
n µi,βn,εn = 0.

Now, we can prove that

lim
n→∞

β
− 3

2
n s−1

n |µ̂i,βn,εn − µi,βn,εn| = 0. (4.56)

Arguing by contradiction, assume that (up to a subsequence) the limit (4.56) is positive
for some i ∈ {1, . . . , k}. Then, for n large enough, we can consider the function

Z̄i,n = β
3
2
n sn |µ̂i,βn,εn − µi,βn,εn|−1Zi,n (4.57)

which, as Zi,n, remains uniformly bounded as n→∞. Moreover, there exists µ′i ∈ RN ,
|µ′i| = 1, such that, up to a subsequence, |µ̂i,βn,εn − µi,βn,εn|−1(µ̂i,βn,εn − µi,βn,εn) → µ′i
as n → ∞. Hence, after rescaling in (4.53) we infer that (up to a subsequence) Z̄i,n
converges as n→∞ to a bounded function Z̄i ∈ D1,2(RN), such that∫

RN
[DZ̄i ·Dψ − a(x)Z̄iψ]dx =

∫
B(0,3r̄1)

U+
ε (x)ψ(x)(x · µ′i)dx ∀ψ ∈ D1,2(RN). (4.58)
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Now, set Ψ = (DU · µ′i). Since this function satisfies the equation ∆Ψ + a(x)Ψ = 0 in
RN , we obtain ∫

RN
[DZ̄i ·DΨ− a(x)Z̄iΨ]dx = 0, (4.59)

while
∫
B(0,3r̄1)

U+
ε (x)Ψ(x)(x · µ′i)dx < 0.

Thus, we have a contradiction and we can conclude that (4.56) holds.
Now, after rescaling, we can let n → ∞ in (4.53); so, it follows by usual arguments
that (up to a subsequence) Zi,n converges as n → ∞ to a solution Zi of the equation
(4.48) and that the convergence is uniform on the compact subsets of RN .
In order to prove that Zi 6≡ 0 for some i ∈ {1, . . . , k}, we argue by contradiction
and assume that Zi ≡ 0 for i = 1, . . . , k. In this case, Zi,n → 0 as n → ∞, ∀i ∈
{1, . . . , k}, uniformly on the compact subsets of RN ; moreover, if we set zn = 1

sn
(ûn −

un), taking into account the minimality properties of ûn and un, we can say that (up
to a subsequence) (zn)n converges uniformly in Ω to a function z. Now we prove that
z ≡ 0 in Ω, so we have a contradiction because supΩ |zn| = 1 ∀n ∈ N.
In order to prove that z ≡ 0 in Ω, notice that

lim
n→∞

sup

{
|zn(x)| : x ∈

k⋃
i=1

B(xi,n, 2rβn)

}
= 0; (4.60)

moreover, for n large enough so that ∪ki=1B̄(x̂i,n, rβn) ⊂ ∪ki=1B(xi,n, 2rβn), the function
zn satisfies in Ω \ ∪ki=1B̄(xi,n, 2rβn) the equation ∆zn + 1

sn
(α̂k,βn,εnûn − αk,βn,εnun) = 0.

Let us consider the function wn ∈ H1
0 (Ω), such that wn = zn in ∪ki=1B̄(xi,n, 2rβn) and

∆wn = 0 in Ω \ ∪ki=1B̄(xi,n, 2rβn). Since lim
n→∞

sup{|zn(x) : x ∈ ∪ki=1B̄(xi,n, 2rβn)} = 0,

it follows that also lim
n→∞

supΩ |wn| = 0. If we set z̃n = zn − wn, we obtain

∆z̃n + αk,βn,εn z̃n + αk,βn,εnwn +
1

sn
(α̂k,βn,εn − αk,βn,εn)ûn = 0 in Ω \ ∪ki=1B̄(xi,n, 2rβn).

(4.61)
Taking into account that lim

n→∞
αk,βn,εn = lim

n→∞
α̂k,βn,εn = λ1, that lim sup

n→∞

1
sn
|α̂k,βn,εn −

αk,βn,εn| < +∞ and that ûn → −e1 in H1
0 (Ω), it follows that, up to a subsequence,

αk,βn,εnwn + 1
sn

(α̂k,βn,εn − αk,βn,εn)ûn → ce1 for a suitable constant c ∈ R. Now, let us

set z̃n,1 = e1

∫
Ω
z̃ne1dx and z̃n,2 = z̃n − z̃n,1. From (4.61) we obtain(

1− αk,βn,εn
λ2

)
‖z̃n,2‖2

H1
0 (Ω) − cn‖z̃n,2‖H1

0 (Ω) ≤ 0 (4.62)

for a suitable sequence (cn)n in R such that lim
n→∞

cn = 0.

Since lim
n→∞

αk,βn,εn = λ1 < λ2, it follows that lim
n→∞

‖z̃n,2‖H1
0 (Ω) = 0.
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Therefore, we can say that (up to a subsequence) (z̃n)n and (zn)n converge to the
function z = c̄e1 where c̄ = lim

n→∞

∫
Ω
zne1dx.

On the other hand, lim
n→∞

zn(xi,n) = 0 ∀i ∈ {1, . . . , k}. Therefore, we have

0 = lim
n→∞

zn(xi,n) = lim
n→∞

z(xi,n) = c̄ lim
n→∞

e1(xi,n) = c̄ max
Ω

e1, (4.63)

which implies c̄ = 0 because maxΩ e1 6= 0. It follows that z ≡ 0 in Ω, which gives a
contradiction.
Thus, we can conclude that Zi 6≡ 0 for some i ∈ {1, . . . , k} and the proof is complete.

q.e.d.

Lemma 4.6 Let Z1, . . . , Zk be the functions obtained in Lemma 4.5. Then, for every
i ∈ {1, . . . , k}, there exists τi ∈ RN such that Zi(x) = (DU(x) · τi) ∀x ∈ RN . Moreover,
there exists i ∈ {1, . . . , k} such that τi 6= 0.

Proof Notice that the function U is nondegenerate in the sense that, if Z ∈ D1,2(RN)
is a weak solution of the equation (4.48), then there exists τ ∈ RN such that Z(x) =
(DU(x)·τ) ∀x ∈ RN (for the proof, see analogous results proved in [27–29]). Therefore,
since the function Zi satisfies the equation (4.48) for i = 1, . . . , k as proved in Lemma
4.5, it follows that for every i ∈ {1, . . . , k} there exists τi ∈ RN , having the required
property. Moreover, τi 6= 0 for some i ∈ {1, . . . , k} because Zi 6≡ 0 for some i ∈
{1, . . . , k}, as we proved in Lemma 4.5.

q.e.d.

Proposition 4.7 For all positive integer k, for β > 0 large enough so that Ωk,β 6= ∅
and for all ε > 0, let us consider (x1,β,ε, . . . , xk,β,ε) in Ωk,β and uk,β,ε in Mβ,ε

x1,β,ε,...,xk,β,ε

such that
fβ,ε(uk,β,ε) = ϕk,β,ε(x1,β,ε, . . . , xk,β,ε) = max

Ωk,β
ϕk,β,ε. (4.64)

Then, there exists β̃k > 0 such that, for all β > β̃k and ε ∈
]
0, 1

2
U(3r̄1) maxΩ e1

lim|x|→∞ U(x)−U(3r̄1)

[
,

uk,β,ε is a constrained critical point for the functional fβ,ε constrained on the set S =
{u ∈ H1

0 (Ω) : ‖u−‖L2(Ω) = 1}.

Proof Clearly, it suffices to prove that the Lagrange multipliers µi,β,ε given by Lemma
4.4 vanish for β large enough, namely that there exists β̃k > 0 such that µi,β,ε = 0

∀β > β̃k, ∀i ∈ {1, . . . , k}, ∀ε ∈
]
0, 1

2
U(3r̄1) maxΩ e1

lim|x|→∞ U(x)−U(3r̄1)

[
.
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Arguing by contradiction, assume that there exist a sequence (βn)n of positive num-

bers and a sequence (εn)n in
]
0, 1

2
U(3r̄1) maxΩ e1

lim|x|→∞ U(x)−U(3r̄1)

[
such that lim

n→∞
βn = +∞ and

(µ1,βn,εn , . . . , µk,βn,εn) 6= 0 ∀n ∈ N. Whitout any loss of generality, we can assume that

|µ1,βn,εn| = max{|µi,βn,εn| : i = 1, . . . , k} ∀n ∈ N. (4.65)

Up to a subsequence, εn → ε̃ and
µ1,βn,εn

|µ1,βn,εn |
→ µ̃, as n → ∞, for suitable ε̃ ∈[

0, 1
2

U(3r̄1) maxΩ e1
lim|x|→∞ U(x)−U(3r̄1)

]
and µ̃ ∈ RN , such that |µ̃| = 1.

Now, let us choose (x̂1,βn,εn , . . . , x̂k,βn,εn) in Ωk,βn and ûk,βn,εn in Mβn,εn
x̂1,βn,εn ,...,x̂k,βn,εn

such

that fβn,εn(ûk,βn,εn) = ϕk,βn,εn(x̂1,βn,εn , . . . , x̂k,βn,εn) and x̂i,βn,εn = xi,βn,εn for i = 2, . . . , k
while x̂1,βn,εn = x1,βn,εn + δn√

βn
µ̃ with δn > 0 ∀n ∈ N, lim

n→∞
δn = 0 and, in addition,

lim
n→∞

δnβ
N+3

2
n |µ1,βn,εn|−1 = 0. (4.66)

Notice that this choice of (x̂1,βn,εn , . . . , x̂k,βn,εn) in Ωk,βn is indeed possible because
lim
n→∞

√
βn |xi,βn,εn − x1,βn,εn| =∞ for i 6= 1, as proved in Proposition 4.1. Moreover, we

have supΩ |ûk,βn,εn − uk,βn,εn| > 0 ∀n ∈ N because ûk,βn,εn 6= uk,βn,εn , since δn > 0.
For short, let us write sn instead of supΩ |ûk,βn,εn − uk,βn,εn|.
One can verify by direct computation that

fβn,εn(ûk,βn,εn) = fβn,εn(uk,βn,εn) + f ′βn,εn(uk,βn,εn)[ûk,βn,εn − uk,βn,εn ] +Rn (4.67)

where

Rn ≥ −βn
∫

Ω

(ûk,βn,εn − uk,βn,εn)2dx ≥ −βn |Ω|s2
n. (4.68)

From Lemmas 4.5 and 4.6, we infer that there exist τ1, . . . , τk in RN such that (up to a

subsequence) the rescaled function 1
sn

(ûk,βn,εn − uk,βn,εn)
(

x√
βn

+ xi,βn,εn

)
converges as

n→∞ to (DU(x) · τi), for i = 1, . . . , k, uniformly on the compact subsets of RN .
We say that τ1 6= 0 and τi = 0 for i 6= 1. In fact, for i = 1, . . . , k, we have∫
B(0,3r̄1)

[
û+
k,βn,εn

(
x√
βn

+ xi,βn,εn

)]2

x dx =

∫
B(0,3r̄1)

[
u+
k,βn,εn

(
x√
βn

+ xi,βn,εn

)]2

x dx

+2

∫
B(0,3r̄1)

u+
k,βn,εn

(
x√
βn

+ xi,βn,εn

)
(û+

k,βn,εn
− u+

k,βn,εn
)

(
x√
βn

+ xi,βn,εn

)
x dx+ o(sn).

(4.69)
Taking into account the choice of (x̂1,βn,εn , . . . , x̂k,βn,εn), if i 6= 1, for n large enough we
obtain ∫

B(0,3r̄1)

[
û+
k,βn,εn

(
x√
βn

+ xi,βn,εn

)]2

x dx
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=

∫
B(0,3r̄1)

[
u+
k,βn,εn

(
x√
βn

+ xi,βn,εn

)]2

x dx = 0. (4.70)

Therefore, as n→∞, we get∫
B(0,3r̄1)

U+
ε̃ (x)[DUε̃(x) · τi]x dx = 0 for i = 2, . . . , k. (4.71)

It follows that∫
B(0,3r̄1)

U+
ε̃ (x)[DUε̃(x) ·τi]x dx =

1

2

∫
B(0,ρε̃)

[DU2
ε̃ (x) ·τi]x dx = −τi

2

∫
B(0,ρε̃)

U2
ε̃ (x)dx = 0,

(4.72)
where ρε̃ denotes the radius of suppU+

ε̃ (which is a ball). Therefore, we have τi = 0 for
i = 2, . . . , k.
On the contrary, if i = 1, for n large enough we have∫

B(0,3r̄1)

[
u+
k,βn,εn

(
x√
βn

+ xi,βn,εn

)]2

x dx = 0 (4.73)

while ∫
B(0,3r̄1)

[
û+
k,βn,εn

(
x√
βn

+ xi,βn,εn

)]2

x dx

= δnµ̃

∫
B(0,3r̄1)

[
û+
k,βn,εn

(
x√
βn

+ xi,βn,εn

)]2

dx. (4.74)

So, as n→∞, we obtain

lim
n→∞

δn
sn
µ̃

∫
B(0,ρε̃)

U2
ε̃ dx = 2

∫
B(0,ρε̃)

Uε̃(x)[DUε̃(x) · τ1]x dx = −τ1

∫
B(0,ρε̃)

U2
ε̃ dx (4.75)

where, taking into account Lemma 4.6, τ1 6= 0 because τi = 0 for i 6= 1. As a
consequence, lim

n→∞
δn
sn

= |τ1| > 0 and τ1 = −|τ1|µ̃.

From (4.67), (4.68) and Lemma 4.4, we obtain

fβn,εn(ûk,βn,εn)− fβn,εn(uk,βn,εn)

≥ 2

∫
Ω

{
−αk,βn,εnu−k,βn,εn +

k∑
i=1

(u+
k,βn,εn

)i[µi,βn,εn · (x− xi,βn,εn)]

}
(ûk,βn,εn −uk,βn,εn)dx

− βn |Ω|s2
n. (4.76)

Notice that, since
∫

Ω
(û−k,βn,εn)2dx = 1 and

∫
Ω

(u−k,βn,εn)2dx = 1, we have

2

∫
Ω

u−k,βn,εn(û−k,βn,εn − u
−
k,βn,εn

)dx = −
∫

Ω

(û−k,βn,εn − u
−
k,βn,εn

)2dx ∀n ∈ N; (4.77)
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moreover, û+
k,βn,εn

≤ [uk,βn,εn + sn]+ and supΩ(u−k,βn,εn [uk,βn,εn + sn]+) ≤ s2
n; thus, we

get ∫
Ω

u−k,βn,εn(ûk,βn,εn − uk,βn,εn)dx

≤
∫

Ω

u−k,βn,εn(û+
k,βn,εn

− u+
k,βn,εn

)dx−
∫

Ω

u−k,βn,εn(û−k,βn,εn − u
−
k,βn,εn

)dx

=

∫
Ω

u−k,βn,εnû
+
k,βn,εn

dx+
1

2

∫
Ω

(û−k,βn,εn − u
−
k,βn,εn

)2dx

≤ 3

2
|Ω| s2

n ∀n ∈ N. (4.78)

Therefore, after rescaling, it follows

β
N+1

2
n

|µ1,βn,εn|sn
[fβn,εn(ûk,βn,εn)− fβn,εn(uk,βn,εn)]

≥
k∑
i=1

∫
B(0,3r̄1)

u+
k,βn,εn

(
x√
βn

+ xi,βn,εn

)
1

sn
(ûk,βn,εn − uk,βn,εn)

(
x√
βn

+ xi,βn,εn

)(
µi,βn,εn
|µ1,βn,εn|

· x
)
dx− 2snβ

N+3
2

n

|µ1,βn,εn|
|Ω| (4.79)

for n large enough. Then, as n→∞, we obtain

lim inf
n→∞

β
N+1

2
n

sn|µ1,βn,εn|
[fβn,εn(ûk,βn,εn)− fβn,εn(uk,βn,εn)]

≥
∫
B(0,3r̄1)

U+
ε̃ (x)[DU(x) · τ1](µ̃ · x) = −|τ1|

∫
B(0,3r̄1)

U+
ε (x)[DU(x) · µ̃](µ̃ · x)dx > 0,

(4.80)

which is a contradiction because

fβn,εn(ûk,βn,εn) = ϕk,βn,εn(x̂1,βn,εn , . . . , x̂k,βn,εn) ≤ max
Ωk,βn

ϕk,βn,εn = fβn,εn(uk,βn,εn). (4.81)

Thus, the proof is complete.
q.e.d.
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5 Proof of the main results and final remarks

In this section we study the behaviour as ε→ 0 of the function uk,β,ε obtained by mini-
max methods in Sections 3 and 4. In particular, our aim is to show that for all β > β̃k
(see Proposition 4.7) αk,β,ε → αk,β, uk,β,ε → uk,β as ε → 0 (up to a subsequence)
for suitable αk,β ∈ R, uk,β ∈ H1

0 (Ω) and that uk,β is an eigenfunction for the Fuč́ık
spectrum, corresponding to the pair (αk,β, β), namely uk,β solves the problem

∆u− αk,βu− + βu+ = 0 in Ω, u ∈ H1
0 (Ω), u 6≡ 0 in Ω. (5.1)

Lemma 5.1 For all β > 0 and ε > 0, let us consider a point (x1,β,ε, . . . , xk,β,ε) in Ωk,β

and a function uk,β,ε in Mβ,ε
x1,β,ε,...,xk,β,ε

such that fβ,ε(uk,β,ε) = ϕk,β,ε(x1,β,ε, . . . , xk,β,ε).

Moreover, assume that (up to a subsequence) (x1,β,ε, . . . , xk,β,ε) converges as ε → 0 to
a point (x1,β, . . . , xk,β).

Then, up to a subsequence, −u−k,β,ε +
∑k

i=1(u+
k,β,ε)i‖(u

+
k,β,ε)i‖

−1
L2(Ω) converges in H1

0 (Ω),

as ε→ 0, to a function ūk ∈ Eβ
x1,β ,...,xk,β

; moreover,∫
Ω

|D(ū+
k,β)i|2dx = β ∀i ∈ {1, . . . , k} (5.2)

and∫
Ω

|Dū−k,β|
2dx = min

{∫
Ω

|Du−|2dx : u ∈ Eβ
x1,β ,...,xk,β

, ‖u−‖L2(Ω) = 1,∫
Ω

|Du+
i |2dx = β,

∫
Ω

(u+
i )2dx = 1 for i = 1, . . . , k

}
. (5.3)

Proof Notice that, since uk,β,ε ∈Mβ,ε
x1,β,ε,...,xk,β,ε

, we have∫
Ω

|D(u+
k,β,ε)i|

2dx =

∫
Ω

gβ,ε(uk,β,ε)(u
+
k,β,ε)idx < β

∫
Ω

(u+
k,β,ε)

2
i dx

∀ε > 0, ∀i ∈ {1, . . . , k}. (5.4)

Let us set (ū+
k,β,ε)i = ‖(u+

k,β,ε)i‖
−1
L2(Ω)(u

+
k,β,ε)i. Then, we have∫

Ω

|D(ū+
k,β,ε)i|

2dx < β ∀ε > 0, ∀i ∈ {1, . . . , k}. (5.5)

It follows that, up to a subsequence, (ū+
k,β,ε)i converges as ε → 0 to a function (ū+

k,β)i
in L2(Ω), weakly in H1

0 (Ω) and a.e. in Ω. Moreover, since

lim sup
ε→0

‖u−k,β,ε‖H1
0 (Ω) < +∞, (5.6)
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also u−k,β,ε converges as ε→ 0 to a function u−k,β in L2(Ω), weakly in H1
0 (Ω) and a.e. in

Ω. As a consequence, the function ūk,β = −u−k,β +
∑k

i=1(ū+
k,β)i belongs to Eβ

x1,β ,...,xk,β

and ‖ū−k,β‖L2(Ω) = 1. Notice that, indeed, (ū+
k,β,ε)i → (ū+

k,β)i ∀i ∈ {1, . . . , k} and

u−k,β,ε → u−k,β strongly in H1
0 (Ω) as ε→ 0. In fact, we have∫

Ω

|D(ū+
k,β)i|2dx = β ∀i ∈ {1, . . . , k} (5.7)

and

lim
ε→0

∫
Ω

|Du−k,β,ε|
2dx =

∫
Ω

|Du−k,β|
2dx. (5.8)

For the proof, we argue by contradiction and assume that∫
Ω

|Du−k,β|
2dx < lim inf

ε→0

∫
Ω

|Du−k,β,ε|
2dx (5.9)

or ∫
Ω

|D(ū+
k,β)i|2dx < β for some i ∈ {1, . . . , k}. (5.10)

In this case, by slight modifications of the supports of u−k,β and (ū+
k,β)i, one can construct

a function ũk,β ∈ Eβ
x1,β ,...,xk,β

such that ‖ũ−k,β‖L2(Ω) = 1, ‖(ũ+
k,β)i‖L2(Ω) = 1,∫

Ω

|Dũ−k,β|
2dx < lim inf

ε→0

∫
Ω

|Du−k,β,ε|
2dx (5.11)

and ∫
Ω

|D(ũ+
k,β)i|2dx < β for some i ∈ {1, . . . , k}. (5.12)

Without any loss of generality, we can assume that (5.12) is satisfied for i = 1.
Then, for all ε > 0, let us consider the function ũk,β,ε ∈ Mβ,ε

x1,β,ε,...,xk,β,ε
such that

(ũ+
k,β,ε)i = (u+

k,β,ε)i for i = 2, . . . , k, (ũ+
k,β,ε)1(x) = tε(ũ

+
k,β)1(x − x1,β,ε + x1,β) ∀x ∈

Ω, where tε is the positive number such that f ′β,ε(tε(ũ
+
k,β)1)[(ũ+

k,β)1] = 0 and ũ−k,β,ε is

the nonnegative function in H1
0 (Ω) such that ũ−k,β,ε(x) = 0 ∀x ∈ ∪ki=1 supp(ũ+

k,β,ε)i,

‖ũ−k,β,ε‖L2(Ω) = 1 and∫
Ω

|Dũ−k,β,ε|
2dx = min

{∫
Ω

|Du|2dx : u ∈ H1
0 (Ω), u ≥ 0 in Ω,

u(x) = 0 ∀x ∈
k⋃
i=1

supp(ũ+
k,β,ε)i, ‖u‖L2(Ω) = 1

}
. (5.13)
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Then, we have

fβ,ε(uk,β,ε)− fβ,ε(ũk,β,ε) = fβ,ε((u
+
k,β,ε)1)− fβ,ε((ũ+

k,β,ε)1) + fβ,ε(u
−
k,β,ε)− fβ,ε(ũ

−
k,β,ε),

(5.14)
where fβ,ε((u

+
k,β,ε)1) ≥ 0 ∀ε > 0, lim

ε→0
fβ,ε((ũ

+
k,β,ε)1) = 0 and lim

ε→0
fβ,ε(u

−
k,β,ε) >

∫
Ω
|Dũ−k,β|2

dx ≥ lim
ε→0

fβ,ε(ũ
−
k,β,ε).

It follows that fβ,ε(uk,β,ε) > fβ,ε(ũk,β,ε) for ε > 0 small enough, which is a contradiction
because ũk,β,ε ∈ Mβ,ε

x1,β,ε,...,xk,β,ε
and fβ,ε(uk,β,ε) = min{fβ,ε(u) : u ∈ Mβ,ε

x1,β,ε,...,xk,β,ε
}.

Thus, we can conclude that u−k,β,ε → u−k,β in H1
0 (Ω) as ε→ 0 and

∫
Ω
|D(ū+

k,β)i|2dx = β
∀i ∈ {1, . . . , k}.
In a similar way we can prove (5.3). Arguing again by contradiction, assume that
there exists ū ∈ Eβ

x1,β ,...,xk,β
such that ‖ū−‖L2(Ω) = 1,

∫
Ω
|Dū+

i |2dx = β, ‖ū+
i ‖L2(Ω) = 1

∀i ∈ {1, . . . , k} and
∫

Ω
|Dū−|2dx <

∫
Ω
|Du−k,β|2dx.

In this case, by slight modifications of the supports of ū− and ū+
i for i = 1, . . . , k, one

can find ǔk,β ∈ Eβ
x1,β ,...,xk,β

such that
∫

Ω
|D(ǔ+

k,β)i|2dx < β
∫

Ω
(ǔ+

k,β)2
i dx ∀i ∈ {1, . . . , k},

‖ǔ−k,β‖L2(Ω) = 1 and
∫

Ω
|Dǔ−k,β|2dx <

∫
Ω
|Du−k,β|2dx.

It follows that there exist k positive numbers ť1,ε, . . . , ťk,ε such that f ′β,ε(ťi,ε(ǔ
+
k,β)i)

[(ǔ+
k,β)i] = 0 ∀i ∈ {1, . . . , k} and we can consider the function ǔk,β,ε in Mβ,ε

x1,β,ε,...,xk,β,ε

defined in the following way: for i = 1, . . . , k, (ǔ+
k,β,ε)i(x) = (ǔ+

k,β)i(x − xi,β,ε + xi,β)

∀x ∈ Ω and ǔ−k,β,ε is the nonnegative function in H1
0 (Ω) such that ǔ−k,β,ε(x) = 0 ∀x ∈

∪ki=1 supp(u+
k,β,ε)i, ‖ǔ

−
k,β,ε‖L2(Ω) = 1 and∫

Ω

|Dǔ−k,β,ε|
2dx = min

{∫
Ω

|Du|2dx : u ∈ H1
0 (Ω), u ≥ 0 in Ω,

u(x) = 0 ∀x ∈
k⋃
i=1

supp(ǔ+
k,β,ε)i, ‖u‖L2(Ω) = 1

}
. (5.15)

Then, by direct computation, we obtain

fβ,ε(uk,β,ε)− fβ,ε(ǔk,β,ε)

= fβ,ε(u
−
k,β,ε)− fβ,ε(ǔ

−
k,β,ε) +

k∑
i=1

fβ,ε((u
+
k,β,ε)i)−

k∑
i=1

fβ,ε((ǔ
+
k,β,ε)i), (5.16)

where fβ,ε((u
+
k,β,ε)i) ≥ 0 ∀ε > 0, ∀i ∈ {1, . . . , k}, lim

ε→0
fβ,ε((ǔ

+
k,β,ε)i) = 0 ∀i ∈ {1, . . . , k}

and

lim
ε→0

fβ,ε(u
−
k,β,ε) =

∫
Ω

|Du−k,β|
2dx >

∫
Ω

|Dǔ−k,β|
2dx ≥ lim

ε→0
fβ,ε(ǔ

−
k,β,ε). (5.17)
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It follows that fβ,ε(uk,β,ε) > fβ,ε(ǔk,β,ε) for ε > 0 small enough; so we have again
a contradiction because ǔk,β,ε ∈ Mβ,ε

x1,β,ε,...,xk,β,ε
and fβ,ε(uk,β,ε) = min{fβ,ε(u) : u ∈

Mβ,ε
x1,β,ε,...,xk,β,ε

}.
q.e.d.

Now, notice that we can consider the function ϕk,β : Ωk,β → R such that, for all
(x1, . . . , xk) ∈ Ωk,β

ϕk,β(x1, . . . , xk) = min

{∫
Ω

|Du−|2dx : u ∈ Eβ
x1,...,xk

, ‖u−‖L2(Ω) = 1,∫
Ω

|Du+
i |2dx = β, ‖u+

i ‖L2(Ω) = 1 for i = 1, . . . , k

}
. (5.18)

In fact, this minimum exists as we can infer from Proposition 3.1 and Lemma 5.1
(where we choose (x1,β,ε, . . . , xk,β,ε) = (x1, . . . , xk) ∀β > 0, ∀ε > 0).

Lemma 5.2 If in Lemma 5.1 we assume in addition that ϕk,β,ε(x1,β,ε, . . . , xk,β,ε) =
maxΩk,β ϕk,β,ε ∀ε > 0, then ϕk,β(x1,β, . . . , xk,β) = maxΩk,β ϕk,β.

Proof Arguing by contradiction, assume that there exists (y1,β, . . . , yk,β) ∈ Ωk,β such
that ϕk,β(x1,β, . . . , xk,β) < ϕk,β(y1,β, . . . , yk,β).
Taking into account Lemma 5.1, we have

∫
Ω
|Dū−k,β|2dx = ϕk,β(x1,β, . . . , xk,β). Then,

slight modifications of the supports of ū−k,β and (ū+
k,β)i, for i = 1, . . . , k, allow us to

construct a function vk,β ∈ Eβ
x1,β ,...,xk,β

such that ‖v−k,β‖L2(Ω) = 1,∫
Ω

|Dv−k,β|
2dx < ϕk,β(y1,β, . . . , yk,β) (5.19)

and ∫
Ω

|D(v+
k,β)i|2dx < β

∫
Ω

(v+
k,β)2

i dx ∀i ∈ {1, . . . , k}, (5.20)

which implies the existence of k positive numbers t1,ε, . . . , tk,ε such that f ′β,ε(ti,ε(v
+
k,β)i)

[(v+
k,β)i] = 0 ∀i ∈ {1, . . . , k}. Let us consider the function vk,β,ε in Mβ,ε

x1,β,ε,...,xk,β,ε
such

that (v+
k,β,ε)i(x) = (v+

k,β)i(x − xi,β,ε + xi,β) ∀x ∈ Ω, ∀i ∈ {1, . . . , k}, ∀ε > 0 and v−k,β,ε
is the nonnegative function in H1

0 (Ω) such that v−k,β,ε(x) = 0 ∀x ∈ ∪ki=1 supp(v+
k,β,ε)i,

‖v−k,β,ε‖L2(Ω) = 1 and∫
Ω

|Dv−k,β,ε|
2dx = min

{∫
Ω

|Dv|2dx : v ∈ H1
0 (Ω), v ≥ 0 in Ω,

v(x) = 0 ∀x ∈
k⋃
i=1

supp(v+
k,β,ε)i, ‖v‖L2(Ω) = 1

}
. (5.21)
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Moreover, let us consider a function wk,β,ε in Mβ,ε
y1,β ,...,yk,β

such that fβ,ε(wk,β,ε) =

ϕk,β,ε(y1,β, . . . , yk,β) ∀ε > 0.
Then, since fβ,ε(uk,β,ε) = ϕk,β,ε(x1,β,ε, . . . , xk,β,ε) and vk,β,ε ∈Mβ,ε

x1,β,ε,...,xk,β,ε
, we obtain

fβ,ε(uk,β,ε) ≤ fβ,ε(vk,β,ε) = fβ,ε(v
−
k,β,ε) +

k∑
i=1

fβ,ε((v
+
k,β,ε)i) ∀ε > 0 (5.22)

where lim
ε→0

fβ,ε((v
+
k,β,ε)i = 0 ∀i ∈ {1, . . . , k} and lim

ε→0
fβ,ε(v

−
k,β,ε) =

∫
Ω
|Dv−k,β|2dx <

ϕk,β(y1,β, . . . , yk,β).
Moreover, we have

fβ,ε(wk,β,ε) = fβ,ε(w
−
k,β,ε) +

k∑
i=1

fβ,ε((w
+
k,β,ε)i) (5.23)

where fβ,ε((w
+
k,β,ε)i) ≥ 0 ∀ε > 0 and, by Lemma 5.1, lim

ε→0
fβ,ε(w

−
k,β,ε) = ϕk,β(y1,β, . . . ,

yk,β). It follows that, for ε > 0 small enough, ϕk,β,ε(x1,β,ε, . . . , xk,β,ε) < ϕk,β,ε(y1,β, . . . ,
yk,β) which is a contradiction because ϕk,β,ε(x1,β,ε, . . . , xk,β,ε) = maxΩk,β ϕk,β,ε.

q.e.d.

Proposition 5.3 Let us consider (x1,β,ε, . . . , xk,β,ε) in Ωk,β and uk,β,ε in Mβ,ε
x1,β,ε,...,xk,β,ε

,
satisfying the same assumptions as in Proposition 4.7.
Then, up to a subsequence, (x1,β,ε, . . . , xk,β,ε) → (x1,β, . . . , xk,β) as ε → 0 and uk,β,ε
converges in H1

0 (Ω) to a function uk,β ∈ Eβ
x1,β ,...,xk,β

, for all β > β̃k (where β̃k is the

number obtained in Proposition 4.7). Moreover, for all β > β̃k, uk,β solves the equation

∆u− αk,βu− + βu+ = 0 in Ω, (5.24)

where αk,β =
∫

Ω
|Du−k,β|2dx.

Proof As we proved in Proposition 4.7, for all β > β̃k and ε ∈
]
0, 1

2
U(3r̄1) maxΩ e1

lim|x|→∞ U(x)−U(3r̄1)

[
,

uk,β,ε is a weak solution of the equation

∆u− αk,β,εu− + gβ,ε(u) = 0 in Ω, (5.25)

where αk,β,ε =
∫

Ω
|Du−k,β,ε|2dx.

Moreover, by Lemma 5.1, −u−k,β,ε +
∑k

i=1(u+
k,β,ε)i‖(u

+
k,β,ε)i‖

−1
L2(Ω) converges in H1

0 (Ω), as

ε→ 0, to a function ūk,β ∈ Eβ
x1,β ,...,xk,β

. Let us prove that

lim inf
ε→0

‖(u+
k,β,ε)i‖L2(Ω) > 0 ∀β > β̃k, ∀i ∈ {1, . . . , k}. (5.26)
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Arguing by contradiction, assume that, up to a subsequence, lim
ε→0
‖(u+

k,β,ε)i‖L2(Ω) = 0

for suitable β > β̃k and i ∈ {1, . . . , k}.
In this case, we have (u+

k,β,ε)i → 0 in H1
0 (Ω) as ε→ 0 (because f ′β,ε(uk,β,ε)[(u

+
k,β,ε)i] = 0

∀ε > 0). Therefore, if we let ε→ 0, from (5.25) we obtain∫
B(xi,β ,rβ)

[Dū−k,β ·Dψ − ᾱk,βū
−
k,βψ]dx = 0 ∀ψ ∈ H1

0 (B(xi,β, rβ)) (5.27)

where ᾱk,β =
∫

Ω
|Dū−k,β|2dx. Thus, we have a contradiction because Dūk,β 6≡ 0 on

B(xi,β, rβ) ∩ ∂(supp ū−k,β).
Now, let us prove that

lim sup
ε→0

‖(u+
k,β,ε)i‖L2(Ω) < +∞ ∀β ≥ β̃k, ∀i ∈ {1, . . . , k}. (5.28)

Arguing again by contradiction, assume that, up to a subsequence, lim
ε→0
‖(u+

k,β,ε)i‖L2(Ω)

= +∞ for suitable β > β̃k and i ∈ {1, . . . , k}. Then, as ε→ 0, from (5.25) we obtain∫
Ω

[D(ū+
k,β)i ·Dψ − β(ū+

k,β)iψ]dx = 0 ∀ψ ∈ H1
0 (B(xi,β, rβ)). (5.29)

Thus, we still have a contradiction because Dūk,β 6≡ 0 on ∂(supp(ū+
k,β)i).

Therefore, we can say that for all β > β̃k (up to a subsequence) uk,β,ε converges in
H1

0 (Ω), as ε→ 0, to a function uk,β ∈ Eβ
x1,β ,...,xk,β

. Moreover, if we let ε→ 0 in (5.25),

we infer that, for all β > β̃k, uk,β is a weak solution of the equation

∆u− αk,βu− + βu+ = 0 in Ω (5.30)

with αk,β =
∫

Ω
|Du−k,β|2dx. So the proof is complete.

q.e.d.

Proposition 5.4 For all β > β̃k, let uk,β ∈ Eβ
x1,β ,...,xk,β

be the function obtained in

Proposition 5.3 and set αk,β =
∫

Ω
|Du−k,β|2dx.

Then, for every positive integer k, uk,β → −e1 in H1
0 (Ω) as β → +∞,

lim
β→+∞

β
N−2

2 (αk,β − λ1) = k cap(r̄1)
(

max
Ω

e1

)2

, (5.31)

lim
β→+∞

e1(xi,β) = max
Ω

e1 ∀i ∈ {1, . . . , k} (5.32)

and
lim

β→+∞

√
β |xi,β − xj,β| =∞ for i 6= j. (5.33)
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Moreover, uk,β

(
x√
β

+ xi,β

)
→ −

[
lim
|x|→∞

U(x)

]−1

maxΩ e1 U(x) ∀x ∈ RN , ∀i ∈ {1,

. . . , k} and the convergence is uniform on the compact subsets of RN .

For the proof, it suffices to argue as in the proof of Proposition 4.1, taking into
account Lemmas 5.1 and 5.2.

As a direct consequence of Proposition 5.4 (see (5.31)), we can state the following
corollary.

Corollary 5.5 For all positive integer k and for β > β̃k, let αk,β be as in Proposition
5.4. Then, there exists a sequence (bk)k such that

bk ≥ β̃k, bk ≤ bk+1 and αk,β < αk+1,β ∀k ∈ N, ∀β > bk+1. (5.34)

Proposition 5.6 Let bk and αk,β be as in Corollary 5.5 for every positive integer k
and for β > bk. Then, αk,β depends continuously on β in ]bk,+∞[ ∀k ∈ N.

Proof Taking into account Lemma 5.1, we have αk,β =
∫

Ω
|Du−k,β|2dx = ϕk,β(x1,β, . . . ,

xk,β) ∀k ∈ N ∀β > bk.
Let us prove that lim

β→β̄
αk,β = αk,β̄ ∀β̄ ∈]bk,+∞[. First notice that, by lower semicon-

tinuity arguments with respect to the weak H1
0 (Ω) convergence, we have lim inf

β→β̄
αk,β

≥ αk,β̄. Then, arguing by contradiction, assume that there exists a sequence (β′n)n such
that lim

n→∞
β′n = β̄ and lim

n→∞
αk,β′n > αk,β̄, namely

lim
n→∞

∫
Ω

|Du−k,β′n|
2dx >

∫
Ω

|Du−
k,β̄
|2dx. (5.35)

Let us set ūn = −u−k,β′n+
∑k

i=1(u+
k,β′n

)i‖(u+
k,β′n

)i‖−1
L2(Ω). Since

∫
Ω
|D(ū+

n )i|2dx = β′n ∀n ∈ N,

ūn converges to a function ū ∈ Eβ̄
x1,β̄ ,...,xk,β̄

in L2(Ω), weakly in H1
0 (Ω) and a.e. in Ω. It

follows that
∫

Ω
|Dū+

i |2dx ≤ β̄ and ‖ū+
i ‖L2(Ω) = 1 ∀i ∈ {1, . . . , k}. Therefore, if (5.35)

holds, one can find a function ũ ∈ Eβ̄
x1,β̄ ,...,xk,β̄

such that
∫

Ω
|Dũ+

i |2dx = β̄, ‖ũ+
i ‖L2(Ω) = 1

∀i ∈ {1, . . . , k} and

lim
n→∞

∫
Ω

|Du−k,β′n|
2dx >

∫
Ω

|Dũ−|2dx. (5.36)

Now, let us consider the function ũn ∈ Eβ′n
x1,β′n

,...,xk,β′n
such that (ũ+

n )i(x) = ũ+
i (
√
β′nβ̄

−1

(x− xi,β′n) + xi,β̄) ∀x ∈ Ω, ∀i ∈ {1, . . . , k}, ∀n ∈ N and ũ−n is the nonnegative function
in H1

0 (Ω) such that ũ−n (x) = 0 ∀x ∈ ∪ki=1 supp(ũ+
n )i, ‖ũ−n ‖L2(Ω) = 1 and∫

Ω

|Dũ−n |2dx = min

{∫
Ω

|Du|2dx : u ∈ H1
0 (Ω), u ≥ 0 in Ω,

u(x) = 0 ∀x ∈
k⋃
i=1

supp(ũ+
n )i, ‖u‖L2(Ω) = 1

}
∀n ∈ N. (5.37)
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Notice that lim
n→∞

∫
Ω
|Dũ−n |2dx =

∫
Ω
|Dũ−|2dx; moreover, since ‖(ũ+

n )i‖−2
L2(Ω)

∫
Ω
|D(ũ+

n )i|2

dx = β′n, we have

αk,β′n =

∫
Ω

|Du−k,β′n|
2dx = ϕk,β′n(x1,β′n , . . . , xk,β′n) ≤

∫
Ω

|Dũ−n |2dx ∀n ∈ N (5.38)

and, as n→∞,

lim
n→∞

∫
Ω

|Du−k,β′n|
2dx ≤ lim

n→∞

∫
Ω

|Dũ−n |2dx =

∫
Ω

|Dũ−|2dx, (5.39)

in contradiction with (5.36).
Thus, we can conclude that αk,β depends continuously on β in ]bk,+∞[.

q.e.d.

Proof of Theorem 2.1 For every positive integer k, for β > 0 large enough so that
Ωk,β 6= ∅ and for ε > 0, let us consider a point (x1,β,ε, . . . , xk,β,ε) ∈ Ωk,β and a function
uk,β,ε ∈ Mβ,ε

x1,β,ε,...,xk,β,ε
such that fβ,ε(uk,β,ε) = ϕk,β,ε(x1,β,ε, . . . , xk,β,ε) = maxΩk,β ϕk,β,ε

(here we apply Propositions 3.1 and 3.2).
As ε→ 0 (up to a subsequece) (x1,β,ε, . . . , xk,β,ε) tends to a point (x1,β, . . . , xk,β) ∈ Ωk,β

and uk,β,ε converges in H1
0 (Ω) to a function uk,β ∈ Eβ

x1,β ,...,xk,β
which, for β > 0 large

enough, satisfies the equation ∆u − αk,βu
− + βu+ = 0 in Ω with αk,β = fβ(uk,β) =∫

Ω
|Du−k,β|2dx = ϕk,β(x1,β, . . . , xk,β) = maxΩk,β ϕk,β > λ1 (here we apply Lemmas 5.1

and 5.2 and Proposition 5.3).
Thus (αk,β, β) belongs to the Fuč́ık spectrum Σ for β > 0 large enough. Moreover,
from Proposition 5.4 we infer that, for every positive integer k, αk,β → λ1 as β → +∞
while uk,β → −e1 in H1

0 (Ω). Corollary 5.5 guarantees the existence of a nondecreasing
sequence (bk)k of positive numbers such that αk,β < αk+1,β ∀β > bk+1. Proposition 5.6
shows that αk,β depends continuously on β in ]bk,+∞[.
All the other assertions in Theorem 2.1 follow directly from Proposition 5.4 as one can
easily verify.

q.e.d.

Remark 5.7 Assume that the domain Ω satisfies in addition the following condition:
there exists an open subset A of Ω such that sup∂A e1 < supA e1. Then, the method used
to prove Theorem 2.1 may be easily adapted in order to construct eigenfunctions uk,β as
in Theorem 2.1, with k bumps localized near k concentration points x1,β, . . . , xk,β, with
rescaled bumps having the same asymptotic profile (still described by the radial solution
U of (2.1)), but with the concentration points that, as β → +∞, approach maximum
points of e1 in A (i.e. xi,β → xi as β → +∞, with xi ∈ A and e1(xi) = maxA e1 for
i = 1, . . . , k).

33



Remark 5.8 Notice that (as we show in a paper in preparation) one can also obtain
infinitely many curves of the Fuč́ık spectrum Σ, asymptotic to the lines {λ1} × R and
R × {λ1} and corresponding to eigenfunctions of different type, with bumps localized
near points of the boundary of Ω (while the eigenfunctions uk,β given by Theorem 2.1
present k bumps localized near the maximum points of e1).
In fact, under the same assumptions as in Theorem 2.1, there exists a nodecreasing
sequence (b̄k)k of positive numbers, having the following properties. For all β > b̄k
there exists ᾱk,β > λ1 and vk,β ∈ H1

0 (Ω), v+
k,β 6≡ 0 and v−k,β 6≡ 0, such that (1.1), with

α = ᾱk,β and u = vk,β, is satisfied for all β > b̄k. Moreover, for every k ∈ N, ᾱk,β
depends continuously on β, ᾱk,β < ᾱk+1,β ∀β > b̄k+1 and ᾱk,β → λ1, as β → +∞,
while vk,β → −e1 in H1

0 (Ω). Furthermore, vk,β present k bumps that, as β → +∞,
concentrate near k points approaching the boundary of Ω; the concentration rate is
greater than the approaching rate between two distinct concentration points or between
the concentration points and the boundary (so that the k bumps remain quite distinct).
The eigenfunctions vk,β have lower energy and they have a different variational nature
compared to the eigenfunctions uk,β. In fact, their bumps present a different asymptotic
profile which is not described by the function U , as it happens for the eigenfunctions
uk,β (see Theorem 2.1). Notice that, since vk,β has lower energy than uk,β, we can also
say that, even in the case k = 1, Theorem 2.1 does not give the first curve of the
Fuč́ık spectrum (see for istance [15]) because, for all β > b1, the pair (α1,β, β) does not
belong to the first curve; the eigenfunctions corresponding to pairs (α, β) of the first
curve have lower energy and only one bump which, for α or β large enough, is localized
near the boundary of Ω (see [31] and [32]).

Remark 5.9 It is interesting to know from where the curves of the Fuč́ık spectrum
we obtain come from. They might come from bifurcations of the first curve of the
Fuč́ık spectrum, which emanates from the pair (λ2, λ2), or they might come from pairs
(λi, λi) of higher eigenvalues, or might be they do not meet the line {(α, β) ∈ R2

: α = β}, etc. . . . . The fact that the corresponding eigenfunctions present several
nodal regions (as the Fuč́ık eigenfunctions related to pairs (α, β) close to pairs (λi, λi)
of higher eigenvalues) seems to suggest that they might be curves emanating from
the pairs (λi, λi). However notice that, for the Fuč́ık eigenfunctions we obtained in
this paper, only the positive part presents several nodal regions while the negative
part has only one nodal region (on the contrary, it is natural to expect that for the
Fuč́ık eigenfunctions corresponding to pairs (α, β) close to pairs (λi, λi), both positive
and negative parts present several nodal regions); on the other hand, also in the case
N > 1, one can find simple examples of curve in the Fuč́ık spectrum that pass through
pairs (λi, λi) of higher eigenvalues and are asymptotic to lines {λ} × R and R × {λ}
whith λ > λ1. Thus, the problem is widely open and might give rise to interesting
results. Most probably, if Ω is a bounded domain of RN with N > 1, for each pair
(λi, λi) of eigenvalues, the smallest curve of the Fuč́ık spectrum emanating from (λi, λi),
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corresponding to lower energy eigenfunctions, is asymptotic to {λ1}×R and R×{λ1}
while the other curves passing through (λi, λi) are asymptotic to lines {λ} × R and
R× {λ} whith λ > λ1.

Remark 5.10 The difference between the case of dimension N = 1 and the case N > 1
becomes even more evident if in (1.1) we replace the Dirichlet boundary condition by
the Neumann condition ∂u

∂ν
= 0 on ∂Ω.

In fact, if we denote by λ̃1 < λ̃2 ≤ λ̃3 ≤ . . . and by Σ̃, respectively, the eigenvalues
of −∆ and the Fuč́ık spectrum with Neumann boundary conditions, we have λ̃1 = 0
and, if N = 1, no curve of Σ̃ is asymptotic to the lines {0} × R and R× {0}. Indeed,
if N = 1, a direct computation shows that the Fuč́ık spectrum consists of the lines
{0} × R and R × {0} and of infinitely many curves C2, C3, . . . having the following
properties: for every i ≥ 2, Ci is a smooth, unbounded, decreasing curve, emanating

from (λ̃i, λ̃i) and asymptotic to the lines
{
λ̃i
4

}
×R and R×

{
λ̃i
4

}
(notice that λ̃i

4
is an

eigenvalue of −∆ in H1(Ω) if and only if i is an odd positive integer and, in this case,
λ̃i
4

= λ(i+1)/2). Therefore, if N = 1, no curve of Σ̃ is asymptotic to the lines {0} × R
and R × {0} and every nontrivial pair (α, β) of Σ̃ satisfies α > λ̃2

4
and β > λ̃2

4
(with

λ̃2 > λ̃1 = 0).
On the contrary, the situation is quite different in the case N > 1. In fact (as we show
in a paper in preparation) in this case there exist infinitely many curves contained in
Σ̃ and asymptotic to the lines {0} ×R and R× {0}; the corresponding eigenfunctions
have an arbitrarily large number of bumps which may be localized in the interior of Ω
or near prescribed connected components of ∂Ω; both, interior and boundary bumps,
present the same asymptotic profile (still described by the function U).
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