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Introduction

Most misunderstandings in mathematics start in dimension 1. Probably the best example is class field
theory, but another good one arose with R. Nevanlinna’s use of the uniformisation theorem to prove a
trivial yet hard isoperemtric inequality for the punctured plane. Unlike a classical inequality between area
and length, Nevanlinna averaged the former, and so was able to replace the latter by its logarithm. In so
doing, though, he used the full power of the complex structure, and rendered his study ill suited to soft
generalisation. Nevertheless he did create value distribution theory, or better the study of the isoperemetric
inequality in his sense, VI.2.2, on quasi-projective varieties. Depending on whether one studies discs or
parabolic (in the sense of Ahlfor’s) Riemann surfaces on one’s variety this is more, respectively less, general
than the isoperemetric inequality in Gromov’s sense, albeit that under reasonable hypothesis, [Kl], even the
less general version will imply the latter, and of course, all of these inequalities should be viewed as an
integrated or large scale version of negative curvature.

At first glance this invocation of hard methods appears pointless. A brief reflection shows that holomor-
phic sectional curvature, even stricta dicta, does not admit an a priori interpretation in terms of algebraic
geometry, except, of course, for curves where it coincides with Ricci curvature, whence the equidimensional
Nevanlinna theory of Griffiths, Stoll et al. The said equidimensional study, however, confined itself, for
largely historical reasons, to smooth varieties as opposed to what is now known to be the natural condition
for negative Ricci curvature, i.e. Mori/Reid’s canonical singularities. Indeed these can even be defined
as precisely the singularities for which local versions of any of the above isoperemetric inequalities hold,
and whence a conjectural equivalence between the isoperemtric inequality for all balls and canonical mod-
els of algebraic varieties, with the conjecture being the reverse implication by way of the minimal model
programme.

Combined with examples this does seem to suggest that any attempt to pursue algebraic criteria for
the isoperemtric inequality in a non-equidimensional setting is by definition hopeless. Indeed unlike the
‘logarithmic surface area’ of a ball which is naturally and uniquely computed by Nevanlinna’s height applied
to the canonical class there are countably many bundles that one might look at for discs, i.e. the tautological
bundles on spaces of jets. At this point, however, Green & Griffiths, [GG], made the key observation that
the law of large numbers may come to the rescue, implying, as it does, at least for algebraic surfaces
when combined with the more subtle properties of the canonical class -essentially the existence of a Ké&hler-
Einstein metric-, that for high enough jets the bundles in question are big when the Ricci curvature is
negative. Developments in jet technology post op. cit. occasions a review of this in VI.1, but unlike the
actual canonical class, however, it may not be possible to carry out surgery on either the surface or its jets
to guarantee that these bundles are ample. Even worse there may be a base locus on which the restrictions
of any of these bundles fails to be pseudo effective. On the positive side, though, the problem becomes
equidimensional, albeit in the softest sense that current understanding of category theory permits, i.e. the
linearisation of an nth order ODE corresponding to a component of the base is a foliation by curves, 7, on a
n+1 dimensional variety X. Whence, up to some technical issues of definition occasioned by it’s singularities,
an identification of negative curvature with the relative positivity of the canonical class Kz of X over its
classifying stack [X/F].



The issues posed by the foliation singularities are two fold. The one of no immediate relevance is for
the definition of the classifying stack itself. This is, however, no worse than the problem of trying to view
a punctured disc as a stack in the analytic topology with an infinite punctual stabiliser, and so is easily
swept under the carpet. More critically, just as for Ricci curvature on varieties, one needs canonical foliation
singularities before negative curvature, even locally, can be identified with a positivity property of K.
Indeed without this, one has, even for X smooth, a bundle which is only really a relative dualising sheaf
rather than a genuine canonical class. Again, this can be taken as a definition of canonical singularities,
which in turn is equivalent to the functorial extension of the Mori/Reid definition to this context, [M1].
Consequently the universality of our discussion depends on progress to a hypothesised resolution LCR, 1.6.1,
but this is rather promising, and while postponing our principle commentary on it till later, it is of immediate
relevance to note that this cannot be achieved in the category of smooth spaces foliated by curves, but only
in the 2-category of smooth algebraic (which will always mean Deligne-Mumford) stacks. Fortunately on
replacing X by an algebraic stack X’ there are no more problems associated with the formation of [X'/F] than
those we’ve already described, whence we will work with, and profit from, the soft flexibility that algebraic
stacks afford, albeit that the presence of a taming form, i.e. the projectivity of the moduli, is essential.

Not all our initial preparation, however, is confined to blowing up, for we must also blow down, or more
generally flip, the more obvious obstructions to negative curvature that we come across. In so doing we will
be able to localise the Kz isoperemetric inequality of [M1] V.5.10, with the resulting model (X', F) enjoying
K nef. Such a, so called minimal, model, which by op. cit. exists whenever the foliation isn’t a pencil of
conics, only eliminates any positively curved invariant subvarieties, and what is really desired is to carry out
algebraic surgery until such times that we arrive to, a canonical model, i.e. not only Kr nef. but any solution
curve C with Kz.C = 0 meets every effective Cartier divisor non-negatively, or equivalently: if in an act of
wild optimism we suppose that the obstructions to negative curvature along our foliation will concentrate
on something algebraic, then the algebraic object should move, giving our foliation a special form. Unlike
minimality this is a substantially more difficult condition to guarantee. Indeed, every type of singularity that
one can conceive of in actual Mori theory has a variant, in fact several, in the theory of canonical models of
foliations, with plenty more beside, e.g. of arbitrary embedding dimension on 3 folds. The lack then of such
a model, and with it the implied possibility of large algebraic sets of nil curvature will be a rather major
difficulty in addressing our curvature problem to which we finally give a concrete form,

Question Presented with a minimal algebraic stack (X, F) foliated by curves, can we find algebraic criteria
to guarantee that Kz.duyx, 7 > 0 for all transverse invariant measures duyx ;5 ¢

Of course the measures associated to bigger and bigger discs are not arbitrary, indeed they will, without
loss of generality, also be nef., i.e. intersect every Cartier divisor non-negatively, so K big (general type)
is certainly sufficient. Unlike the Ricci case, however, bigness is not a sine qua non for negative curvature,
but rather for ‘full’ modular variation of hyperbolic leaves. A fact that is already evident in the theory of
algebraic curves, but whose manifestations are not confined to such integrable examples. If, however, we
could quantify the lack of bigness by appropriate smooth metricisation of Kz then the Bochner technique,
[M2], would allow us to assert that a lack of modular variation causes the Kéhler structure to split, and
whence resolve our problem. Unfortunately this is very much a catch 22 scenario since the key to realising
such a metricisation is the question itself. What we do learn, though, is that in each dimension n we should
expect exactly one new case, i.e. not pulled back or fibred over lower dimension, which is hyperbolic yet not
of general type, and it should satisfy K X.K}_l > 0. We can thus refine our question by way of,
Antithesis Can there erist a parabolic invariant measure, i.e. Kr.duy 5 <0, together with some naturality
conditions, V.1.2, on a minimal foliated stack with K% =0, but I(X.Kfff1 > 0.

To put the antithesis in perspective, one observes, quite generally, I[.2.2, that a nef. bundle K on a n
dimensional projective variety with K™~ ! # 0 admits at most one class intersecting every effective Cartier
divisor non-negatively, yet 0 with K, i.e. K" !. Needless to say such nefness is one of the naturality
conditions on our measure djuy 7, and so what our antithesis leads to is a special representative of K;‘;l.
Plainly the particular thing about this representative is its invariance. It is important, however, to have
some feeling for the nature of measures on proper stacks, which are a priori much better behaved than the
simple patching of local data would seem to suggest. Indeed the algebraist who would be inclined to think



of such as some sort of analytic 1-cycle will be much closer to the truth, than the analyst who carries a bag
of local counterexamples to any reasonable statement that one might wish to make. In particular for every
closed substack Z of X’ there are well defined segre classes sz q,, or residual measures, on the projective
normal cone, IT1.3, specialisation to the cone itself, II1.5, and a well defined notion of diffuseness, i.e. lack of
expressablity as a countable sum of direct images from lower dimensional stacks, V.3 & VI.3. The invariance,
however, gives rise to a very different, a priori highly non-logarithmic, residue symbol, Res(dux,r), IV.1,

expressing the lack of flatness of the bi-rational groupoid, IV.4, § = X seen from dpx)F.

The critical observation for relating these notions of residue comes from Connes, [Co], namely: dux,r
should be viewed as a realisation of motives over [X'/F] or if one prefers a Fredholm module over the ring of
smooth relative correspondences. Either way the upshot is the same: relative analysis of X over [X'/F] is,
abstractly, no more or less difficult than that on a Riemann surface, albeit that the presence of singularities
requires a different approach via explicit formulae on the bi-rational groupoid to do the necessary harmonic
theory, IV.5-7, than that of op. cit. Thus apart from casting significant functorial light on foliated residues,
and indeed the precise relation between Conne’s algebras and the classifying stack, IV.8, we deduce,
Lemma (IV.7.4) (Independently of LCR) Suppose that the segre class of a transverse invariant measure
around sing(F) is zero, then its residue class is zero, i.e. for all intents and purposes the infinitesimal
groupoid F = X'\ sing(F) seen from dpx,r has a flat completion across the singularities.

Now if in the antithesis we further suppose the measure is diffuse, then a simple minded counting argument
with global sections of bundles, V.1.4, V.2.2, implies,
corollary (VI.3.4/5) For dux,r diffuse the antithesis is rubbish. Indeed even KX.K;fl # 0 will suffice.

One’s immediate reaction, therefore, is that our question has been answered modulo an induction the
size of an olympiad problem book (compendium edition). Unfortunately, though, a new higher dimensional
difficulty, V.4 & V1.4, emerges: obstructions to negative curvature can hide in sing(F). The difficulty here
is not, for example, visible on the universal curve over the moduli stack of algebraic curves since it initially
occurs when invariant discs on the smooth locus limit on sing(F), giving rise to singular solutions, 1.4.10.
As such it first occurs for leaves of the induced foliation in a weak branching formal stack (understood as
the functorial extension, 1.2 & 1.6, of what one sees at 2-D saddles), followed by induction of the same.

This ultimate difficulty, which is precisely the obstruction to inducting the parabolicity of a measure
through smaller substacks merits some comment. In the classical theory of saddles on surfaces the weak
branch need not be convergent, but it’s not far off, converging as it does after real blowing up. In dimension 3
this is false at what we’ve termed beasts, [.5.1, where, by definition, beasts develop as singularities degenerate.
The initial saving grace is that a weak branch is a priori generically defined as an honest formal stack,
whence some general nonsense combined with LCR, (albeit this may be un-necessary) shows that it extends
as a proper formal stack around singular components where it is generically defined, 1.6.7. This does not,
however, include singular components degenerating to such at beasts. The second thing is that a very
general counting argument shows that any part of duy /7 which is relevant to a weak branch, VI.5.1/2, is
in fact a diffuse measure on some honest substack in it’s pseudo trace, i.e. the completion of the latter in
appropriate components of sing(F) is non-empty and factors through the formal stack in question. The
critical observation, V.4.1 & VI.5.3, is that the dynamics around the weak branch are so isolated from
everything else that the totality of components held together by this infinitesimal glue inherits all the
naturality properties, including nefness to the extent that it has sense, of a parabolic measure with the
exception of the parabolicity condition itself. This latter requires further surgery, weak flops, specified by a
final critical refinement, VI.6.5 & VI.7.3, of the cone theorem of [fu]. Such weak flops are rather natural
since they terminate in a model on which every sequence of ‘solutions’ to the foliation, i.e. the co-normal
bundle vanishes, converging to a disc with bubbles, converges to an honest disc. Flops, though, are to be
understood as any non-contractile surgery from a minimal to a canonical model, as such, even weak ones are
strictly more difficult than flips- klt foliated triples (X, D, F) are very rare. Thus to complete our machinery
we could either make weak flops or extend the flip theorem to ‘pseudo irreducible formal substacks’. The
former is more conceptual, but leads to slightly worse ambient singularities, so, for expediency, we choose
the latter, VI.6.10-12, to kill the last set of a priori obstructions to localising parabolicity.



Rather than undertaking a humongous induction to completely resolve our curvature query, let us take
a couple of illustrative examples beginning with 3-folds, where the previous step in dimension 2 has been
done, [M2], and we require to understand the hypothesised, necessarily non-diffuse, parabolic measure of
the antithesis. The surface theory, combined with the above machinery, quickly allows us to deduce, V.2
& 4, that it must be a countable sum of measures of the following form: invariant measures on surfaces
where the induced foliation is a conic pencil, rational curves which don’t move, and divisors of elliptic fibre
type inside a formal weak branching surface. The first and third possibilities are effectively finite, at least
as far as the conic pencil itself is concerned. Plainly, we should really try and move the elliptic curve to
show that it doesn’t exist, but this is an aesthetic point, and what’s essential is to exclude the possibility of
infinitely many rigid rational curves invariant by the foliation and intersecting K r in zero. A detailed local
analysis, I1.3-8, shows the curves in question can be flopped. If then it could be guaranteed that flopping
preserved projectivity it would be easy to show that there were at most finitely many. The problem though
is that it is rather difficult to relate this soft sense of flopping to the more generally accepted one involving
a specific divisor. Indeed one could imagine being on an actual canonical model, but still finding infinitely
many such contractible curves because the singularities became so bad that one simply ran out of Cartier
divisors. The flopping operation, though, can only fail to be projective because there is no sense of positivity
in Néron-Severi which if raised to the level of measures would be a contradiction since these must always
have a sign irrespective of the existence of a taming form, and this is exactly what we do by way of some a
priori soft, i.e. non-projective surgery, I1.9, to ensure that the rigid curves are wholly isolated, and whence,
Finiteness in 3-D (V.2-4) Let duy,r be a transverse invariant measure on a three dimensional minimal
foliated stack (X,F) not of general type with Kx.K% # 0 then there is a decomposition,

dNX/fZZdMi+ZLj+ZEk
i j K

where, du; are invariant measures on the finitely many invariant surfaces where the foliation is in conics, the
L; are a finite sum of invariant rational curves, and the Ej, are the above, likely inexistent, elliptic curves.

In the case that Kx.K% < 0, (X, F) is actually fibred in rational curves over a foliated surface, so the
elliptic bit doesn’t exist, and the whole thing is an easily analysed Ricatti type object. In the antithesis case,
the proof pretty much establishes that all the rational part can be killed by flopping, and contraction, so up
to moving the elliptic object, and a slightly better understanding of the role ¢ + ¢, plays in Riemann-Roch,
our curvature question is completely answered on 3-folds. To apply this to our initial problem on surfaces
we need canonical resolution, albeit in local form, ILUT, I1.1.3, together with [M4] which instantly gives,
corollary Suppose ILUT, and let (S, D) be a 2-dimensional log-stack of general type with c? > %cz then the
set of rational and elliptic curves (i.e. log-substacks étale covered by orbifolds of positive, respectively nil,
topological Euler characteristic) form a proper substack Z outside of which the isoperemetric inequality holds
in Nevanlinna’s sense for arbitrary ramified covers of the line. In particular curves of genus g are bounded
in moduli, and no holomorphic map from an affine algebraic curve can have Zariski dense image.

More generally, our machinery is well adapted to investigating the isopermetric inequality on any surface.
Indeed the semi-stability of the co-tangent bundle on a minimal surface with respect to it’s canonical means
that any ODE of order at least 1 once linearised and viewed as a foliation is either of general type, or satisfies
the conditions of the antithesis. The extension to minimal models, [M1], of the fact that any rational map
to a curve of positive genus is a morphism allows us to move easily between ODEs, and sub-ODEs, even
if the latter isn’t finite over it’s natural image in the jet space, and to induct all the way down to order 0,
i.e. curves on surfaces, VI.3. Arriving to hyperbolic curves is impossible, but for rational or elliptic we need
[M4], which in turn needs the number of these to be finite. Whence, our second applications takes the form,
Theorem Suppose LCR, then for (S,D) a 2-dimensional log-stack with canonical (Ks+ D sense) singular-
ities and stable curve as boundary the following are equivalent,

(a) (S, D) is of general type without rational or elliptic curves.

(b) (S, D) satisfies the isoperemetric inequality in Nevanlinna’s sense for ramified covers of the line.

(c) (S,D) satisfies the isoperemetric inequality in Gromov’s sense for discs.



More, or less, depending on your point of view, generally, the following are also equivalent under LCR,

(a) (S,D) has general type, and the set of rational and elliptic curves form a proper closed substack Z.

(b) The isoperemetric inequality for ramified covers of the line holds in Nevanlinna’s sense on (S, D)

outwith finitely many rational and elliptic curves

(¢) The only ODEs on (S,D) admitting parabolic measures are rational and elliptic curves.

(d) The solution discs of any ODE on (S,D), other than a rational or elliptic curve, converge, in the

compact open sense, modulo a proper algebraic set.

To establish the a priori finiteness of elliptic curves on surfaces of general type, would appear to be a
perfectly feasible refinement of the methodology. Despite the implied additional elegance, this isn’t done
because it won’t change the basic fact that the methodology has a problem with the obstruction posed by
parabolic algebraic curves. Indeed from the foliated point of view, a repeat of the 3-D finiteness theorem
for rational curves looks quite hard, and plainly requires a fairly systematic attack in the direction of the
construction of a canonical model, but with the same sort of caveats as for 3-folds that this isn’t quite the
same thing. In particular, it’s not absolutely clear that the finiteness theorem holds for arbitrary foliated
4-folds, but at the same time it’s unclear how to tailor things to the original surface.

Lack of LCR (log-canonical resolution) of foliation singularities should also be viewed as an obstruction
rather than LCR as a hypothesis. Indeed if we have the convergence of invariant discs then a valuation
for which LCR fails, which is necessarily approximable by discs outwith very special circumstances, will
infact be a disc (strictly speaking a family of discs) and this gives the sort of contact structure which one
needs. Plainly, making this completely rigorous is worth while, since we then arrive to a completely algebraic
description of the validity or otherwise of the isoperemetric inequality on algebraic surfaces. My excuse for
not having done this is that my recent trip to Valladolid convinces me that it is un-necessary, so I'll attempt
a quick summary of the status quaestionis. In [C], F. Cano proved the local uniformisation theorem in
dimension 3, and whence one would have imagined LCR in dimension 3. Unfortunately the corollary didn’t
follow since although the local global argument here goes back to Zariski, the local version in question was
not sufficiently functorial with respect to the ideas, i.e. not all the centres respected the foliation, and
what was worse there was even a case where the last centre was defined by a differential rather than an
algebraic condition, I.1.2. This ultimate problem is intrinsic, and whence Cano proposed that the correct
strategy was to take a root. Consequently the globalisation procedure is necessarily in the 2-category of
algebraic stacks and/or Q gorenstien foliations if one wants to stick to spaces. The content of I.1 is the
verification that Zariski’s local global argument still works in these circumstances, which indeed it does,
albeit in a slightly more delicate way, i.e. first use it to ‘prepare’ the divisor where one needs to take a
root, then pass to stacks, then run it again. This discussion is not particularly specific to dimension 3,
since combined with [BM] it will globalise any reasonable local theorem. The critical step then of local
uniformisation looks likely to be accomplished by Cano and his collaborators by explicitly exploiting the
one-dimensional features of the problem. Indeed just as the minimal model theorem can be viewed/is a
large scale generalisation of semi-stable reduction of curves, they intend to view the problem as a large scale
generalisation of plane curve desingularisation. The key point is a theorem of J. Cano, [Cj], see also [GS],
that the Newton-Puiseux description around a valuation retains its validity for an arbitrary plane ODE. Thus
although of almost immediate relevance to our situation on algebraic surfaces, it quite generally implies by
a generic projection argument the existence of a contact structure, and the lack of any unpleasant surprises
such as some Diophantine condition between coefficients of power series. Given that he’s worked hard for it,
and the solution is in sight, I would, therefore, anticipate that F. Cano’s immediate goal is to complete the
proof on 3-folds, so that my only real fear regarding the validity of LCR is that he stops short of arbitrary
dimension, which in no essential way differs from 4.

I am, therefore, particularly indebted to Cano for explaining this to me, along with Bogomlov, Bonk,
Gromov & Kontsevich for several other key contributions.



I. Singularities

I.1. Invariant Local Uniformisation

An example of F. Cano, cf. [C], shows that canonical resolution of singularities cannot be achieved in
dimension at least 3 by a sequence of blow ups in smooth centres. The difficulty, however, is resolved by
working in the 2-category of stacks, and for convenience, we’ll take this to mean with projective moduli.
As such consider the following types of ‘simple’ morphisms between foliated logarithmic (i.e. with simple
normal crossing boundary) stacks p : (X, D, F) = (X, D, F), with, of course, D = p~'D,..q4,

(P) Blow up in a Fiog super-singular point, i.e. a negative discrepancy singular point 0 of Fiog such that the
order of vanishing at 0 of a local generator is greater than that of any smooth invariant curve through
it.

(C) Blow up in a smooth Fiog-invariant curve, ‘transverse’ to D, where, for want of a better word, ‘trans-
verse’ means chosen so as so to preserve the simple normal crossing hypothesis, i.e. if the curve meets
sing(D) then it’s actually contained therein.

where Fiog refers to the logarithmic vector field in T (—logD) generating the foliation. Manifestly there
is a smallest 2-category C generated by ‘simple’ morphisms given an initial object (Xy, Do, Fo). The key to
deducing a global resolution statement from a local one involving sequences of ‘simple’ morphisms is well
known to experts, i.e.

I.1.1 Claim The above 2-category C has fibre products or, easier, the stack fibre product can be dominated
by an element of C.

proof Plainly this reduces to looking at diagrams of the form,

(X1, D1, F1) —— s

! ']
(X,D,F) —— (X2,D2,73)

with ‘simple’ unquestioned arrows, and to show that we can take the questioned arrows in C. Independently
of the foliation this is absolutely trivial for unquestioned arrows of type (P) or (C). Indeed, everything reduces
to the combination (P) & (C), so the questioned arrows are either blow up in the proper transform of the
curve, or the fibre over the point. What is less trivial is to guarantee the invariance of the centres under
Fiog, or more correctly in the case of the fibres over the point. Nevertheless the definition of super-singular
has been precisely constructed to guarantee this. O

As we’ve already remarked the operations (P) & (C) are insufficient to achieve log-canonical resolution
in dimension 3, as the following example of F. Cano illustrates, viz:

1.1.2 Example

0 0 0

0 =y-- — + 2" — peN, + hodt.
y82+mzay+m oz P € ) T 0

with precision on the higher order terms to be found in [FF]. As such consider the following additional

operation,

(R) Eztract a root of a smooth component of D if around the said component no ‘improvement’ is to be
had by operations of type (P) or (C).

Manifestly the word ‘improvement’ merits amplification. Plainly if a generator in Ty (—logD) vanishes
to order at least 2 at some point, then Fjo¢ has a centre of positive discrepancy around it, and so, this
can be improved. Consequently the only candidate for being non-improvable is something nilpotent in its



linear part, and, more precisely, Cano’s example. The said example can, however, be taken without loss of
generality, to have x = 0 a component of D, and is subsequently resolvable on extracting a root. As such
consider,

I.1.3 ILUT (Invariant local uniformisation theorem) Let v be a valuation of the function field of Xy, then
there is a sequence,

(Xnapnyfn) p—) (anlypnfla}—nfl) — .. — (Xlaplafl) :} (X07D07-7:0)
with p; of type (P), (C), or (R) around the centre of v on X;_1 such that the centre of v on X, has
log-canonical foliation singularities.

The consequence of ILUT as opposed to LUT is, or course,

I.1.4 Fact Suppose ILUT, then for any (Xo, Do, Fo) there is a sequence,

(Xnapnyfn) — (anlypnfla}—nfl) — e — (Xlaplafl) — (X07D07-7:0)

Pn P1
with p; globally of type (P), (C), or (R) such that (X, Dy, F,) has log-canonical foliation singularities.

proof Suppose otherwise and augment C to the smallest 2-category, C generated by C and global (R). Now
form,

(X,D,F) :=lim (X, Dy, Fx)
xeC

Of itself (A? , 75, F ) is not dominated by the Zariski-Riemann surface of the function field of A, but, its points
are. Better still under morphisms in C, non log-canonical points map to non-log-canonical points, so there
must be a valuation v of C(Xy) whose centre is never log-canonical on any (X, Dy, Fy). This doesn’t quite
contradict ILUT since its statement permits (R) locally, and, we need global. ILUT does, however, tell us
that there is a (X),,Dx,, Fa,) such that the centre of v; (= v) on Xy, is the origin in a Cano example, and,
without loss of generality, the = 0 divisor, defined by 1.1.2, is a component B of Dy,. As such, we have to
get ourselves into a position where we can take global (R). To this end consider,

I.1.5 Sub-claim Suppose in the notation of 1.1.4 we replace (Xo, Do, Fo) by its germ around B, and each
(X;, Di, F;) with its germ around the proper transform B; of B then we may suppose that (X, Dy, Fyn) is
log-canonical.

Sub-proof The basic problem that we face is the strong restriction imposed by global (R), whereas, we,
manifestly, want to augment C by,

Arbitrary (R): Extract a square root of a component of D

In a global situation this operation is inadmissible, since, if we augment C to C* by way of adding in
Arbitrary(R), we may no longer be able to form fibre products & la I.1.1. The problem, in the notation of
op. cit., is that if p; : A7 — X is the extraction of a root and, p2 : X5 — X" a blow up in Z then after blowing
up in pl_l(Z )rea We may obtain additional non-scheme like structure not supported on the root, and, this
locus, in which we must blow up to dominate X5, may not be invariant. Locally around B, however, the
only global root that we have to worry about is B itself, and, as we’ve said, there is no problem around the
proper transform of B. By way of detail let X; be the blow up of X; = X(v/B) in p1 H(2)red, with & the
exceptional divisor, then around the proper transform B of B, X; already maps to X5. To see this map is in
C*, one notes that it’s the same as blowing up in the intersection of B with the exceptional divisor on A%,
then extracting a root of the proper transform of B. Consequently, in this semi-local setting, C* has fibre
products, and, whence, the sub-claim by LUT, and the compactness of the Zariski-Riemann surface. [

Now let’s use the sub-claim to clean up B, by supposing that for all (X,,D,,F,) € C over (Xx,,Dx,,Fx,)
there are non-canonical points other than in the component of the singular locus through v;. Again appealing



to ILUT, we find, (Xx,,Dx,,Fa,), and a valuation vy with centre the origin of another Cano example on
the proper transform By of B. This cannot, however, by the sub-claim, continue ad infinitum, so we may
eventually suppose that everything on B is log-canonical apart from finitely many Cano examples. At which
point we have many choices, but a convenient one is to separate the v; for ¢ > 1 from B by blowing up in
points, so that everything is canonical apart from the component of the singular locus through vy, which,
itself, is necessarily isolated since the log-canonical points are open in sing(F), and indeed, without loss of
generality, both smooth with the field enjoying everywhere non-zero linear part by a minor variant of the
above. Whence, we’ve eventually arrived to the situation where we may apply global (R), and so contradict
ILUT for v;. O.

Having profited from the greater flexibility afforded by the 2-category of algebraic stacks to obtain a
resolution even of an initially wholly scheme like object (X,D,F) there are many issues remaining, viz:
is this really the kind of resolution we want ? how far away is it from being projective/a scheme etc.
Fortunately, these have all been addressed in [M1] 1.3, 1.6 & 1.7, with a convenient conclusion being,

1.1.6 Corollary Let (X, D, F) be a foliated 3-dimensional log-triple, then there is a projective bi-rational
modification p : (X,D,F) — (X,D,F) such that the latter has log-canonical foliation singularities, and
X has at worst Z]2 quotient singularities. In particular if X is projective (respectively a scheme), X s
projective (resp. a scheme.)

proof The various projective/scheme conclusions arise from the representability of a stack with projective
moduli as a groupoid with finite étale source and sink, [M1] 1.3.2, a condition which is plainly not altered
by any number of applications of global (R). Everything else is in op. cit. 1.6 & 1.7 albeit that its worth
re-visiting 1.1.2 by way of another manifestation of the Cano example whereby we see that Z /2 quotient
singularities is best possible, i.e.

0 0
0=o— —y— 2 > — — N 0O
xam yay+z az,az Y, z Z, pE

I.2. Weak 3-D Branching

Even in the presence of canonical/log-canonical singularities sing(F) can still be complicated. The basic
reason for this is that log-canonical singularities only assure the non-nilpotence of the 1st order linearisation
of a local generator around a point, so for example, there may well be less than the co-dimension of sing(F)
eigenvalues. In dimenson 3 we have two possibilities, i.e. 1 or 2 -always to be understood with multiplicity-
eigenvalues around an isolated singularity, or 1 eigenvalue in the non-isolated case. To understand the
former requires only Jordan decomposition, while in the latter we require to perform Jordan decomposition
uniformly around sing(F). Plainly this is a local and purely scheme like question, so let Z be an irreducible
component of sing(F), and X =SpfO a formal scheme complete in the I adic topology, with 8 a generator
of the foliation on X. Our objective is,

[.2.1 Claim Suppose the formal germ (O, 0) is log-canonical with 1 eigenvalue at the generic point of Z,
then there is an invariant formal subscheme W of X which at every point z € Z(C) has for completion

around z the formal subscheme defined by the equation x = 0, where, at z the semi-simple part of 9 is a:a%.

Notice that at z, although the function z is non-unique, the sub-scheme x = 0 is unique, and dependent
only on F. To prove the claim observe,

I.2.2 Reduction We may, without loss of generality, suppose that Z is smooth.

proof Certainly we can find a resolution of singularities p : X — X, or better a formal blow up, c.f. [M1]
IV.2, such that 8 lifts to X, and X is complete around the proper transform Z of Z. To deduce the claim
from here one appeals to the co-herence of push-forward of co-herent sheaves under proper maps of formal
schemes, or, slightly more correctly, the proof of the same, cf. [EGA],III, 111.3.4.2. O



Of course we’ve profited here, and previously, from the openness of the 2-eigenvalue condition, and all
that remains is to make a few observations beginning with,

1.2.3 Fact Let D be an endomorphism of a rank 2 vector bundle E over a curve Z which is rank 1 at every
point z € Z, then every point of Z has an open neighbourhood U over which we may write D as,

£

where \(2) is the eigenvector at .
proof Both KerD and KerD — A(z) are rank 1 sub-bundles of E which are everywhere disjoint. O

Everything being local, we may therefore shrink Z so as to suppose mod I%, 8 has the form,

0 0
0= To- +f (z)ya
with © = y = 0 the defining equations of Z. A simple induction mod I} therefore produces an element &£
of O vanishing on Z such that 0§ = £(1 + u), for u € Iz, and since the local weak branches of completions
at points depend only on the foliation, we may, without loss of generality suppose that 0z = x in O. This
already proves the claim, but we may also note in passing,

1.2.4 Fact If Z is smooth then every point z € Z(C) has a Iz complete neighbourhood U over which we can
find coordinates x,y,z,€ O such that the foliation is given by a field of the form,

0 0 0
0= m% —l—a(y,z)a—y +b(y,z)&

proof Proceed by induction modulo I7. O

Notice, however,
1.2.5 Z Warning Both 1.2.1 & 1.2.4 are false for completions in sing(F), i.e. if sing(F) is not wholly
contained in the weak scheme x = 0 of the Jordan decomposition of a point z € sing(F), then we can neither
find a uniform Jordan decomposition in the completion, nor even, the weak sub-scheme x = 0. The basic
example of this is when the local Jordan decomposition at a point has the form m% + zya%.

There are, of course, no such problems at isolated points. Furthermore, an isolated point with weak
branching becomes a singular curve with weak branching after blowing up except,

1.2.6 Fact Let 0 be an isolated singularity with weak branching, then, if after arbitrary blowing up in sing(F)
and the proper transform thereof this phenomenon persists, we may, after blowing up, suppose for X\ € C*
that the semi-simple part Os of the Jordan decomposition of a local generator has the form,

0 0

1.3 Log-Flatness

Let (X,F) be a foliated smooth stack with canonical singularities, then we may apply the algorithmic
resolution procedure of [BM] to obtain a modification p : X — X by a sequence of blow ups in invariant
centres to obtain an invariant simple normal crossing divisor £ which contains every point of the induced
singular locus. As such we have an ideal Z,;¢ of non-log flat points according to the surjection,

QX(logE) — p*K}'Inlf — 0

For many problems, such further modification is neither here nor there, so we will adopt,



1.3.1 Convention We will often assume with little or no warning, that such a divisor £ is present

In particular, and in so much as as we do permit such modification, we can bring the singularities of F,
especially in dimension 3, into better shape. The discussion is local, so without loss of generality scheme
like, and we begin with,

1.3.2 Fact If at z € sing(F) the semi-simple part of the Jordan decomposition has 2 non-zero eigenvalues
and sing(F) has dimension 1 then F is log-flat at Z and, indeed, sing(F) is smooth at z. Better still there
is at most one other formal invariant hypersurface through z containing the generic point of sing(F).

proof Notice that any generic point of sing(F) is contained in a component of £, so there is at least 1 smooth
invariant invariant hypersurface with local equation y, say, at z containing the said generic point.

Now let &,71,¢ be Jordan coordinates at z, with @ a local generator affording semi-simple part g =
58% + )\778%, A # 0. Plainly 9¢, On are in ILing(F), while the former generate the ideal (£,7), so by our
hypothesis on the dimension 9¢ € (£,7n), and sing(F) is smooth at z.

Suppose, therefore, that f : V' — X is the normalisation of an invariant formal hypersurface containing
sing(F), with X the completion at z, so that in particular f~'sing(F) is generically a bunch of Cartier
divisors around which V' is smooth, and we pick one of these, W, say. A priori neither V' nor X are schemes,
but everything is local around z, and,

Hom (O, Ov) D Hom(V, X)

so we still have a map on replacing SpfO¢ by SpecOy etc., and, better still, { = 0 or n = 0 are invariant
equations of schemes if they are so in X. Profiting from this let w € sing(F) be a nearby point where
V, flsing(F) and the induced foliation are smooth around the pre-image of w, and let s + On" be a
Jordan decomposition of d in the completion at w. In particular if dg% = &¥ a?w + )\(w)nwaniw then we
observe,

1.3.3 Possibilities In the completion at w either,

(a) Mw) ¢ NUN™! and V' completed at w is one of the two necessarily invariant formal schemes ¥ = 0
orn"¥ =

(b) Mw) € NUNTY, s0, say A(w) =n, and ¥ = 0 invariant with either
(i) There is no nilpotent part, and n* = 0 is invariant.

(ii) A component of Onn™ = 0 defines the only other invariant hypersurface through w containing sing(F),
so something of the form, tP(£“)™ + n™, or (£¥)™ + tPn*, for an appropriate local function t = 0.

(iii) There are no other invariant hypersurfaces, i.e. On = 5“’8%.
Similarly one has either,

(a)’ N¢ NUN-! and both £ =0, n =0 are invariant.

(b)” X € NUN™! and we have (i), (ii), or (iii) as above.

As such if we have (a)’ we cannot have (b)(iii), and, indeed, for very general w, without loss of generality
& =0,¢&" =0 (respectively n = 0, ¥ = 0 ) define the same hypersurface, so V is either ¢ =) or n = 0.
The same is true if we have (b)’(i), while if we have (b)’(ii) we know the form of an invariant hypersurface
through z, and, likewise for (b)’(iii).

Consequently we’re pretty much done, beyond noting that our initial equation y = 0 is smooth, so that
it cannot be the singular hypersurface that may occur in (b)’(ii), as such %(z) # 0, and even here things
are log-flat. It’s also worth noting down,
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1.3.4 Sub-fact In the notations of 1.3.2 and its proof, any invariant hypersurface in the completion of X in
sing(F) through z containing sing(F), is, on completion at a very general point w of the unique component
of sing(F) through z, of one of the hypersurfaces £€* =0, or n* = 0 defined by 0¥ .

Manifestly the situation presented by 1.3.2 is not only reasonable, but, best possible. As such before
proceeding let us consider to what extent we can improve the other singularities. To this end, we have,

1.3.5 Lemma Let x = 0 be the weak branch W through a not necessarily isolated singularity 0 with 0 =
OJs + On the Jordan decomposition of a local generator, then necessarily s = a:a% and On is a mon-log-
canonical field in y and z. Suppose further that O is at least quadratic iny and z then for p: X — X the
blow up in 0, a singularity p on the induced foliation satisfies either,

(a) p*O has an isolated singularity with semi-simple part of full rank, and p is not in the proper transform
of W.

(b) p is non-isolated and the induced weak branch is the proper transform w of W through p.

proof Outside of the exceptional divisor the lemma is clear, and one just calculates the exceptional divisor
by hand. O

The usefulness of the lemma derives from,

1.3.6 Further Lemma Again let x = 0 be the weak branch W, but through a non-isolated singularity 0
such that the induced foliation together with sing(F) N'W does not have log-canonical singularities then the
nilpotent part of a local generator is indeed at least quadratic.

proof We can write a generator as 0 = m% + f(y, z)d for § a saturated plane field in y and z with f(0) = 0.
As such either,

(i) 0 is singular, and we’re done.

(ii) ¢ is smooth, but f is not even simple normal crossing, whence at least quadratic. O

The only possibility not covered by this discussion is therefore,

1.3.7 Exceptional Lemma As ever x = 0 the weak branch W, but here through an isolated singularity with
On a saturated nilpotent plane field in y and z, then for p : X — X the blow up in the origin of the germ
around 0, a singularity of the induced foliation is either,

(a) Isolated with semi-simple part of full rank, and p not in the proper transform W of W.

(b) p is in W which is still the weak branch.

proof Again proceed by direct calculation on the exceptional divisor. [
To describe the results of these lemmas, let us introduce,

1.3.8 Definition The weak branching locus of (X,F) is the set of points in sing(F) where the rank of the
semi-simple part of a local generator is less than the co-dimension of sing(F). We take only reduced scheme
structure over the said locus and denote it W B(F).

Applying the lemmas we obtain,

1.3.9 Fact Let (X, F) have canonical singularities and dimension 3, then there is a sequence of modifications
in singular points of the foliation p : (X, F) — (X, F) such that,

(a) Any isolated points in W B(F) have semi-simple part of rank 2.

(b) Not just W B(F) but the non-isolated points of singF form in their reduced structure a curve with
singularities at worst nodes. Better still the induced foliation in the weak branch of F around the non-isolated

points, together with the divisor singF \W has log-canonical singularities.

proof At an isolated singularity of rank 2 or 3 we do nothing. Likewise at a non-isolated singularity
having rank 2. If, however, the singularity is isolated of rank 1, we blow up in points of W and its proper
transform until we have a log-canonical situation on the same. By 1.3.6 & 1.3.7 we never introduce any other
singularities, except isolated ones of full rank. Similarly if we begin at a non-isolated singularity by 1.3.5 &
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1.3.7 the weak branch on a punctual blow up in the same is its own proper transform, so we proceed to a

log-canonical situation, with any other singularity being isolated of full rank. This proves everything when

combined with 1.3.5-7 except possibly at points where the singular locus goes out of W, but there, W is
8

smooth and the Jordan form looks like, 0 = 353% +yP2l5-, p,q €N, so sing(F) is at worst nodal. [

To describe the isolated points we have,

1.3.10 Further Fact On blowing up a foliation (X, F) with canonical singularities, X smooth of dimension
3, in points we may suppose any isolated singularity has either,

(a) Semi-simple part of full rank, and is log-flat.

(b) Semi-simple part 0 = a:a% +)\y8% , A€ C*, withy = 0 in £ if it is log-flat, or z = 0 the local equation
for £ otherwise.

proof The co-tangent bundle of any component of £ is an invariant subspace of the 1st order linearisation,
so (a) is automatic, as is (b). O

The non-isolated points of full rank have already been described in 1.3.2-4, and so we have,

I.3.11 Final Fact Let (X, F) be a smooth foliated stack with canonical singularities of dimension 8, then
after a sequence of blow ups in points we obtain a modification p : (X, F) — (X, F) such that any singularity
not described by 1.3.9 or 1.3.10 is a point of a non-isolated component of WB(]?) Furthermore any connected
component of WB(]-N') is either everywhere log-flat or not at all. In either case if £' is the part of £ other
than components which are weak branches then as reduced stacks, &' N W (F) = WB(F) = singF N W (F)
and is a simple normal crossing divisor in W . Finally for p € N, q € NU {0} the Jordan form at such points

is one of,
(a) 0= :UB% + v(y, z)y”zqa% , v(0) # 0.

(b) 0 =22 + vy, 2)y?21 L , v(0) £0.

(¢c) y, z are Jordan coordinates for a canonical plane field § with

0
0=z + V(yaz)ypzq(S: V(O) 7é 0.
Oz
In all cases y = 0 is a component of &', and z = 0 too when q > 0, except for (a) when p = 1 and the
singularity is log-flat.

To finish this section let us make,

I.3.12 Remark/Definition Notice that in respect of the various descriptions 1.3.9-11 we do not claim,
nor care, whether the said forms enjoy any sort of stability under further blowing up. The descriptions
are, however, convenient, and so we introduce: Any of the singularities described in 1.3.9-11 will be labeled
convenient. Furthermore we will extend the definition to further suppose that a log-flat singularity of type
1.3.10(b) also has the plane z =0 in €. This, as ever, can be achieved by blowing up in points, albeit that
this may create singularities of type 1.3.2 if A € N.

I.4. Invariant Curves in 3-D

We wish to tabulate the possibilities for invariant curves through the singularities of a foliated 3-fold
(X, F) with convenient singularities. The discussion is local and even formal in the completion of points of
sing(F)(C), so throughout let X be a complete scheme like étale neighbourhood of 0, with 0 a local generator
of the foliation affording a Jordan decomposition 0g + dn. A more general discussion of the possibilities for
a germ C of an invariant curve is already in [M1] V.4, so we content ourselves to a quick resumé with a little
extra detail, taking only an interest in invariant curves not factoring through £. To begin with,
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I.4.1 Case 1 0 is isolated of full rank.

Here things are log-flat, so take y = 0 in £, and normalise by way of ds(y) =y = d(y) = y with A, u the
eigenvalues of Jordan coordinates z, z. Notice,

1.4.2 Fact If A, respectively p, is not in Q4 then x, respectively z, vanishes on C. In particular if A\, p ¢ Q
or A, p € Qco then C is the necessarily smooth curve r = z = 0.

Plainly this leads to,

I.4.3 Sub-case 1(a) A\ € Qp, p € Q_. Renormalise by way of ds(y) = d(y) = py, Os(x) = qz, ds(z) =
—rz; (p,q,7) =1, p,q,r € N. As such the plane z is invariant, and the induced foliation is either semi-simple
or it is not. If not, whence p = 1 there are no curves, otherwise they’re of the form,

p

2=0, y? = ca?, c € P/(C)\{0}, p= o 1= o

Similarly we have,

I.4.4 Sub-case 1(b) A\, u € Q4, so re-normalise as above, but with 0s(z) = rz. The only canonical
singularities admitting a curve not in £ are,

(I) ¢g=r, and Oy = :ra%.

(1) r =ip+jq, 4,5 € N, (p,q) = 1, i minimal amongst such representations of v, and, On = f(m,y)%,
where,

flz,y) = Z aqy" /"% not a power of y
0<d<[j/p]

In both cases C' is contained in Oy (z) = 0, so 1(b)(I) is like 1(a) modulo interchanging = & z. On the
other hand 1(b)(II) is a bit fastidious, so let’s punctually blow up to improve it. Under such a modification,
for p # ¢, there are 3 isolated singularities, two of type 1(a) and one of type 1(b). When eventually p = ¢ =1,
we get one isolated singularity, and a non-isolated one without weak branching, so we can subordinate this
to other cases to be discussed presently. Before this observe,

1.4.5 Case 2 0 is isolated with Os of rank 2. If it is log-flat, there are no curves outwith £, otherwise the
only such curve is the weak branch itself.

As to the next case, which contains 1(b)(II) after blowing up,
1.4.6 Case 3 0 is non-isolated of rank 2.

Again we normalise in this necessarily log-flat situation by 9s(y) = d(y) =y, y = 0 in &, take z to be
the non-zero eigenfunction of s with eigenvalue A, and z the nil-function. Consequently z is zero on every
curve, and,

1.4.7 Fact If A ¢ Qy, then C is the necessarily smooth and invariant curve x = z = 0. For A € Qy, the
plane z = 0 is invariant, and for the normalisation O(y) = 0s(y) = py, 0s(z) = qz; p,q €N, (p,q,) = 1.
The description is as per 1.4.3.

This leaves us with weak branching to consider around curves, i.e.
1.4.8 Case 4 0 has a non-isolated singularity in the non-log-flat weak branching locus.

Consequently the curves lie in the weak branch W, and are described by,
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1.4.9 Fact Things as above, with C not contained in sing(F), then sing(F) is smooth and everywhere tangent
to the induced foliation in W, i.e. the Jordan form is :ra% + V(y,z)ypﬂa%, p €N, v(0) #0, and C is the
curve © = z = 0. Plainly there is a unique such curve for every such point of sing(F).

One should not, however, be fooled by this/develop a false sense of security, i.e.
I.4.10 Remark/Definition/Warning The curves in the weak branching locus which are invariant by the
foliation induced on W behave in many respects like the closure of invariant curves in the smooth part. Unlike
other curves in sing(F), the map from the co-normal bundle of F to the curve vanishes, and they merit a
name such as singular solutions or singular leaves. At a generic point of such the Jordan decomposition
is a:a% + V(y,z)yp%, v(0) # 0.

1.4.11 Case 5 9 has a non-isolated singularity at the weak branching locus, which is supposed log-flat.

As ever we take y = 0 a component of £, and normalise by d(y) = 9s(y) = y, with y, z, z Jordan
coordinates. Consequently the curve is given by x = z = 0. A useful description of this curve may be given
in terms of invariant hypersurfaces. Indeed suppose f, = 0 is an irreducible local equation of such with the
property that,

fo=gn(x,2) +y"hp, n €N

then by virtue of the invariance under dg, we obtain,

y"{nhy, + y%—f;} € (fn)

Things are factorial, so h,, = ¢, fr, — y% for some function ¢,, and whence,
oh
fot1 = fa(l = cay™) = gn + yn+1hn+1 (= _a—yn)

the infinite product [](1 — ¢,y™) comfortably converges at the formal level, so if our hypersurface isn’t y = 0
it can be described by an equation g(z,z) = 0. This must be invariant under dy, so we conclude,

1.4.12 Fact Let the singularity be as per 1.4.11 (or even 1.3.11) then there is at least 1, and at most 2,
invariant hypersurfaces through the singularity other than the weak branch itself. Together these hypersurfaces
form a simple normal crossing divisor, so that, in particular, an invariant hypersurface is determined uniquely
by the image of its co-normal sheaf in the residual co-tangent bundle. When there are two such hypersurfaces,
their intersection is the curve not in &.

I.5. Convergence & the 3-D Beast

By definition a beast occurs when the foliation passes from weak branching to a semi-simple part of full
rank, and in doing so fails to be log-flat. Consequently,

1.5.1 Definition In the presence of convenient singularities the Jordan form of a 3-D beast in appropriate
coordinates is & = m% + z”ya%, where y = 0 is a local equation for £.

At first glance this looks pretty trivial, but in reality it’s anything but, since the Jordan form may fail
to exist in anything other than the completion of a point. To see this, let us discuss in somewhat greater
generality, the behaviour of the Jordan form around non-isolated, non-weak branching singularities. As ever
the discussion is local, whence scheme like, and log-flat, so there is a coordinate y with y = 0 describing
a component of £, and z another coordinate such that x = y = 0 defines sing(F), or more accurately the
non-weak branching component Z, with d a local generator of F. The preferable way to normalise is to
take O to be the identity on the co-normal bundle of Z in y = 0, so dz = = + a(z)y, dy = A(2)y, supposing
of course, A # oo. Consequently we can diagonalise the linearisation of d in End(Nz, x) iff 1 — Ala. In
neighbourhoods of the beast this is not a problem since X is close to zero, otherwise, and quite generally if
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vp is the valuation at a point p € Z, we can take a such that v,(a) < v,(1 — A). Similarly we want a good
coordinate z on Z, so consider d as an element of End(Qx ® Oz), then a priori, 9z = b(2)z + ¢(2)y, modI%.
To find z with 9z = 0 mod I% is only obstructed if A = 0, but since we’re supposing that the weak branch is
in convenient form this obstruction doesn’t present itself, so that apart from around A = 1, all points admit
an étale neighbourhood such that 0 is semi-simple in End(Qx ® Oz), while at points p with A(p) = 1 we
have the situation,

[

with a locally polynomial of degree < v,(1 — A).

O =
o > O
o OO
—_1

Now let’s consider the situation under completion in Z, with X the corresponding étale formal neighbour-
hood, and X, the same in the analytic topology. On the latter we can consider a neighbourhood defined
by A ¢ Q, with for the moment A non-constant, and we have,

1.5.2 Fact On Xan\A_l(@) we may find coordinates x,y, z such that,

Oz =1z,0z=0, and Oy = \(2)y

proof We've already done this mod I%, and one proceeds by induction mod I%. O

Apart from this, the situation is rather more complicated. There are of course, subcases determined by
Q- and Q4 , so let V_ and V, be open sectors around either of these, then as per 1.5.2 we obtain,

1.5.3 Fact Over V_ there is a coordinate X defining a hypersurface containing sing(F), everywhere transverse
toy =0 such that 22 =1 (mod I).

Any improvement beyond this is highly local, i.e.
L1.5.4 Fact Let p € X,,, with \(p) = —m/n, m,n € N, (m.n) =1 then for v = v,(A +m/n) we have Jordan
coordinates x,y,z such that,
Or = nz{l + N(z,2™y™)}, Oy = —my{l + M (z,2™y™)}, 0z = L(z,2™y")
where L, M, N have degree < v in z, and x™y" divides L.
The situation around V is both better and worse, i.e.

1.5.5 Fact Around Vi we can find coordinates x,y, z such that 0z = 0, Oy = A\(2)y, and,

o0
Or=z+ Z an(2)y"
n=1
Furthermore if p € sing(F), then we can take Ox = x in a neighbourhood of p unless X\ € N1, In the latter
case with A\(p) = 1/n, this further simplification is possible iff vp(an) > vp(A —1/n).

Before interpreting these results let’s observe that A is defined globally on the component Z. Indeed %

defines a global section of H°(Z, K ) as does the trace, which gives a map X : Z — P!, and in neighbourhods
of infinity we have,

1.5.6 Fact Renormalise at infinity, so 6(y) = y for a possibly different field 0, then there is a smooth
invariant hypersurface in the completion of X in Z given locally by © =0, with x =y = 0 defining Z.

As such the existence of £ = 0 in the completion X of X around Z is obstructed only at 0 and N~!.
Returning therefore to our local set up we observe that one of two things happens, i.e.
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I.5.7 Fact Suppose indeed A(p) = 1/n, n € N, and in the notation of 1.5.5, vy(an) < vp(A — 1/n) with m

the difference, then on a neighbourhood A > p ofX there is an invariant hypersurface through p of the form
y" + t™x for a suitable parameter t at p.

proof In the situation as described we can certainly find A so that dx = x + a,y"™ for a possibly different =
to that in I.5.5, with v, (a,) < vp(A —1/n). The desired surface is then the component of,

T+ apy”

which contains sing(F).
Consequently we arrive to,

I.5.8 Fact/Definition Let ?E;n be an appropriate analytic neighbourhood of X minus its beasts, then there
is a formal substack W of ?Ea*n defined uniquely by the condition that its completion at some point of a real
blow up in some beast is the completion of the weak branch of the beast in the same. Furthermore at a given
beast, taken in the notations of 1.5.5, to be x =y = z = 0, the following are equivalent,

(a) W extends to a neighbourhood of 0 in 2\?@”, and we say that the beast is tame.
(b) an(p) =0, for almost all p, with A\(p) =1/n.

(c) For almost all p with A\(p) = 1/n, there are two invariant smooth hypersurfaces through p containing
sing(F).

(d) For almost all p with X\(p) = 1/n, there is an invariant curve through p which does not lie in E.

proof That W exists in /'\A,’a*n is a consequence of the uniqueness discussion in 1.3.3. Condition (b) implies
(a) by direct calculation. Conversely if we have (a) then 1.3.2 gives (b), which is certainly equivalent to (c)
by the same. As for (d), for almost all p with A(p) = 1/m, v,(A—1/n) = 1 so we have (c) iff (d) by 1.3.3. O

Regrettably, therefore, most beasts will not be tame and we deduce,

1.5.9 Final Fact If the beast is not tame, it is not possible to express it’s Jordan form convergently. Not
only does this apply (unsurprisingly) to convergence in the strict sense, it also applies after real blowing up.
Indeed there are not even finitely many sectors determined by arg(y), arg(z) (which modulo further blowing
up, can always be supposed to define any asymptotic expansion about the origin) on which the weak branch
x =0 can be supposed convergent.

I.6. Higher Convenience

We will proceed as per the convention of 1.3.1, so that (X, F) is a foliated stack with log-canonical singular-
ities, and &£ D sing(F) an invariant divisor that we will augment at will by appropriate modification. The
dimension is now arbitrary, and to understand this situation we will need a higher dimensional resolution
theorem /hypothesis, i.e.

I1.6.1 Hypothesis In the 2-category of formal stacks over C consider the following simple modifications
p: (X, E,F) = (V,D,G) between foliated log-stacks,

(a) p is a blow up in an invariant centre.

(b) p is the extraction of a root of a component of D.
Then for any formal stack (Y, D,G) there is a sequence of simple modifications,

(X)g)j:) - (ynypnagn) — (ynflapnflygnfl) —_— ... — (ylaplagl) — (y();DO;gO) = (y,D,g)

Pn p1

such that (X,E,F) has log-canonical singularities with X smooth and £ simple normal crossing.
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Notice that pseudo-reflecting monodromy around invariant divisors is irrelevant to any of the enunciated
properties of (X, &, F) so infact,

1.6.2 Fact Given (X,E,F) as above we may kill any extra pseudo-reflecting monodromy that we may have
introduced to get a map w™ : (X,E,F) = (Xo,E0,Fo) through which the composition of the p’s factors,
(Xo, 0, Fo) has all the desired properties, and in addition is an honest birational modification of (¥,D,G).

Just as per dimension 3, the critical object is the weak branching locus. From the higher dimensional
standpoint, we only really care about points which are non-log flat so introduce,

1.6.3 Definition A point £ of X is said to be in the (very) weak branching locus, (V)W B(F) if it is not
log-flat, and the linearisation of a generator O of the foliation at & has semi-simple part of rank strictly less
than the co-dimension of sing(F).

Notice that the use of the word very is simply intended to avoid confusion with the possibility that
log-flat points may admit weak branching. In practice we’re unconcerned about this so, as the parenthesis
suggests, the word very may well be omitted. In any case, observe,

1.6.4 Fact After further modification by blowing up in invariant centres the non-log flat locus and very weak
branching locus are synonymous.

proof Indeed suppose otherwise, then at a point £ we have as many eigenvalues as the co-dimension, so the
eigenfunctions actually define the singular locus, which must, therefore, be smooth and after blowing up in
this centre every point over £ becomes log-flat. The global proposition reduces to the above local discussion
by the compactness of the Zariski-Riemann surface and the existence of algorithmic resolution. O

The redeeming feature of the weak branching locus is,

1.6.5 Fact (cf. [M1] V.4) Let ¥ be an affine formal scheme complete in the Iz-adic topology of the singular
locus Z of a foliation by curves such that,

(a) ¥ and Z are smooth.

(b) there is a local generator of the foliation whose linearisation mod I% admits a non-nilpotent Jordan
decomposition.
then there is a unique formal invariant subscheme ¥, the weak branch, whose co-normal bundle is given by
the vanishing of the non-zero eigenvectors mod 1%. In particular for X the completion of X in a component
Z of, say, VW B(F) there is an open formal algebraic stack @ (containing at least the points of Z where the
number of eigenvalues is that of the generic point) and a closed irreducible formal substack We(z) of @, the
weak branching stack, which has exactly this property at the generic point.

Observe, in particular, by the definition of formal localisation that ¥¢(z) may very well be defined apriori

by functions with essential singularities, and its Zariski closure could easily be not just all of X but even X
when closure is understood formally. Given LCR, however, this doesn’t happen and we’ll establish,

1.6.6 Claim Suppose LCR then every weak branching stack has a formal Zariski closure of the same dimen-
sion, and by a sequence of simple maps we can achieve.

1.6.7 Emb(beded)LCR Not only may we suppose after a sequence of simple modifications that (X,&,F) is
smooth, £ has simple normal crossings and F has log-canonical singularities, but we may suppose that every
(very) weak branching stack considered as a formal substack of X completed in the appropriate component
of sing(F) has the same properties.

proof We proceed by a double induction in the 2-category of formal stacks. Firstly we induct on the
dimension n say, of X', so suppose the whole statement for anything of dimension at most n, and then induct
by the co-dimension of the weak branching stack. In particular if Z is the substack of W B(F) where there is
exactly one eigenvalue then as per 1.2.1, it’s immediate that we can find a smooth invariant formal sub-stack
Wi of X completed in Z. Now apply EmbLCR to W; and we're off and running, i.e. suppose we have
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not only proved that every weak branch of co-dimension p has a well defined equidimensional formal Zariski
closure, but that we’ve also got the embedded resolution property for each of these.

Whence let Z be a component of WB(F) where the weak branch has co-dimension p + 1, and as per
1.2.2, we can suppose that Z is smooth if our initial interest is to prove that it admits an equidimensional
Zariski closure in the completion of X in Z, which we may aswell suppose is synonymous with X. The
existence of the Zariski closure, however, is local at a point { € Z. Furthermore, where the point is generic,
in fact when the number of eigenvalues is exactly p + 1, there’s nothing to prove, so we may in fact suppose
that the number of eigenvalues is ¢ < p, so after, possibly additional, completion in X to say X we have a
well defined W, 3 ¢. On the other hand Z is smooth, and the weak branch is already generically defined,
so the existence of an equidimensional Zariski closure at ( is really a question of the surjectivity of some
maps between reflexive O z-modules, and since completion is faithfully flat we may suppose that X not only
is X but further complete as we please. In particular by way of EmbLCR for W, we find a smooth formal
substack of co-dimension p + 1 — ¢ which is precisely the Zariski closure of Wg(z) at (. Plainly W¢(z) has
dimension smaller than X', and we may apply EmbLCR to it to conclude. O
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I1I. Rational Curves in 3-D

II.1. Cone Theorems

We proceed from the previous local discussion 1.4 to the global study of curves in dimension 3, or more
precisely the extremal sub-cone NEg,—o := {a| Kr.a = 0}. Necessarily for (X, F) a gorenstein foliated
3-fold with projective moduli and K nef, any extremal ray in NEg . _o is an extremal ray in NE; (X)g, e.g.
[K] II.4.10.3. We begin by filtering NEx ,.—o by co-dimension, i.e. define cones by,

I1.1.1 Definition Let things be as above, and put,
(1) Py = {a € NEg,—o|D.a >0, VD € NE*(X)}
(2) P = linear span of {a € NEg,—¢ |3 an invariant divisor D with D.a: < 0}

(3) P, = linear span of {a € NEg,_¢ |3 a non-invariant divisor D with D.a: < 0}

Plainly Py + P + P» is NEk,—¢. Furthermore a class in P, or more correctly an extremal ray R not
in Py + P is necessarily represented by the class of a map f : £ — A with invariant image, albeit that
we should apriori include the possibility that the image is completely singular. Indeed since the D of P, is
non-invariant, the tangency locus Op(Kx + D) is a Cartier divisor on D which must contain the ray, then
Kr + 2D is the tangency with the tangency, etc., so R must be an invariant curve with K».R = 0. Plainly
the number of such classes is countable, and we have to do similarly for Py, i.e.

I1.1.2 Claim There are countably many invariant divisors D; and invariant curves R; such that,
NEg,—0 = Py + Y (ip,)«{NE(Di)k,=0} + Y Ry R;
i J

proof Since the chow scheme of the projective moduli X of X exists, and has countably many components,
with invariance being a closed condition, the only non-trivial case occurs when (X, F) has a meromorphic
first integral. After a sequence of blow ups 7 : X — X’ we can assume that the integral is resolved by a map,
so a generic member of the family of divisors in question has trivial normal bundle, whence on X we only

need countable. However, Py (X') pushes forward to Py (X'), so on X we only need countable too. O

Notice that we can further refine the situation within a given invariant divisor Dy, or better invariant
substack D. To begin with, notice that,

NEx,=0 = Py + ) (i0,){NE(Di)k,=0} + > _ Ry R;
' i

(3

is again a closed cone, essentially because the intersection of divisors is a curve and the moduli has an ample
divisor on it. Better still the cone NE(D)r=¢) is itself polyhedral, except in some degenerate cases that we
proceed to investigate. A priori D isn’t even normal, so let D be it’s normalisation with G, G the induced
foliations. For D it makes sense to talk about a relatively (foliated) minimal resolution p : Y — D, so for H
the foliation on Y,

Ky =p"Kg— ZaiEi
i

with |J F; are the curves contracted by p; and a; € Q4. In particular we may thus go from (Y, H) to a
canonical model (Yo, Ho), cf. [M2], by po with,

K}[ = pSKyO + ijCj
J
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where | J Cj is contracted by po, and b; € Q>¢. Finally K is related to Kz by,

K;=Kr—Z

for a possibly empty curve supported on sing(F), where here, and throughout, we’ll be notationally a bit
loose about the difference between a divisor on D and it’s pull-back to D.

Plainly we can immediately exclude the possibility that # is of general type, since although NEgk,, —¢
may be non-trivial, it’s generated by finitely many invariant curves. The other cases are more fastidious, so
let’s suppose as much as we can, namely: D is non-redundant, so that there is an extremal ray R supported
in D, and a supporting function Hg vanishing on it, but strictly positive on the closed sub-cone obtained by
summing over the invariant divisors other than D.

Now, since everything is gorenstein, any curves around which D isn’t generically smooth are invariant,
and since we can plainly suppose that R has no support on such curves, there is an unambiguous sense to R

as a class in NSy (D) understood in Mumford’s sense, and we divide by cases, i.e.
I1.1.3 case (I) R? < 0.

This is rather easy. Indeed as per [K] 4.12.3, we may suppose that R is an honest curve C' with non-
invariant proper transform C'. Consequently the adjunction formula of [M2] gives (K3 + C').C > 0, so that
for a possibly empty divisor E contracted by p,

(Ks+C).C =Kz (C+E)+C*>KsE+(C*-C* >0
g g g

and we conclude to the absurdity, Kz.R > —R? > 0.

I1.1.4 Case (II) R?2 >0

This can only happen if every curve in D becomes equivalent when pushed forward to X', and of course
H must have Kodaira dimension 0. Better still there can be no invariant curves on (Mo, Ho), sing(F) N D
has dimension at most 0, and (), ) coincides with (D,G). In particular G, x G,, or G,, x G,, actions are
excluded, or even extensions of elliptic curves by G, or G,,. Notice in addition that if (V,H) = (Yo, Ho) is
a smooth foliation (e.g. the remaining case of an abelian surface) then sing(F) N'D = 0. Indeed otherwise
by blowing up in the singular point, and normalising around the exceptional divisor, we would construct a
prime divisor of C(Y') of zero discrepancy contrary to the hypothesised terminality of (D, G). Furthermore
singularities of X or Y (actually in this situation they coincide) where F is smooth must give rise to invariant
curves, so everything may be supposed smooth. Observe, however, that either Op(D) or Op(—D) is effective,
or both (i.e. Op(D) is numerically trivial, which gives us what we want anyway). To elaborate, there is at
most one real class in co-homology tangent to the foliation, and since there is an effective such coming from
invariant measures, we find that either D? or —D? is in Py, which is nonsense.

I1.1.5 Case (III) R? = 0.
This requires sub-division to discuss the behaviour,
sub-case (a) (Mo, Ho) has numerical Kodaira dimension 1.

The index theorem gives Ky, Ky & R all parallel. Consequently if the foliation is parallel to the
Kodaira fibration, R is elliptic and we’re done. Furthermore R is extremal, so we conclude that Y = D
with sing(F) N D of dimension at most 0. In addition if Y # )y, and the Kodaira fibration exists, then
the fibration considered on ) has an invariant fibre, which is nonsense, so we reduce to the possibility that
(V,H) = (Do, Ho) is perfectly smooth, and as above so are D and X, since otherwise we would get invariant
curves parallel to R. More than this we cannot really say except to note that R = K#.D, and that Hg is a
supporting function.

The sub-sub-case of Hilbert-Modular surfaces is less satisfactory, since (), H) may not coincide with
(Yo, Ho), and sing(F) ND or sing(Y) or sing(X) could have support on the curves contracted by pg. Never-
theless R is still Kx.D, and again Hp is a supporting function.
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sub-case (b) ()b, Ho) has Kodaira dimension 0.

Arguing as above, and noting that the cones for G, X Gy, or Gp, X Gy, actions are generated by invariant
curves, we reduce to (Yo, Ho) = (M, H) = (D, G), with F smooth around D, and, if they exist, sing(X) and
sing()) coinciding in an invariant curve. As such there are the following sub-sub-cases up to étale covering,

(i) Things arise from the extension of an elliptic curve by G, or G, so R is a non-invariant rational
curve.

(ii) The foliation is a product E x B, with E elliptic, and R is a non-invariant section e X B.

(iii) The foliation is of Kronecker type on an abelian surface. As such there is a risk that the cone may
cease to be polyhedral if the surface isn’t irreducible, or worse the product of a complex multiplication
curve with itself.

Consequently Hp is a supporting function except possibly in (iii) if the cone is round. In all these cases,
however, we can play the D? or —D? is effective trick to find a special class in P, and this is what forces
Hp to be a supporting function when the abelian surface of (iii) has a 2 dimensional cone.

sub-case (c) (Yo, Ho) is a conic bundle.

The statement itself is something of an over simplification, since what one should really do is divide
Zyeq into its parts Z' + Z" which are invariant and non-invariant for G, then work at the level of the
log-canonical bundle Kz + Z". When the log-Kodaira dimension is non-negative, the essential deduction
(D,G,Z") = (V,1,Z") = (Yo, Ho, Z") continues to work, and we deduce that we have an isotrivial family of
quasi projective curves after an étale covering. Consequently if R isn’t invariant its a section, and coincides
with Z" which is invariant in X. In the remaining case, we observe that Z" cannot be empty since Kr
is nef, and by 1.4.11 necessarily has just 1 component with invariant curves factoring through the weak
branching scheme. As such, by op. cit., the degenerations of an irreducible fibre (which itself can only
intersect sing(F) in Z'') only intersect sing(F) in Z". In particular the quadratic form of the degeneration
of the generic rational curve has no non-zero entries, so a minor variant of the standard lemma shows that
a positive sum of Z" and the components of degenerations is equal to R, since, incidentally, the extremality
of R implies K3.R > 0.

To summarise, therefore, we have,

I1.1.6 Fact Let ]5+ be the necessarily closed cone defined by,

Py + Y NE (D)
k

where Dy, is an invariant Weil divisor whose normalisation (equal to itself if X is smooth around Dy, )is
an étale quotient of an abelian surface, with Dy Nsing(F) = 0, and the induced foliation of Kronecker type,
then,

NEKJT:[) = 75+ + Z MRZ

where the R; are extremal rays having one of the following forms,

(a) R; is a F invariant, including possibly completely singular, curve.

(b) R; = Kx.D; for D; a Weil divisor whose normalisation D; is the minimal model of a foliated surface
of numerical Kodaira dimension 1, and which intersects sing(F) in at most points. Indeed if D; has
actual Kodaira dimension then all of X, F, (D;,F) are completely smooth.
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(c) R; is either a rational curve not invariant by F, or transverse to the foliation on a divisor whose
normalisation is a quotient of a trivial elliptic fibration co-inciding with the induced foliation.

In addition the rays R; ¢ ]5+ are locally discrete, i.e. the cone is locally polyhedral.

proof/elaboration Notice that all the closure/discreteness statements are based on the same tick that if
R ¢ P, then there is a divisor with D.R < 0. O

I1.2. An Index Theorem

A good clarification of the nature of the cone Py arises from wholly general considerations about numerical
Kodaira dimension. Indeed let X be a normal projective variety of dimension n, say over a field, but of
arbitrary characteristic, H an ample bundle, and K a nef. divisor with K™ = 0, but K" ! # 0. Necessarily
K™ 1is a class in the cone A;(X) of nef. curves, and indeed in the extremal face A;(X)g—o. Now suppose
that it’s not everything in this face, then there is a not necessarily effective divisor L positive on K"~ !,
vanishing on some ray R of A;(X)g—o. We'd like to believe that a small perturbation of K by L has lots of
sections, and rather surprisingly this turns out to be easy, i.e.

I1.2.1 Fact (cf. [B&] 4.4) Suppose € > 0 is sufficiently small and rational, then for d € N sufficiently large
and divisible,

d"e
(n—1)!

proof Choose H a priori so that Ly := H + L is ample, then iterated application of exact sequences, p < ed,

rO(X, KL > K" 'L

0 — H°(X,Ox(dK + edLy — (p+1)H)) = H°(X,0x (dK + edLy — pH)) = H°(Og(dK + edL, — pH))

gives the estimate,

ed—1
hO(X, KL > (X, KLY — >~ h°(H, KLY

s &
~ nl
d"e el

K L))" —
(K +eLy) "

Certainly therefore there is a § > 0 such that dK +eL > §H as effective Q divisors whence the absurdity
that R = 0, which we’ll note explicitly by,

I1.2.2 Fact If « € 4;(X), and K. =0, then a € Ryo K" %
Notice also that an even more trivial variation of the same argument shows,
I1.2.3 Claim If infact K is nef, and K™ > 0, then A;(X)N (K =0) =0.

Presumably the general situation of numerical Kodaira dimension v € {0,...,n}, is described by « €
A(X)N (K = 0) iff « = K”.3, where § is a class of ‘Demailly-Peternell’ type, i.e. the intersection of
n — 1 — v amples on a modification X — X. The other extremal case of v = 0 is of course [B&]. Regardless
the discussion shows that in our main case of interest for foliations the cone is polyhedral, i.e.

I1.2.4 Claim Suppose that (X, F) is a foliated gorenstein 3-fold with K nef, and Q-gorenstein in the usual
sense, i.e. Ky is a Q-bundle, and that the cone generated by K and Kx contains a big, then,
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NEk,=0 =Py + Y Ry Kz.D; + Y RyR;
i J

where the R; are invariant curves with Kr.R; = 0; the invariant divisors D; are as described in II1.1.6(b),
and for K% #0, Py is nil if K3 #0, and Ry K% otherwise.

proof Notice that the condition on K & Ky implies that things like I1.1.6(c) don’t happen, i.e. in the
notation of op. cit. one has D? or —D? € Py, but these classes intersect Ky in zero, which is nonsense. [

It’s probably also worth observing that there’s a nicer looking cone defined, for example, inside positive
measures or co-homology, or even projected into Néron-Severi, but generated by transverse invariant mea-
sures. Let’s give some notation to this such as NE(X/F)k,—o, then inside this cone the only terms that
one finds in general are of the form P,, Ry R; for R; an invariant curve, V.2, proving this relies on some
even more delicate results in dimension 2, but unfortunately it’s a priori difficult to relate extremality here
to extremality in NEg,—o, and the latter is what underpins flopping.

I1.3. Tabulation

Plainly as one can see from I1.1.6 or I1.2.4 we aren’t actually interested in all the invariant rational curves,
but only those which intersect Kz in zero, and are not contained in the singular locus. Consequently let
(X, F) be a foliated gorenstein stack with Kz nef, and f : £ — X the normalisation of an invariant 1-
dimensional substack intersecting Kz in zero. Furthermore let G be the generic stabiliser of £, then there
is a 1-dimensional orbifold £ and a group stack G over £ generically equal to G such that £ = [£/G]. On
L we have two types of distinguished points, viz:

(a) I; € £(C) maps to sing(F), with m; the order of it’s stabiliser.
(b) I; € £(C) does not map to sing(F), but has non-trivial stabiliser of order n,;.

Consequently if we let g denote the genus of the moduli of £, with I, J index sets for points of type (a)
or (b), then the adjunction formula of [M1] 1.8 reads,

i— R —1 1
oz#GKf.fc:(29—2)+#I+ZST+21_;
iel ¢ jeJ J

where s;, R; are the segre class of sing(F), and the ramification calculated on an étale scheme like neigh-
bourhood of [;, cf. op. cit. 1.8.6. Necessarily, s; — R; — 1 > 0, so we deduce,

I1.3.1 Fact If the moduli isn’t rational, L is an elliptic curve, with £ wholly contained in the smooth locus.
Thus, supposing rational moduli, we profit from the inequality #1I + #J < 2. In particular,

11.3.2 Similar Fact If #1 = 0, then L is wholly contained in the smooth locus, and admits an étale cover
by an elliptic curve.

The most important case though is,

I1.3.3 Fact/Definition If #I =2 (so #J = 0), then s; = R; + 1, for both points l;, i € I, which will be
refered to as the ends.

As a quasi sub-case this contains,

11.3.4 Fact If #J = 2, and #I # 0, whence = 1, s; = R; + 1 at the unique point l; mapping to sing(F).
Consequently the universal cover of L is P!, and we get a map f : P* =V, for V — X étale such that f is
as per I1.3.3
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To take care of the remaining cases with #I = 1 observe that a local generator 9 of F around the singular
point f(I) lifts to a vector field on scheme like étale neighbourhoods of I on £ and the order of vanishing v
of 0 applied to a parameter at [ on the same is well defined and satisfies,

Si—Ri—IZ’U—IZO
In particular we cannot have v = 1, and [M1] IV.10 gives further restrictions, i.e.

I1.3.5 Fact If #I = #J = 1, then nj|m;, and v = m;/n; + 1. As such, if the singular point is scheme like
in X, L is everywhere scheme like and v = 2.

In dimension 3 we can of course make,

I1.3.6 Assumption (X, F) is a smooth foliated stack with convenient singularities with the only non-scheme
like ones being of Cano type, i.e. with Jordan form

o1+ alay, 2)}= 5

and Z /2 acting via © <> z; z = —z, p € N. We will further assume that convention 1.3.1 is in force.

) 0 o )
" y{1+b(my,2)}8y+z {1+ c(zy,2)}

Consequently we deduce,

I1.3.7 Fact Things as per I1.3.6, then at least after further blowing up in points, and up to finitely many
exceptions we may assume that any invariant curve, rational or otherwise, not factoring through £ meets
sing(F) in a non-isolated convenient singularity which is scheme like.

proof The only isolated possibilities which may not be finite in number are 1.4.3 & 4, and these occur in
a unique formal hypersurface through the singularity in which the induced foliation is log-canonical rather
than canonical. We can resolve this singularity to canonical, at which point the proper transform of the
surface contains a non-isolated component of sing(F) through which all but finitely many of the original
curves must pass. With a little more blowing up, we may suppose that this new non-isolated singularity is
everywhere convenient. This reduces us to non-isolated singularities, where it is possible for non-scheme like
singularities to exist, but these are easily removed. Specifically,

(a) The gorenstein cover of the moduli may have the property that non-isolated points of sing(F) meet
the non-scheme like points in a point. This doesn’t happen after blowing up in the appropriate component
of sing(F), which is necessarily of the form II.3.6.

(b) X is ramified in invariant divisors over its gorenstein cover, in which case there is a Xy between X
and the cover, cf. [M1] 1.7.4, with the same Kz, so we’ll work on X} instead. O

Putting this together with I1.3.3-5 we obtain,

I1.3.8 Fact With finitely exceptions and (X,F) of dimension 3, any curve f : L — X invariant by F
not factoring through £ meeting sing(F) with Kr.;L = 0 has a scheme like analytic neighbourhood (formal
would be wholly sufficient) X — X such that P! is the normalisation of the pre-image of L and indeed we
have a fibre square,

(X,F) (T P!
(X, F) (T L

Furthermore f(P') meets sing(F) in either one end 0, or two ends 0 and oo both of which lie in non-isolated
convenient components, and the the possibilities are described as follows,

(I) There is only one end f(0), and f factors at f(0) through a non-log flat weak branch W. As such f
has smooth image and the Jordan form at f(0) looks like, a:a% + V(y,z)yza%, v(0) # 0.
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(IT) There are two ends albeit that f(0) may equal f(oo). In the latter case the branches over f(0) & f(oo)
are no worse than plane cusps, and both these branches lie in the same plane. FEqually both ends may
be disjoint cusps, or disjoint smooth, or a combination. Regardless the singularities at f(0) & f(o0)
are log-flat, and the parameter v prior to 11.3.5 is always 1.

proof Applying I1.3.4 we may assume that the only non-scheme like points on f(L£) have stabiliser Z /2, and
there are 2 of these at points other than the ends. Consequently the fundamental group of f(L£) is either
Z/2or < a,b:b*> =1 >, and in either case the étale covering of £ by P! descends to f(£). Furthermore
(IT) is valid locally in the case where f(£) has singular image by 1.4.11, i.e. f(L) is regularly embedded in
X, whence homotopic to a tubular neighbourhood in the same. Everything else is just a corollary of the
previous tabulations combined with I1.3.6-7. O

II.4. One end

We get the case of one end out of the way first, and in the process establish some notation with,

NX/X =0(m)®O(n), m>neZ
the co-normal bundle of our invariant curve L in our formal scheme X. On P' we take homogeneous

coordinates [S,T], s = S/T the standard coordinate at o = [0, 1] etc., and over the cone V(Ni//x): take z,y

local generators of O(m), O(n) respectively at 0 with £, n the same at infinity, so that x = t"™¢, y = t"n.
The condition of one end means that on the cone we may suppose that the foliation is given by 32%. As
such, to start we do some linear algebra, i.e. write,

JHEIIH

and see how the matrix transforms, from which we deduce that we can write,

a b a—ms 0
{c d]_{ o(s) d_ns},ad—o,degcgm—n

Equally, however, not both a and d can be zero. Now what’s important is to deduce that the 2 = 0 plane
is the weak branch, so suppose this is false, and form the blow up p : X — X in the reduced structure of
sing(F) which to first order would be y = s = 0, with L the proper transform of L. Consequently Ng 1%

contains as a sub-bundle O(m), and the H-N filtration/Grothendieck decomposition is,
Ni//)? =0(m)®O(n+1)

even if m = n since H'(P',0(—1)) = 0. The condition 0z = —msz mod I7 is completely stable under
blowing up & proper transform, but after (m — n) + 1 blow ups, our matrix becomes,

A—(m+1)s O

0 —ms » A#0

and to 1st order, inside the weak branch, 0 = —msa% + 52%, so m = 0, which, incidentally, even proves
n = 0 if we were in the desired case, from which we deduce,

I1.4.1 Fact Either mod I? the germ of the weak branch coincides with x = 0, and n = 0, or Np/x =
O ® O(b), be NU{0} and L moves in a covering family.

The latter case is invariably to be considered good and will be passed over without comment. As such
we’re reduced to the situation NZ/X = O(m)® O, m € N with the O(m) function x = 0 coinciding with the
weak branch. In this situation, and wholly generally, an easy induction gives,
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I1.4.2 Fact There is a unique bundle Ox (1) on X lifting Opi(1) and generating Pic of the same. Further-
more, for any thickening X, = Spec Ox I}, p € N, sections of Ox,(q), ¢ > —1 can be lifted to X .

What in general, however, is rather false is that sections of Ox,(q), ¢ < —2 can be lifted. Indeed
even from X, to X3. This can be interpreted at the level of blowmg up. Specifically, the canonical map
O(m) —» NY L/x determines a unique curve L in the exceptional divisor E of the blow up X in L, and we
have an exact sequence,

0— Op(=E)=0; — N{ ¢ — N, = 0 (-m) — 0
Of course L = L =5 P! is the unique negative section of a Hizerbruch surface, and being able to lift to 2nd
order, amounts to asking that the H-N filtration of N’ / « 18 O(m) & O. Should this happen, it makes sense

to ask the same question on X blown up in L, so in the first instance we might say that the H-N filtration
is stable after 1 blow up, in the second after 2, and so forth. Whence we formulate,

I1.4.3 Claim Suppose quite generally (i.e. nothing to do with F), N L/X =0®0(m), m €N is stable after
p blow ups, then the unique map O(m) — NL/X can be lifted to Xpio.

proof For 7 : X — X as above, NLV/X = O ¢ O(m) is stable after p — 1 blow ups, so O(m) — NZ/X lifts

to )~(p+1. We denote the nilpotent sub-scheme that it cuts out by f/p+1, with E} the kth-thickening of E by
itself, and V}, the kth neighbourhood of L in Vp+1 for £ < p+ 1. Now consider the following diagram,

0 0
0 —— Z; p(=(p+ 1E) —— Op(=(p+DE) —— Oi(=(p+DE)=0; —— 0

l !

—

0 IVp+17Ep+1(_E) — OEerl( E)y —— OVp+1( E) — 0
0 — Iy 5 (-E) —— Op/(-E) —— Oy, (—E) — 0
0 0 0
Notice that m.Op,,,(—E) = I X/I£+X, and we assert that F*IVerlvEerl(_E) defines the required ideal.

To see this one checks by induction on 0 < k < p+ 1, that Riw*Zi p(—kE) =0, i > 0, so that the whole
diagram is still exact after m,.. Consequently the said ideal cuts out a unique regularly embedded subscheme,
Ty Vpt1, say, of Xpy» in which L has trivial normal bundle. O.

Needless to say the claim is well adapted to our needs, Indeed back at our F invariant curve L in X with
one end, on blowing up in it the curve L is necessarily invariant. Better still on X the - singularities consist
of the proper transform of smg]—' and an isolated point. A local calculation shows that L passes through the
former and not the latter. In addition the function s is still non-zero on L, so by 1.4.11, L factors through the
induced weak branch, which is in fact the proper transform W of W. Now our linear algebra prior to 11.4.1
applies to deduce that the H-N filtration of N}/ /X is stable after 1 blow up, and by induction arbitrarily so.
Consequently,

I1.4.4 Fact There is a smooth formal subscheme Wy of X whose completion at the end coincides with
the weak branch, and Np jw, = Op. In particular when X arises from the global context IL.3.8, Wy, is

algebraic, with the induced foliation being in conics.
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This passes over some subtleties in the deformation theory of algebraic stacks, but an adequate solution
to this is explained in [M1] III.2.

II.5. Two movable ends

We continue to address the case where the image L of P! in I1.3.8 is smooth. Our next goal concerns not only
two ends, but a not wholly negative normal bundle, i.e. N}/, has H-N filtration O(m)®O(n), m € N, n <0.
Now, independently of the extra hypothesis we retake the notation of I1.4, only now a generator of the foliation
on the cone is 0 = sai and for m > n the foliation is described by a matrix,

8[;]:{2 Z]{Zj],a,de(& degc<m—n

It may happen that ¢ cannot be taken to be zero. This occurs if d—a € {0,...,m —n}, in which case it’s
a constant times s2~%. In any of our two end situations ad = 0, and there is at most one non-zero eigenvalue
A (which for convenience is allowed to be zero), with a well defined semi-simple matrix,

wo=[3 8] [2 0]
o= 2 ] [ 0]

for the standard orientation of loops at zero and infinity. Equally, however, the matrix at infinity must be
singular, and always taking m € N we have the following,

at zero, transforming as,

I1.5.1 Possibilities Either, without loss of generality (I) n = 0 or indeed (II) n # 0 albeit A = —m and in
any case,
A0
AS(O) - |: 0 0 :|
Notice, however, that in the second hypothesis the matrix at oo has the eigenvalue in the bottom right

corner. In the particular case of n < 0 we eliminate this by blowing up. Proceeding as I1.4.3, with p : X X
the blow up in the component of sing(F) through oo with L the proper transform, we have an exact sequence,

0—>O(m)—>NEV/X—>(’)(n+1)—>O

which necessarily splits, so the H-N filtration is stable under this operation - which, incidentally, it may
not be if we try the same stunt at 0 or punctually. Plainly we need to make n blow ups to get what we want,
and with the final one the singularity changes from that of 1.4.7 to log-flat weak branching. Regardless the
situation is still convenient but now, N/ /x = O(m)®O, m > 0, and whether here, or in the previous, we can

think about employing I1.4.3 with 7 : X — X the blow up in L, and L the canonical section of the resulting
Hizerbruch surface. Under this operation L meets the induced singular locus in the proper transform of
sing(F) at an end of type [.4.6, and in another log-flat end, with weak branching if that’s what we had to
start with. As such we get two ends of the same type with Ag(0) — As(0), say, As(c0) — Ag(00), without
change. The H-N filtration may not, however, be stable. Should this occur then A = —a, a € {1,...,m —1},
as such,

11.5.2 Possibilities The applicability of I1.4.3, or otherwise, is described by,

(M) =X ¢ {1,...,m — 1}, and the situation is stable after infinite blowing up, so by op. cit., L moves in
the © = 0 direction.
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(I) =X € {1,...,m — 1}, but it still succeeds in being stable under blowing up, so, again L moves in the
x = 0 direction.

(ITT) =X € {1,...,m — 1}, and the situation is only stable under p € NU {0} blow ups.

Notice that the smooth formal divisor D in which L moves, has D.L = —m < 0, so it must be invariant,
since otherwise the tangency locus between F and D gives a section of H°(D,Op (K + D)). Using 1.3.3 &
1.4.11 we can describe its form. The situation is as follows,

I1.5.3 Fact Let D be the invariant divisor constructed above in cases (I) or (II), or, better, D if we started
with NZ/X = O(m) ® O(n), n <0, and effected —n blow ups in sing(F) through the end at oo to work on

p: X — X with D its image in X. Furthermore let D, D, X etc. be the necessarily global objects occuring
when things arise from the a priori global situation 11.3.8. Then in all cases the induced foliation on D is a
pencil of conics, and either,

(a) NLV/X = O(m) ® O, and the completion of D in the end at zero is the unique plane not in £ containing
the given component of sing(F), and idem at infinity if A # —m.

(b) NLV/X = 0O(m) ® O(n), n <0, and, again, the completion of D in the end at zero is the unique plane
not in € containing the given component of sing(F), while at co we have a singularity of type 1.4.7,
but the completion of D at oo is locally the divisor z = 0 of 1.4.7 with the equations of the conics those
of op. cit.

proof At zero, let X = 0 be the local equation of a Jordan coordinate distinct from s, and x = 0 the local
equation for D. By construction z is invariant with non-zero eigenvalue equal to that of X. Furthermore in
the £ = 0 plane the semi-simple foliation is smooth, given by a fibration ¥ =constant, which we may also
take to be Jordan. Whence we can write, © = xo(z) + Xh, and apply ds to conclude,

(Ah + 0sh)X = zv, v(0) # O

so X |z, and deduce that they’re the same. A quick check of possible Jordan forms reveals, however, that the
nilpotent part at zero lies in the ideal of D, so the end at zero has a removable singularity for the induced
foliation in D. Whence D, or slightly more precisely, D, is a pencil of conics. This completely proves (a), and
much of (b). As to what remains: on X the induced foliation has a log-flat singularity with weak branching.
Consequently if the singularity at co is removable in D then either we have an invariant rational curve for
every point of a component of sing(F) that contracts to the end f(c0), and this is what is asserted, or we
don’t. If, though, we don’t the induced foliation in D would have a saddle node, which is nonsense for a
conic pencil, or the curves stop intersecting the weak branching locus at a tame beast on X. In the latter
situation, the fact that L is smooth implies, 1.3.7 & 1.4.7, that D is smooth on X, which would contradict
(a) for nearby curves. Furthermore the induced singularity in D at infinity must indeed be removable, since
otherwise, we’d again get a conic pencil with a saddle. O

I1.6. Rigid Ends

From our previous discussion we see that to study rational curves L which do not move we may assume
that we have NLV/X = O(m) ® O(n), m,n € N with two ends at which the eigenvalues are —m and —n
respectively. One should, however, not be lulled into a false sense of security since,

I1.6.1 Remark/Warning We are only studying curves not in £ up to finitely many exceptions, and some
of these exceptions may be rigid yet have both positive and negative terms in NZ/X. Furthermore we’ll

eventually have to be more precise about 11.5.2(IIL), since this only reduces to the current scenario after an
operation depending on L.
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Being that as it may, in our current situation we can by [A] effect a formal contraction p : X — X, with
(Xo0,F) Gorenstein. By the theorem of formal functions I'(Ox,) is complete in the filtration FPT'(Ox,),
where,

FPT(Ox,)

— o0 P ATV
FriT(Ox,) 1 (S Nir)

By definition (X, F) still has canonical singularities, and for 0 a generator of the foliation on Xj,
equivalently all of X, we can make a Jordan decomposition & = ds + dn of the action on I'(Ox,), or, if
one prefers, globally on X. In particular, with the notations of I1.4, there are functions F,G on X with the
following properties,

(a) OsF = —mF, F lifts z = 0 over a standard affine patch around 0, and mod I} is t™¢ at infinity.

(b) 0sG =nG, G lifts n = 0 over a standard affine neighbourhood of infinity, and mod I7 is s™y at zero.

with this in mind, the assertion is,
I1.6.2 Claim Assuming, as we may, the normalisation 0s = s, t = 1/s, then t™|F at infinity, while s™|G
at zero.

proof If in a minor abuse of notation ¢,£,n are Jordan coordinates at oo, the eigenfunctions of —m are
tm+knpk and similarly around zero. O

Consequently the (formal) Zariski closure of F' = 0 on a neighbourhood of zero, respectively of G = 0 on
a neighbourhood of oo, are smooth invariant divisors Dy, Do, defined by global sections of Ox(—m), and
Ox (—n) respectively. Furthermore, by the previous argument, 1.3.2, around 0, Dy is necessarily the unique
invariant plane at 0 not in £ containing sing(F), and similarly at infinity. In particular we can perform a
formal flop.

The operation of formal flopping is described as follows. Firstly, let’s aim for the standard notation, so
let X_ be our original X, X what was the contraction Xy, and p_ the map. Now form the formal stack,
X_(%/Dy, /D), and blow up in the pull-back of L. The moduli of this X is a formal scheme, in fact a
weighted blow up of X, but the given stack X is rather nicer, since we can blow down in the other direction
to a smooth formal stack, which we simplify by putting a minimal smooth structure to obtain a formal
stack 2\?+, étale over its moduli X in co-dimension 1. As such if Dy, De,— (i.e. our old Dy, Do, ) go to
Dy 1, Do+ they no longer meet the flopped curve L, or at the stack level £, which itself is an invariant
generalised projective stack P (m,n), so potentially not generically scheme like if (m,n) # 1. Notice also
that X_, X, — X are at least formally relatively projective, i.e. they’re Prof’s, cf. [M1] IV.2.3, and whence
we summarise the situation as follows,

I1.6.3 Fact Suppose the image of f : L — X is smooth, with NLV/X > 0, and on the scheme like formal
neighbourhood X — X, X # —1, then in fact L = L is everywhere scheme like, and there is a formal flop,

(X, %)
Ve hY
(X—v]:—) (X+7‘7:+)
—Do,—; —Do,— relatively ample p_ ¢ v P+ Do +; Do + relatively ample
(X, F)

Up to some obvious technical lacunae, i.e. relative projectivity of the p’s, and algebraicity of the D’s;
this equally describes the global flop. It is furthermore an anti-flop for £_, with £, a weighted blow up of £_
containing the flopped curve as exceptional divisor. Nevertheless £y has simple normal crossings, and even
the convenience of the singularities is preserved.
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proof/elaboration Since we’re working under rather restrictive hypothesis, the only possibility for f to
have non-scheme like image is the generalised weighted projective stack P1(2, 2), or, what amounts to the
same thing, [P'/Z/2] for the standard = <> —z action. In this case our scheme like formal neighbourhood
X — X comes equipped with a Z /2 action, and we can arrange for our global generator 9 of F over X to

satisfy 07 = —0 for o the generator of Z/2. In particular, 0 = —9% — 0f; is still a Jordan decomposition,
so 02 = —0s, and eigenfunctions go to eigenfunctions. Whence this can only happen if A = —1. This
establishes all that’s been said, but also more. Indeed, we must by uniqueness, 1.3.2, have Df _ = D,

and idem for the germs & _; £, of £ through 0 and co. Also the fixed points of ¢ for our conventional
choice of coordinates are 1, —1, which are still distinct from the singularities of the flipped curve. Plainly
at the level of the completion X of X in f(L) there is only one divisor D_, say, and the flopped stack £y is
again a P'(2,2) with a single point in sing(F), which is scheme like. Better still the intermediary flap X is
just the blow up in £_, and we summarise by the obvious diagram,

I1.6.4 Fact In the missing case where f(L) is non-scheme like, we have a flop in formal stacks described by,

(X, F)
e N
(X, F) (Xy, Fp)
—D_ relatively ample p_ \, v~ p+ Dy relatively ample
(X, F)

Again it is a E_ anti-flop, the singularities are still convenient, and everything globalises, modulo the
aforesaid technical lacunae understood at the level of the moduli.

I1.7. Singular curves

Our considerations so far have ignored the possibility that the map f : £ — X" is ramified, or has intersecting
branches in its image. As such, suppose to begin with, that the image of L in the scheme like neighbourhood
X has a node, with by definition, both branches smooth. The only way this can occur, as ever up to finitely
many exceptions with no factoring through &, is at singularities of type 1.4.7, with the branches described
by 1.4.3. In particular the eigenvalue is in N, and by blowing up we reduce to the case that it’s equal to 1,
then by a further blow up contradict the simple connectedness of P!,

Consequently let’s turn to cusps but under the initial hypothesis that the two ends 0 and co are disjoint.
The unique possibility here that we need to deal with occurs when at least one of the ends has Jordan form,

0= ps -+ qu(l +aly)) -, a(0) #0

and p,q € N\ {1}. If we resolve the singularity around our cusp which we necessarily suppose of the form,
(sP,cs7,0), ¢ € C*, then the induced end at 0 has a nil matrix for it’s semi-simple part in the normal
direction. Whence the cusp must move, so that in the limit ¢ — 0, we find an invariant rational curve
given around f(0) by x = y = 0. Now the ends are disjoint, so we may aswell suppose that at co, both our
original curve, and its smooth deformation limit are smooth. However, by our previous considerations the
deformation limit must move in the divisor = 0, so in fact the curve even moves in the whole space. Notice
though,

I1.7.1 Remark Families of cusps with Kx.L = 0 in the y = 0 plane can occur, but only when there are
non-scheme like points in sing(F).

This leaves the possibility of f(0) = f(oc0), with at least one branched cusp. So, say, one branch smooth,
one branch cusped. On resolving the cusp we either get a node, which we know doesn’t happen, or we find
that we again have a nil semi-simple matrix in the normal direction at the resolved cusp, so we obtain an
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inexistent node as a deformation limit. Both branches cusped reduces to this case by way of a deformation
limit, and so,

I1.7.2 Fact Apart from finitely many exceptions (all in the weak branching locus by the way) if there is
an invariant singular 1-dimensional substack Lo not wholly in sing(F) with Kr.Lo = 0, then Lo (or some
multiple of it) moves in a family covering X .

I1.8. Constant eigenvalue

So far we’ve managed to conclude that an invariant rational type stack will, up to finitely many exceptions,
move unless the formal scheme like neighbourhood X of L (— P') has eigenvalues —a and —b at the ends,

with NX/X either O(a) ® O(b) or O(a + b) & O. In the latter case we have a further integer of interest p,
which is the number of times we need to blow up in L, and the extremal horizontal curve in the exceptional
divisor, before equating this situation with the former. Slightly more conveniently this latter situation can
be described in terms of a weighted blow up X (L) — X, which is equivalently the blow down of the first p—1
exceptional divisors in the direction from whence they came. If we put a minimal smooth stack structure on
X(L), say, X(L)P, then around the extremal curve L, in the exceptional divisor P (albeit that it may not
be globally extremal) everything is scheme like, with the monodromy concentrating on another horizontal
curve, denoted Lp°, around which it is identically Z /p. Manifestly the construction of X (L)? globalises with
no loss of projectivity of the moduli. This construction allows us to focus on the O(a) ® O(b) case, which
we’ll call rigid, while the latter case we’ll denote frigid.

Regardless, as we’ve said, in either case we have a Jordan decomposition, 8§ + 8{(, of a local generator
0 of the foliation on X. In the rigid case this is particularly easy to describe since we have embedding
coordinate xg,...,Zq; Yo ... Yp on the contraction of L, equivalently generators of I' = I'(Ox ), and,

I1.8.1 Formula 9% = (i — a):ria%i + (b— j)yjaiyj , 0k = ybxia(ma,yb)a%i + :rayjﬂ(:ra,yb)aiyj

for a priori arbitrary functions of two variables a and . Equally the Jordan decomposition around L must
restrict to a Jordan decomposition at the ends. Furthermore when one of the ends, say oo, has constant
eigenvalue we equally have a Jordan decomposition of the foliation around the singular component Z., 3 oo,
or, more correctly, a neighbourhood of oo after completion in Z,, such that around both L and Z,, we can
simultaenously find a generator of the foliation. Indeed the issue is as follows: Jordan decomposition is a
notion of fields not of foliations, so while it’s true that the semi-simple direction is largely independent of the
choice of generator, the nilpotent direction may not be. As such fix an affine neighbouhood Uy, of Z,, with
trivial Picard group, and consider the formal scheme =, obtained by completion, whose trace is Uy N Zo,
and finitely many rigid or frigid curves L; with an end in Uy N Z. Now contract all the L;, so that we
get a formal scheme 7 : = — Z#. Plainly, if we can trivialise K around Z# then it trivialises over Z. By
construction, however, the trace of Z# is affine, so the question is of first order, and since the singularity of
the trace is a plane node, we have an isomorphism,

X ~ X X
OEO OUOC NZ oo H OLI
i

Furthermore, to give a line bundle on the trace of Z# is to give a line bundle on Zq which is trivial on
each L;, so, indeed, we can find a generator 0 of the foliation, which is equally a generator around both
U N Zs and the L; on some formal neighbourhood, so that we get a uniform Jordan decomposition g+ dn
on the said neighbourhood, which in turn gives rise to,

I1.8.2 Case (a) Oy #0

In this case one observes by the explicit formula I1.8.1 that if the curve L is rigid then it is defined as
the intersection of a pair of divisors - necessarily the Dy, Dy, post I11.6.2 if the eigenvalue at 0 is unramified-
around which Jp is non-saturated. Since there are only finitely many such divisors, the number of possibilities
for a rigid L is finite. Similarly, if it’s frigid the same statement is true on X (L), and the only extra
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possibility for a divisor along which dy is non-saturated is the exceptional divisor P. On the other hand,
this is transverse to Dy at 0, and transverse to D, at 0o, so for unramified eigenvalue this is irrelevant, and
the number of frigid curves is constant too.

I1.8.3 Case (b) On =0

In this case the situation is uniformly semi-simple at both ends, so if we have infinitely many curves, we
may sub-divide so that they’re all either frigid or rigid, and we obtain a formal substack ) of the completion
of X in the component Zy of sing(F) through the end at zero, and as large a collection of curves £; as we may
choose such the the slopes of the H-N filtration of N, x are constant in i. Now we simply approximate )
around Zy by way of global sections of some ample bundle H, supposing, as we may, that ) is non-algebraic.
Consequently for n € N we can find divisors D € |nH| whose restriction to ) vanishes on Zy to order n?,
so if D|z, # 0 then, degg(L;) is at least of order n. In particular D vanishes on all of the £; which enjoy
degm(L;) < O(n). Whence on Y we get a Cartier divisor D]y with cycle at least,

TL2 Zy + Z m;L;
deg,; (£:)<O(n)

On the other hand the slopes of N, x are constant, so we must have,

_ degy L

m; > n?(1 -

), degyLi < O(n)

and whence by Bézout’s theorem, or better, its various refinements, [F] 12.3, an inequality of Q cycles,

degy L;
H2 _ ToH™ .
>> > (1 =)L
deg,, (£:)<O(n)
so the degree of the £;’s is uniformly bounded, whence the absurdity that ) is algebraic. Thus, to summarise,
we have,

I1.8.4 Fact Suppose the eigenvalue of a rigid or frigid curve is constant at one of its ends, i.e. if, say, the
end is zero with Zo the component of sing(F) through the same, the map Zy — |K§2| given by symmetric
functions is constant, then there are only finitely many rigid or frigid curves with an end in Zj.

I1.9 The Primitive Beast

The situation that remains to be understood occurs when we are presented with two (possibly identical)
components Zg and Z, of sing(F), together with an infinite (infact Zariski dense) set of frigid or rigid curves
L; with ends in the same. Furthermore, we may suppose that in terms of the two unique formal divisors
So, containing Zy or T, Doy containing Z., the L; factor through Dy and D, at the ends. The primitive
situation that we wish to achieve is that every invariant curve meeting all but finitely many of our £;’s
is itself rigid or frigid. As we’ve currently set up the problem this is impossible since the divisors Sp, S
coincide with components of our background divisor £ through sing(F). Manifestly components of £, and
other things, will have to be eliminated. As a consequence we’ll have to allow a more general set up, which to
begin with we describe over the Gorenstein covering stack (X7, F) — (X, F) of the moduli. In particular it
may occur that around Zp and/or Z, the situation is non-gorenstein (actually the monodromy here will be
Z /2, and will only occur at one of the ends) then over and above this we will have some cyclic monodromies
Z [ng, Z /ne corresponding to the extra monodromy at the generic points of Zy and Z, respectively. The
non-gorenstein case is a bit more fastidious, so let’s ignore it for the moment. As a result if d is the ged
of np and ne a rigid, or frigid, curve in this scenario will (up to finitely many exceptions) admit an étale
covering by the generalised weighted projective stack 7P1(”7°, 222 ). Furthermore, since we’ll allow no more
extra non-scheme structure than this, any smooth invariant curve not factoring through sing(F) is either
ng n

étale covered by P!, a weighted projective stack of the form P'(n), or, again, a 71)1(7, fee ). In any case,
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since all these objects are simply connected with co-homology and Picard groups as expected, cf. [M1] 1.9,
the whole of the previous discussion goes through up to an appropriate change in the definition of O(1). As
such the only really important thing to notice is the change in the behaviour of the eigenvalue which we
normalise by a choice of standard loops at the ends, i.e. % = 1. and % =1 for s,t local equations for
So, Seo respectively with p = ng/d, ¢ = neo/d a rigid or frigid curve has eigenvalues —a/q, —b/p; a,b € N
at 0 and oo, while its normal bundle is either O(%) ® (’)(%) or (’)(ap—*;b) ® O for (’)(ﬁ) the generator of
PicP!(p,q), and, of course, this is to be understood on an étale neighbourhood if d # 1.

Now let’s consider how this more general set up relates to our initial situation, and convenient singularities.
In particular if we’re not a priori supposing 1.3.1, then we ask whether the invariant curves intersecting K r
in zero, and factoring through Sy are finite or infinite in number. In the former case, we don’t care, and do
nothing, in the latter case, either they’re all frigid or rigid, and, again, we do nothing, or they move, in which
case the Zariski closure, say Sp, is a divisor, and the induced foliation is a pencil of conics. Actually, rather
better, the induced log-object (So, ZoUWy, F), where Zy, Wy are the components of sing(F) not invariant by
the induced foliation is generically an isotrivial family of Gy, s over Zy and/or Wy. Now since the eigenvalue
is non-constant along Zj it’s equally so along Wy, and around W, we have the canonical formal invariant
planes, i.e. Sy and an other Si, containing it. Consequently we may ask the same question for S; as we did
for Sy, and continue if we find lots of invariant curves leading to a well defined S;. Notice, in particular, on
continuing by induction, that inside any S; we never find curves of which a neighbourhood is non-gorenstein.
Indeed an open subset of any S; containing a dense set of its invariant curves can be contracted to an
open neighbourhood U; of some component W; of sing(F). On this component we can put a smooth stack
structure such that the foliation has canonical singularities, but is non-gorenstein over its moduli, i.e. there
is a non-trivial character x of the monodromy group G of the generic point of W; such that 97 = x(o0)d for
an appropriate local generator 9 of the foliation. The co-dimension of the singular locus is, however, two so
x = 1 or —1, and the eigenvalue is identically —1. As such associated to S; there is a genuinely different
component W of sing(F), etc., and in any case, the creation of the W;’s plainly terminates. if the process
terminates in Z, then there is nothing more to do. Otherwise we ask the same questions creating a bunch
of invariant divisors T,—; and components V; of sing(F) with non-constant eigenvalue. Plainly there is an
open set containing the frigid and/or rigid initial curves, and all but finitely many of the new ones, which
can be contracted to Zy and/or Z,, and lead to our goal of a primitive neighbourhood of the beast, i.e. one
where any Kz nil invariant curves meeting the rigid or frigid ones have the same property. Nevertheless we
want to do this in a reasonably global way that avoids causing too much trouble. Furthermore, we’re happy
to do it even at the cost of losing projectivity of the moduli, not to mention a lot of arbitrariness away
from the frigid or rigid curves. Consequently, we may even start with some blowing up so that the induced
log-object (So, Zo U Wy, F) is smooth with canonical singularities, so, in particular, there is a projection og
to Zy. As a result, we can write,

K]:|570 =7"+C

where Z" is the part of sing(F)NSy invariant by the induced foliation, and C' is contracted to a not necessarily
unique canonical model. Indeed, the non-uniqueness has its advantages since if T" is any irreducible invariant
curve not factoring through Z" we can insist that I does not intersect the support of C, so it cannot intersect
Z'" either, i.e. Z'" is a bunch of fibres of og. Now we want to flop curves in the support of C, but the problem
arises that for the curve C; which should be contracted in Sy, to flop it, we’d prefer Sy.C; < 0. On the other
hand let’s just guarantee this by blowing up enough an appropriate curve in the same fibre of o9. Now we
can flop: C; is contractible, whence there is a well defined semi-simple foliation on a formal neighbourhood
of it in X, and since Sy.C; < 0 the divisor associated to it is not nil for the semi-simple foliation so we can
find a formal divisor F' such that C; has a split neighbourhood (cf. [M1] IV.4) defined by Sy and F. Once we
flop C; we preserve the smoothness of our new Sy by explicit computation of what this kind of flop looks like.
Around Z" the situation is a bit different. To see why a singular curve flops, observe that by 1.4.11/12, S
must infact be a weak branch about the curve. It will suffice to work on an étale neighbourhood, so say the
curve is a generalised weighted projective line P*(a,b) with a, b relatively prime, and (’)(ﬁ) the generator of
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its Picard group. There is a distinguished case (which is actually easier) of log-type, but the principle is the
same, so we’ll ignore it and concentrate on the ‘general’ case where the curve meets exactly one other curve
in the fibre of Sp. As such we can arrange that around 0, i.e. Z/a monodromy, we have coordinates s, yo in
So, and at infinity coordinates ¢,y such that the generator d (necessarily existent by I1.4.2) has the form,

0 n 0
Ols, = y5s'(s=— — —yo=—
|SO yO ( 85 byoayo)
Now we require to compute mod (zo, yg“), where g is the local equation for the weak branch, so we can
SUPPOSe Too = 2™T0, Yoo = 2" are equations at infinity mod (s, y% ") with 2 the transition function for
(’)(ﬁ), and m,n € N. Consequently for 9 to exist we must have,

u—1
%0 _ 143 Syt + F(s)y”

T
0 i=1

where apart from the irrelevant degf; < n;/b, and by the way vb = nu + a, the leading term in f which is

precisely of degree v is —%'s?, and infact to this precision the Jordan form at 0 can be taken to be,
m 0 0 n 0
zo(1 — —5"yg) 5 — +ygs'(s )

dxo 3s b8y,
From which it’s easy to see that the flop exists. Indeed profiting from the possibility of taking roots, we can
suppose that n = 1, blow up in the curve, repeat the same analysis, and conclude by induction on m, which
has now gone down to m — 1, in the spirit of 11.4.3. Whence, not only is there a flop, but it’s a flap, arising
from extracting a mth root of g and a nth root of yo. We therefore eventually reduce to the situation where
og expresses Sy as a Pl-bundle over Zy, which we then contract. The only effect of this is to make the new
Z non-scheme like, but otherwise wholly smooth, and we just continue, with the only change being that we
contract at the next stage a bundle of weighted projective stacks.

We have thus modified our original situation as follows: there is a stack p : X — X obtained by a
sequence of blow ups in invariant centres, whence necessarily with projective moduli, together with a proper
map 7 : X — Xpr, where the latter may not have projective moduli. All these maps are isomorphisms
in a neighbourhood containing the generic point of all but finitely many of our original rigid and/or frigid
curves determined by the ends Zy, Z, with &}, having the wholly desirable property that any curves in
the planes SE", T?" intersecting K in zero, must themselves be frigid or rigid, and of course, these are the
only possibilities for curves meeting our original curves. Notice, of course, that when the ends Zy and Z,
are the same component in &}, then apart from the non-gorenstein case with Z /2 monodromy, the curves
now have nodes.

Next, let’s just write down the Jordan decomposition of a generator 0 at 0 in the rigid case, where we
take standard coordinates on our weighted projective stack analogous to I1.4, with = 0, y = 0 for the H-N
directions, then,

o 0 ad
g = ———%
0s qOx
- =0
B = wyfalsal,yf) +stalys(shal, g
Yy
where @ = a/(a,q), § = q/(a,q) etc., and the local monodromy is Z/p acting by way of (s,z,y) —
(0s,0x,y), 67 = 1. In particular one sees that either the eigenvalue at zero or infinity ramifies at its end
unless, p = ¢ = 1, and since this can only happen finitely many times, we may suppose that it doesn’t occur,
so that,
on a 0 S 0
— =a(sz,y)=— + s*B(s"x,y)=—
p” (s"2,y) 5 B( ,y)ay
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Consequently if the eigenvalue doesn’t ramify in zero, dn/zy is a smooth foliation with tangent direction
transverse to our curve, but tangent to any other invariant curve through this end, and similarly at infinity.
The frigid situation is even more desirable. Indeed if d € N is the number of times that we have to blow
up to make it rigid, with a as above, then modulo (d + 2)th powers of the ideal of the curve, the eigenvalue
looks like,

—a + (st —yd T f
for f a function and s, z,y appropriate coordinates at 0. Whence, this ramifies, and there can only be finitely

many such curves.
Apart, therefore, from a smooth rigid curve in A}, with no other curves at its ends, we must eliminate,

I1.9.1 Outstanding Cases That may involve non-ramified eigenvalues

(i) The ends at 0 and co meet, and the curve forms a node in Xp,.
(ii) There is another smooth rigid curve joining the distinct ends at 0 and oc.

(iii) There is only one end, i.e. we’re in the Z /2 monodromy situation, and there is another curve through
the end with the same property.

In all these cases, a neighbourhood, whether of the node, or the two curves simultaenously, is elliptic, so
we cannot a priori guarantee the existence of a single generator of the foliation on the whole neighbourhood,
and whence of a unique well defined nilpotent direction. Nevertheless, the situation is not arbitrary, and in
the respective cases the following occur,

(i) Organise the reduction to A, so that at the penultimate stage there is no extra monodromy at zero,
and only Z/q at infinity. Then there are a,b € N equal to the eigenvalues at the end, and another
positive integer d, satisfying, ¢*> = a(d — 1/b)

(ii) Both the eigenvalue and its inverse at either end are in Z.
(iii) Exactly as per (ii).

Since we’re supposing non-constant eigenvalue at either end, we therefore conclude,

I1.9.2 Let (X, F) be a given foliated gorenstein normal 3-fold with Kz nef., then any map f: L — X from
a smooth 1 dimensional stack bi-rational at its generic point (more generally a bundle of classifying stacks
over the same) and invariant, with 0 = Kx. L > —x(L) either moves in a family covering X or has bounded
degree or on X, defines a smooth rigid curve which meets no other invariant curve whose intersection with
K is zero.

proof/elaboration We’ve discussed everything, except maybe when £ moves in a family which covers X'.
Depending on how big the normal bundle of the generic member of the family is, i.e. either ample and the
foliation is given by a vector field, ample®trivial and we have a family of vector fields, or trivial, so we get
some sort, of Ricatti thing, we conclude. O
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IT11. Residual Measures
ITI1I.1 Stoke’s Theorem

We'll require Stoke’s theorem in a little more generality than is standard, albeit that the following remarks
undoubtedly constitute the sort of thing that is well known to experts. A more than sufficient degree of
generality amounts to currents with measure coefficients on a smooth proper analytic stack X'/C. Evidently
a minor variant of [KM] implies the existence of a moduli map 7 : X — X, with X/C a proper complex
analytic space. Equally we have well defined sheaves of smooth forms A** and normal currents N ., i.e.
LT + d(L}™), where the lower numeration indicates indexing by dimension, albeit that at times a co-
dimension indexing N** may at times be convenient/appear. In any case the local nature of the Poincaré
lemma and standard considerations of hypercohomology immediately imply the usual sort of smoothing in
co-homology, i.e.

ZAYX)  ZNi(X)
dAT1(X)  dN«1(X)
where A*, N* are global forms and normal currents respectively, while the Z at the front indicates those

of the same which are closed. Consequently given a globally closed normal dimension p current du we can
find a smooth 2dimcX’ — p form 7 and a L; function v such that,

HY(X,,,C) =

dp =71+ dy

As a result if du is a positive (p, p) current, then in fact dy has measure coefficients, i.e.

|y (N << Il

where f is a smooth test form, and, as ever << is less than up to an inessential constant. Now observe
that for U;, ¢ € I a properly nested sequence of open sets indexed by some Lebesgue measurable I with the
property that the union of the boundaries has positive Lebesgue measure, the measure of the boundary of
U; with respect to du A wP, w smooth positive, is zero with probability one. Consequently we may without
difficulty,

(a) ‘Cover’ X' by disjoint analytic neighbourhoods A, such that X \ [JA, has not only zero Lebesgue
measure, but zero du A wP? measure.

(b) Apply the said partition in order to write,

dp = Z Ta dp =717+ Zd(]IAa’Y)

(c) Take the A, to be polydiscs, regularises the Ia_v in the usual way, so as to obtain a sequence of
regularisation 7, — v such that for U;, i € I as before,

dn(ly, f) = lim /U Fdp

with probability one independently of the test function f, where needless to say, du,, = 7 + dvyy.

As such we arrive to our immediate goal,

IT1.1.1 Fact Let du be a closed positive (p,p) current, f a smooth (or for that matter sufficiently regular)
function, and U an open substack whose boundary has zero du A wP measure, then du|sy is well defined, and
Stoke’s holds, i.e.
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/udfdu - /W fdu

All applications will of course resolve around an essentially random choice of &/ amongst a Lebesgue
measurable set of possibilities. Such a choice will, unsurprisingly, be irrelevant and whence will be omitted
from the notations and/or discussion without comment.

III.2 Remarks on Kéahlerianity

All applications of the current chapter will revolve around dimension (1, 1) currents with measure coefficients,
and, in this situation, there is never any need to know whether the stack A is K&hler or not. Whence the
Ka&hler free nature of the discussion in III.1. Nevertheless it seems worth a brief detour to give some simple
conditions under which this holds. The essentially necessary and sufficient condition is that the moduli X
should itself be Kahler, but, rather than get into a long winded discussion about what this should mean let’s
just say that X embeds into a K&hler manifold with w the restriction of the Ké&hler form.

With this hypothesis we’ll prove by induction on the dimension of substacks that A is K&hler. Whence
call a reduced substack ) in X K&hler if there is a non-negative appropriate smooth (1,1) form on X strictly
positive on a neighbourhood of Y. The technical definition of appropriate is as follows: for every substack
Z of X there is a smooth function (infact many) ||Iz|| which after blowing up in Z (or if one prefers resolve
Zz by blow ups in smooth centres) looks like, i.e. up to a smooth unit, |f| for f = 0 a local equation of the
total exceptional divisor. A (1, 1) form is appropriate if it looks like,

2

Nw+ Y Nidd®|| 1z,

for N, N; > 0, and Z; some finite bunch of substacks. Plainly our induction is on the dimension of ), and
the existence of appropriate smooth (1,1) forms around the same.

Beginning the induction in dimension zero with x1, ..., x, coordinates at a point, we take a bump function
p on a small neighbourhood of its image in X, and note that if G is the stabiliser, then,

1Lz l* = plll*”

o€l

is a perfectly good example of what we mean with ||z||*> = 3 |z;|*>. As such,

Nw + dd°|| Tz

for N sufficiently large gets us off and running since p itself is defined on X so dd®p, dpd°p are dominated
by multiples of w.

Now suppose a not necessarily pure dimensional substack ) is given, then at its generic points it’s étale
over its own moduli with Z C ) a proper substack of every component the locus where this is false. In
particular there is a non-negative appropriate (1,1) form wz strictly positive on a neighbourhood of Z, and
for M, N sufficently large,

Mw + Nwz + dd°|| Ty |]?

is strictly positive on a neighbourhood of ), while being globally non-negative. As such we conclude,

IT1.2.1 Fact Suppose that the moduli X of a smooth separated stack X /C embeds in a Kdihler manifold (e.g.
X is projective) then X is Kdhler.

It therefore goes without saying that all the results of harmonic theory go through verbatim for proper
Kéhler stacks. It therefore seems appropriate to briefly remark on how algebraic stacks put the essentials of
vanishing in rather clear light, particularly the role of QQ divisors, i.e.
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IT1.2.2 Divertimento Let X/C be a projective variety with at worst quotient singularities, and o : Xy — X
the minimal smooth stack structure on X of [V] 2.5 with L a line bundle on X such that as Q divisors,

moL = H-{—ZaiDi

for U D; simple normal crossing on Xy, H big and nef., and 0 < a; < 0, then,

HY(X,LY)=0, for, ¢ < dim X

proof By the exactness of (mg)., cf. [AV], it suffices to prove H?(Xy, w3 LY) = 0. We first do the case of H
ample. Plainly for any smooth stack 7 : X = X with X as moduli, either of the standard proofs of Kodaira
vanishing work. The analytic one gives that the £,-norm for p < 2 of any harmonic (n,q), ¢ > 1 form with
values in H is zero whenever H is an ample bundle by II[.2.1, and the algebraic one by the exactness of ,
which under the same hypothesis easily implies that H is ‘co-homologically ample’, [M1] 1.3.5. As such if
we put a; = p;/q;, (pi,qi) = 1, and form a stack 7 : X — X by taking successively g¢;th roots of the D; in
some order we can suppose that,

HYX,Ky®7*H)=0,q>0

which immediately gives the case where a; = 1 —1/g;, Vi by the ubiquitous exactness of 7. The next easiest
case occurs when no integer between p; and ¢; — 1 has a common factor with ¢;. When this happens, one
looks at the long exact sequence associated to the short exact sequence,

Q1 q1
where we suppose that D; is the last divisor of which we extract a root p1 # g1 — 1, and 0 < ny <
(@1 — 1) — p1, n1 € N. In particular we write 71 : X — A}, for the map between X and the stack X; where
we extracted the g;th roots for i > 2. If we view qilDl as a Bz/qlz bundle over its image D; in X; then,

0 — Ky(H — Dy) —>KX(H—%D1) — K1 (H— D1) — 0
1 q1

1 n;+1 n; +1
HY(L Dy, Ky, (10— Y by = oDy, Ko, (). (1 — LD
a1 a T T
Furthermore the class of H in the relative Picard group of X over A is, by the definition of H as a bundle

on X, —%Dl, whence we’re reduced to computing,

D))

HY(Z/q, C(x))

where ¥ is the Z /g character, 1/q; = ¢(P*T™F1 for  a primitive ¢; th root of unity. By hypothesis, however,
this character is fully faithful, so the said groups are zero for all q.

In general, everything reduces to this case by a double induction, i.e. at the D; level one may ask for the
smallest m1 > p; such that m; and ¢; have a common factor, and one assumes the result for %Dl, while
the other induction is simply on the number of D;’s.

To get from H ample to H big and nef., one simply takes an honest ample A, produces an € € Q4 such
that H — eA = B is effective, and for very small § writes,

H=(1-0)(H+ IG—‘S(SA) + 6B

Certainly B may be very far from normal crossing, so it’s necessary to use a resolution of singularities, but
since we can take § as small as we please, there’s no problem. More generally the Ly-vanishing theorem
reduces to this one since algebraically this is the right technical condition to permit the use of a resolution
of singularities. O

There is, of course, really only one vanishing theorem & even one proof if one understood better the
relation between complex conjugation & conjugation under Frobenius. As to how one then goes from the
basic theorem to its various refinements isn’t really that important.
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II1.3 Segre Classes

Our goal is to associate to a closed (p, p) current du with measure coefficients and a closed substack ) of a
proper stack X' /C a positive residual (p — 1,p — 1) current sy 4, with measure coefficients supported on the
projective cone P(Cy/x) generalising the standard segre class when dy is a current of integration. In the
course of the discussion, it will emerge that there is a well defined notion of currents with measure coefficients
on any proper stack, at least provided that it embeds in a (not necessarily proper) smooth stack. As such
for convenience we’ll start with X smooth, and indeed Ké&hler if p > 1, but in reality only the properness of
Y is really important. Before getting underway let’s establish,

I1.3.1 Notation/Definition For ) — X as above let ||Iy|| be a function on X as described in II1.2, or
indeed of the form |f| up to a bounded unit for f a local equation of the total exceptional divisor obtained by
blowing up in Y. Marginally confusingly we’ll also employ the notation 1, for the characteristic function of
Lebesgue measurabe sets.

The key point is to verify,
I11.3.2 Claim Let w be Kdhler in a neighbourhood of YV, then for any non-negative integers i, j with i =
J=p
dde||Iy||? .,
lim (M)’w]du
Oyl €
is a well defined, non-infinite, number.

proof The argument is, of course, nothing other than a regurgitation of the standard argument for the
existence of Le-long numbers, i.e. the case where ) is a point, which depends not on the fact that ) is a
point, but that it has no boundary. Evidently the case i = 0 is trivial, and w/dp > 0 so we’re reduced, for a
possibly different measure, to the case i = p. As such if we put,

c dd° || Iy ||?
= [ (R
Iy ]|<e €
then for € > 4, Stokes implies,
T = b= [ (@ log| Iyl
S<|| My [|<e

However dd°log ||Tly||? is as good as positive on X \ ), i.e. bounded below by the restriction of a smooth
form, so indeed sy, 4, (1) := im0 05, 4, exists, and in fact,

(D) = iy [ log Ty og [Ty
vll=e
05 an = 5v.au(1) + / (dd® log || Ty )P du
0< ||y ||<e

We can also check, as the notation suggests, that there’s no dependence on the choice of ||Iy||, so say
1y || is another such, with, without loss of generality ||1y|| > ||@y||, then, in the obvious notation,
Yy Yy Y

€ ~ € __
Oy dy — OY,dp —/

 (ddru)du + O / (dd log || Ty 1*)"dp)
[Ty ][<e

ce<||Ly|<e

for some ¢ > 0, and u smooth, or even just bounded. As such we conclude to the said lack of dependence by
way of the essential positivity of dd°log||1y||?, and the Skoda El-Mir theorem, albeit that we’ll review the
latter theorem from our current standpoint momentarily. O

Several important technical points emerge from the proof, of which the first is,
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lim dd®|| Ty ||2wP~ dp = 0
=0y <e

This rather benign looking observation implies a result that would otherwise be false without the proper-
ness of ), i.e.

IT1.3.3 Fact Suppose Y has a smooth neighbourhood (Kdhler if p > 1) then the notion of current on Y is
well defined (independently of the choice of neighbourhood) and if du = Wydu, then du = i,dv for dv positive
(p,p) on Y, and i the embedding on ) in X.

proof We first look at the locus V., where ) is smooth, and profiting from,

Tydp = Ty, dp + Ty y,., dp

aim to do My, dp first. On V.., there is an unambiguous notion of current, and what must be verified (to
which I’'m indebted to M. Paun for bringing to my attention) is that,

/ d|| Ty || Ty || Ty, ., dpe = 0

for 7 smooth on the neighbouhood. This is, however, clear, since up to an un-important error, for ¢ small,

d|| My ||d°|| My || Ty dp << dd®||Ly||* Lydu

so there’s nothing to do. As such on V.4, Ly, dp really is an honest (p,p) current on V., which has a
unique extension by zero over Y \ V., independent of the embedding, and we conclude by a Noetherian
induction. O

Of course, as we’ll discuss later, sy 4,(1) only depends on T\ ydu, but equally the above discussion
works in somewhat greater generality, i.e.

I11.3.4 Fact For any n € N, W is integrable with respect to Ux\ydp and indeed,

/ d|| Wy ||d=[| Ty
Il

myf<e [My[[P0=1/m

d|[Ly|[d°|[ My ||
or any bounded 7. Idem but for ————m>.
for any for Ty T 1082 Ty T

lim
e—0

T]Ix\yd,u =0

proof Let’s do the latter. For € small it’s sufficient to look at,

~ [ datog]og |y lur " d
Iy ]|<e
as ever w Kéhler if p > 1. This is, however, equal to,

1 NIl =1y, iy L d°[| My ||
|loge| Jijny=c 1Tyl -0 [logd| Jyjuy=s 1Tyl

with the interior residue plainly going to zero. O

wP=ldp

Which, in itself, reproves the Skoda El-Mir theorem in this particular case (or more generally for almost
psh functions whose polar set has no boundary), i.e.

II1.3.5 Fact Let o be a 2p — 1 form whose coefficients are Lo with respect to wPdu then,

lim adp =0

€20 )1y ||=e
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de
€| log €|
the limit with respect to it, apply II[.3.4 and the Cauchy-Schwarz inequality. O

proof The measure on R; is unbounded on neighbourhoods of zero, so integrate the integral under

This not unuseful miscellany dealt with, let’s re-interpret the key claim III.3.2 by way of,

I11.3.6 Fact Let p : X — X be the blow up of X in Y then Lx\ydp has a well defined proper transform
L\ ydjfi, i.e. the extension of Wx\ydu by zero across the exceptional divisor, which itself is closed (p,p).

For Y — X smooth, this is exactly the content of the previous claim, i.e. what has to be verified is
that Ty, ydf has finite mass. Now what one might quibble about is exactly what the definition is if } is
arbitrary. We can, however, resolve Zy, by a sequence of blow ups in smooth centres to get some p; : 1 — X,
and certainly there is therefore a well defined du' extending Ix\ydp by zero. Furthermore if py : XAy — &
is another such, with du? the obvious thing, there is a modification X#, as ever by blow ups in smooth
centres, with projections p; : XY# — X dominating both, together with a du® such that, du® = (p;).du*. In
this sense the discussion is wholly unambiguous, but it’s also unambiguous no matter how, even locally, we
choose to embed X in a smooth. The key point is that,

lim d° log ||y |*(dd° log || Ty |*) " 'w’dp , i +j = p

=0y || =e

exists, whence anything of the form,

lim £ log |[Ty||2(dd log [ Ty||2)" ' du

0|y |l=e
exists for f bounded. Whence, no matter how one chooses to define it (p;).du’ = Ix\ydjfi, and the final
re-interpretation of II1.3.2 presents itself,

I11.3.7 Fact/Definition There is a well defined closed positive (p — 1,p — 1) current sy g, or doy g4, in
infinitesimal form, on P(Cy,x) with total mass sy 4,(1). The said measure will be called the segre class
and/or residual measure, while, sometimes we’ll write éy A du, especially if Y is Cartier in X.

Indeed we’ve already seen in II1.3.3 that there’s no problem, even locally, talking about measures on
singular things provided that we have some knowledge of the behaviour in the normal direction in a smooth
embedding, which is indeed the case here.

IT1.4 Intermission/Explanation

It seems reasonable to pause and to ask what’s going on, since as everyone knows it’s not possible to define a
wedge of d-functions. The key, however, to observing that what’s gone before isn’t nonsense is, as we’ve said,
to notice that there’s no dependence on the part of du supported on Y. Indeed, manifestly, oy A Iydyp = 0,
so things don’t descend to co-homology, although, on the plus side, there exists the possibility of defining
a cap product of currents modulo rational equivalence (i.e. limits of §-functions of rational functions on
sub-stacks). Specifically in the case of (1,1) measures du, and divisors D we’d be looking at,

op Ndp = (ip)*((5'Dr N ]I’Ddu) +dp ANdp

for D' — D a not necessarily effective Cartier divisor, rationally equivalent to Op(D). Granted this only
works for capping divisors with currents, but by way of the main regularisation theorem of [D1] this can
actually be extended to arbitrary positive co-dimension (1,1) currents, at least in the wholly scheme like
situation. In any case, this is certainly deserving of attention, albeit that the need for a suitable regularisation
theorem in all dimensions means that we’ll postpone it for another time, and content ourselves by noting
the agreement in dimension (1,1) with standard intersection theory, i.e.

I1.4.1 Divertimento Say everything scheme like to avoid notational complication, with D an irreducible
Cartier divisor not containing an irreducible curve C with D N C' their intersection as a positive zero cycle
in the sense of algebraic intersection theory, then we have an identity of measures,
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d0p Néc = dpnc

proof From what we’ve already seen it’s clear that §p Ad¢ is a positive measure supported on the set theoretic
intersection of D and C, so all that’s at stake is making sure that the local multiplicities are correct. To
compute these, observe, quite generally, that if Z C X is a closed subscheme of pure co-dimension e + 1
defined locally by an ideal (z1,...,zq4) with ||2]|?> = Y |2i|? then, locally,

07 = dd°(log ||2|]* (dd” log [|[|*)°)

To see this, just blow up in Z to get the exceptional divisor 7 : P(Cz/x) — Z again of pure dimension,
with ||z||? yielding a Fubini-Study type metricisation L of the tautological bundle on the projective cone,
according to which, for f a compact test form on X,

/ log [|2|[? (dd° log ||2]|?)°dd° f = it fer (E)°
X P(Cz/x)

while for a generic point z of Z,
/ C1 (L)e =1
P(Cz/x)®C(2)

Applying these considerations to the computation of ép A d¢ on a compactly supported test function f
with ¢ = 0 a local equation for D we find,

0p A dc(f) = lim )fcl(f/)dimxfzdc log |g|2
c20JP(Ce x)N(lgl=e

so that the mass of 0p A d¢ around a point of D N C' is infact the tautological degree of P(Cpnc/p) at the
same, as required. O

Of course the said discussion is much more general than the assertion, so let’s observe that modulo
notational complication we’ve even deduced,

IT1.4.2 Sub-divertimento Let C be a pure I-dimensional closed substack of X/C with Y — X a closed
substack not containing any generic point of C, then as measures,

Sy Noe= > s(c)d

ceynC

where s(c) is the standard segre class of ) at geometric points c of the intersection computed, for example,
as per [M1] 1.8.6

IT1.5 Deformation to the Normal Cone

We retake verbatim the notations of III.3, so that J — X is a closed proper stack and du a positive
closed (p,p) current. As one might imagine the deformation of du to the cone Cy,x — Y is slightly more
informative than the segre class. The deformation construction is, of course, the standard one of citef §5, i.e.
blow up X x P! in ) x 0 with say W the total space, and & the total exceptional divisor — P(Cy/x @ 1).

In particular if p is the projection of X x P! to X, then p*du is positive (p + 1,p + 1) and we have a well
defined positive closed (p, p) current dog 4, as per II1.3.7. The deformation of du to the normal cone is then,

IT1.5.1 Definition Let things be as above, and identify Cy/x — P(Cy,x @ M) with the complement of the
hyperplane at infinity, then the deformation, or better specialisation, of du to the normal cone is the positive
closed (p,p) current,
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dp' == Ty, doe g
Superficially this looks like we need to suppose X Ké&hler even if p = 1, but, in reality, we don’t, i.e.

I11.5.2 Fact This is well defined for p =1 even if X isn’t Kdihler.

proof For t = 0 a local equation for 0 on P! we need to consider the integral,

dde (|| Iy ]||? + |¢]?
/ (1P +167) g g,
1Ty ||2+(¢[2<e

2
for ¥ on X x P! strictly positive in a neighbourhood of J) x 0. Plainly we can take ¥ to be of the form
p*1p + dd°|t|? for ¢» > 0 on X. Consequently,
Up*dp = p* (pdp) + dd°|t)*dp
is still closed positive (1,1), which is what we needed to define dog q,,. O
In addition the computation of the segre class commutes with specialisation to the normal cone, i.e.

IT1.5.3 Fact let [0] — Cy,x be the zero section, then,

S10],du' = SV,dp

proof We’ll only do the (1,1) case, since apart from being the only one that we require, it’s notationally
less fastidious. As such for f a test function on a neighbourhood of Y, by definition,

N c 2 !
Stof.ap (f) = lim . fdlog || Tjoy||*dpe

e—046—0

= lim lim d° log |t|2/ fd° log || ) || dpe
[t|=6 |0y ll=¢

where we profit from from the fact that ¢ = 0 is a local equation for £ around [0]. Now the function |||l
is exactly ||Ty||(]|Ty|| + [¢])~! so identifying the fibre over ¢ # 0 of the deformation with X the integral can
be re-written as,

lim lim f(1 —€)dlog ||y |*du

20020 Jjny ||= 25

whence the assertion. 0.

The specialised class dy' has other agreeable properties which reflect the purely algebraic fact that for
V < X closed, Cyny,y is pure dimensional. For instance if v : Cy,x — ) is the projection,

I11.5.4 Fact Say du is dimension (1,1) for the sake of a clean statement, then (Ilydu)' is just the inclusion
by zero, and v, (Tx\ydp)' = 0.

proof The first part just amounts to pulling back p*lydu along Y x 0 in ) x P!, so this is clear. For the
second one takes w to be a (1,1) form on X and writes,

/ v*(w]y)du' = lim d° log|t|2/ wdp =0
[Tyl <e 0=0J|t|=5 [y < 7

(1-9)

from which we conclude. O
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IT1.6 Transverse Invariant Measures

It’s opportune to remark to what extent the previous discussion improves in the presence of a foliation, i.e.
(X, F) is a smooth analytic stack /C foliated by curves and duy,# is an invariant measure. For example,

I11.6.1 Fact let Y — X' be a proper invariant sub-stack, then sy g4, is supported on sing(F)N Y.

This is clear from the global existence of sy 4, combined with the existence of local foliation coordinates.
The said coordinates also imply that sy 4, can be defined without ) being proper, e.g.

IT1.6.2 Fact Let Y < X be a locally closed and (to fix ideas) irreducible divisor with generic point transverse
to F with 0Y contained in the smooth locus, then sy q, is well defined.

proof The hypothesis imply that around 9) we’re looking at a polydisc A with 2 = 0 a local equation for
Y, and the other coordinates z; defining the foliation by way of a fibration. We need only consider over A
an integral of the form,

e—0

lim (o, ::/ dlog |z[*dpx )
|z|=¢€
so that for € > §, Stokes gives that o. — o5 is an integral of d°log|z|? over |z| < €, but max|z;| =constant.
The latter real hypersurface is invariant so duy,r restricted to it is zero. O
The same sort of idea works in a lot of other situations, e.g.

IT1.6.3 Fact Suppose sing(F) is compact and W is a formal subscheme of X completed in sing(F) admitting
an asymptotic expansion (i.e. it converges after a real blow up in sing(F)) then SW,dux, - 15 well defined.

Unfortunately as we’ve seen with the untame beast 1.5.9 this condition doesn’t always hold when one
might wish, so a proof will be omitted. The condition can, however, under hypothesis on s,,4(F),du. pu (e.g.
equals zero) be relaxed to a somewhat softer notion of asymptotic expansion which permits logarithms, so
in the case of the beast x% + yza%, logy, and in this form could be generally applicable.
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IV. Foliated Residues

IV.1 Filtrations on co-homology

Sticking to the convention that a foliation is a saturated sub-sheaf of Tx we necessarily have a short exact
sequence of the form,

0—>Q}/f—>9}—>KfIg—>0

where Z is the singular sub-stack of JF, and the slightly abusive notation Qﬁg IF is used to denote the

necessarily reflexive subsheaf of 2}, which forms the kernel of the penultimate map on the right. Manifestly,
however, we have similar short exact sequences for every 1 < m < n =dimX, which take the form,

0—>Q$/f—>ﬂ’}}—>62m—>0

where generically QE/}- is A" Q% > but if needs be, we saturate it to guarantee that @, is torsion free. In
particular associated to the standard DeRham complex,

we have a filtration by sub-complexes defined by,

IV.1.1 Definition

0 if p>m
FPQT = ng/f ifp=m
Qg}/}_ ifp<m

where, of course, 0 < p < n, and the one term that we haven’t defined Qg(/]-‘ is nothing other than Oy.
Consequently in the usual way we get spectral sequences,

AP = HPR(X, P Q%) = HPH (X, Q%) = HPHI(X, )
AP = (X, g2 = BPV(X,03) = HEVI(X.0)

Fortunately our interest is not in the spectral sequences themselves, but in their E; terms, so that it’s
worth noting,

IV.1.2 Notation gr’Q%[p] = {QI:W}- 7 Qp+1}

where the reflexive hull of the torsion free sheaf @, is simply Q% JF® Kz, and whence the notation V for
the differential, whereby it should be thought of as a connection along the leaves.

Implicit in this description is the C'», preparation theorem, or, more correctly, the corollary that the ring
Ax of smooth functions is flat over Oy. In particular, therefore, if we consider the canonical 9 resolution of
O;\(, ie.

0,% . 40,0 0,1
AX : AX — AX — .. — AX
) ) )
then the graded complex associated to the total complexes FPQ% ®0, Ag;* is simply the total complex of
grPQ% ® o, Ag}*, which is acyclic with respect to taking global sections, and, of course, similarly for compact

support. If, however, we consider resolving Oy by distributions, i.e.

DY DY — DY — — DY
b b
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then this is no longer flat, and we get a rather different answer. Indeed with the usual notation that D"
is global distributions, then by virtue of the injectivity of D the graded complex associated to the total
complex becomes,

g’ (DY")[ply = Homoy (Qu—p, D") & Homo, (U35, DY)
and the differential is VY ®9. To identify the co-homology of this complex, observe that it is simply homotopy
classes of maps between the complexes,
gr" P tQ%[n — p] and DY*[q]

and since Dy" is an injective resolution of Ky this is just Ext{, (gr"#~'Q%[n —p], Kx). Consequently, we
obtain rather different spectral sequences,

DY = Extg, (gr" P Q% [n — pl, Kx) = HPT(X,C)

DYl = Exty o, (" P 1Q% [0 — p], Kx) = HIT(X,0)

Again our interest is in the initial term rather than the spectral sequences themselves, and we may note
that the usual pairings between ext’s and co-homologies imply the same at the hyper level, so that we have,

IV.1.3 Pairings

—1— 1—
AIIWZ % D? p,ntl—gq s C

< > 1 _
p-q n—1l—p,nt+l—gq
AT x DY, — C

Better still forms always map to distributions, and in the particular case that p =n — 1 or 0, it’s rather
easy to determine the relation. Indeed, we have,
—1 — °
AP = B (X, T 2 — 1)

and both the terms in gr"~1Q% are bundles, so this is just,

Ext?(O — K]:[l],Kx)

from which we obtain a long exact sequence,

. Eth(K}' X Og,K;\g) — A?_l’q — D?_l’q — Eth-H(K}‘ & Og,K;\() — ...

where we can, and will, think of the Ext!(Kr ® Oz, Kx)’s as controlling the obstruction to co-homological
smoothing of invariant distributions. Unfortunately, however, the smoothing involves a boundary which may
well behave in a less than desirable way if Z is non-compact. As such the particularly important case of
g = n — 1 deserves special mention by way of,

IV.1.4 Definition Suppose Z is compact, then we have a diagram RES with exact rows,

AT —— DY —— Ext (K © 0z, Kx)

| | I

An—lin—t s pptn—t EELCLEN Ext"(Kr ® Oz, Kx)

If one wants to describe the map Res explicitly, then there are a couple of possibilities, particularly if we

focus on classes in D?il’"fl defined by transverse invariant measures dju /7. The first one is to observe that
this defines a class in Hom(Zz, Q}_/} ® DY"~1) 50 a fortiori in Ext"~!(Zz, Q’A‘;/}), and certainly therefore
in Ext"(Kr ® Oz, Ky). Alternatively, as the name Res suggests, we can use duality, and starting from a

section w of H*(Kx ® Oz) lift to a smooth (1,0) form w over X'\ Z so that,
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Res(dpx;r)(w) = — lim wdpx )7
0S|z =
Regretably the above analysis fails to address the basic issue of whether Res(duy,r) can be a priori
defined in Ext_(Kr ® Oz, Kx) without supposing that Z is compact. There are also various possible
refinements that we can introduce by way of the log-complex Q% (log D) for (X, D, F) a foliated log-stack,
but this still fails to grasp the above nettle, so we’ll simply consider such things as we need them.

IV.2 Invariant Bundles

We may aswell immediately specialise the previous discussion to what, after blowing up, becomes the critical
case, viz: our stack X is a neighbourhood of a simple normal crossing divisor D containing the support of
Z. Unsurprisingly the discussion is most elegant when the triple (X, D, F) has log-canonical singularities,
but for the moment this isn’t immediately relevant. In any case we can basically replace at this juncture
H.(X) by local co-homology groups Hp(X). If we understand the latter meromorphically, then strictly
speaking this isn’t true, but since we’re primarily interested in pairings that depend only on things of the
form Ox/Z} , n € N, this makes no essential difference. Regardless we wish to consider what it should mean
to have a F invariant bundle on X'\ D. Certainly such a bundle, indeed let’s say line bundle to fix ideas,
should be equipped with a connection along the leaves, but this is only to be defined off D so we should
admit poles, and whence,

IV.2.1 Definition A line bundle L on X is said to be invariant on X \ D with meromorphic poles, if there
18 a connection,

V:L—)L@K}‘(aij)

with a; € NU {0}, D; the components of D, and, of course, the rule: V(fs) = fV(s) + 0x(f)s must be
satisfied for OF the composition of holomorphic d with restriction to Kz, f a function, and s a section.

Before progressing notice that bundles with meromorphic connections arise from bundles with holomor-
phic connections in a couple of natural ways, viz:

(a) If we start from a foliation (Xy, Fp) with arbitrary singularities, and suppose p : (X, F) — (X, Fo) is
a resolution with canonical singularities, then, in general, a bundle with holomorphic connection along
Fo becomes after pull-back a bundle with meromorphic connection along F.

(b) This time we start with a space (X, F), even with canonical singularities, and let W be an invariant
subvariety, then if sing(F)NW is a divisor, a F invariant bundle on X restricts, in general, to a bundle
with meromorphic connection for the induced foliation on W.

Apart from these being our motivating examples, the immediate upshot of our definition is that we have
a well defined class,

e1(L,V) € Hb(K5Tz)

Indeed for s, some local generator of L on a scheme like open U, the Vs, patch to a section of Kz (a;D;)®
Oz, which maps to a class in H'(X, Kz(a;D;Zz), and the local co-homology is just the direct limit of these
over all divisors supported on cD. in particular for duy 7 an invariant measure, IV.1.3 guarantees that we
have a pairing,

< Cl(va)vduX/]: >eC

and what we require is to try and factor this through Res. Manifestly if D is empty, then by what we’ve
said there is actually a class Vlogs € H°(Kz ® Oz) affording chern, and by the p = 0 version of IV.1.4 an
exact sequence,
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HY(Kr®Oz) — A2 — DY’2

together with a map H),(KzZz) — A?:g arising from the degeneration at E, (for trivial dimension reasons)
of the troncation béte spectral sequence all commuting with the formation of ¢; (L, V), and so,

<ci1(L,V),dux,r >= Res(dux,7)(Vlog s)

The general situation is, however, rather more delicate, and the first thing to do is consider the situation
around a component Dy which is not invariant. Here we should suppose that (X', D, F) has log-canonical
singularities so that Dy is smooth and everywhere transverse to F, and we require to adapt the co-homological
smoothing of duy 7 to the pole order ag of the connection around Dy. As such we have to filter Q% /F
according to,

FrlQy = Qu p(—D')

where, a little more generally, D' is some divisor of high order of vanishing along the non-invariant compo-
nents of our supposed log-canonical triple (X', D, F). Unsurprisingly, therefore, we get a slightly different
group An=1.4 at the E; level of the spectral sequence abutting to algebraic DeRham co-homology, which
may be written in terms of hyperext by way of,

AVl = Ext (O — K#(D)[1], Kx)

and from there an exact sequence,

Ar-tn-l __y pnolin-l — Eth(K]: ® Oz, Kx) D Eth(K]: ® Opr (D’), K;\{)
Res
where the direct sum decomposition on the right follows from the smoothness of F around D'. In order to
reduce Res to Res we appeal to,

IV.2.2 Fact Suppose things are as above, but in addition the measure duy,r has zero segre class around
the support of D' then Res factors through Res.

proof Just as post IV.1.4 we can use duality to reduce the calculation of the projection of Res to Ext"(Kr®
Op/(D"), Kx) to that of an integral of the form,

lim Td/.l//\g/]:

O Ny =
where |D’| is the support of D', and if = 0 is a local equation for the necessarily smooth (if not connected)
divisor D' then 7 has the form pz—f, for p smooth, and n € NU {0}. Manifestly if we can calculate this for p
compactly supported then a fortiori we’re done, while the cases n < 1 follow by I11.3.7. On the other hand
everything is smooth, so we may even suppose that z,z; are a local coordinate system with the foliation

given by 8%, so this follows immediately by integration by parts. O

Clearly with the hypothesis of IV.2.2 there’s going to be no problem in factoring the calculation of
<ei1(L,V),duy,F > through Res as a result of meromorphic poles around the non-invariant part, since no
matter how high their order, we can smooth to a still higher order. In order to deal with the invariant terms
we proceed rather differently, and independently of any foliation hypothesis, appeal to,

IV.2.3 Fact [Ko] Let ¢ be a smooth (n—1,n—1) form on an dimensional polydisc with x; ...z an equation

of a simple normal crossing divisor, and 7 a (1,0) form such that for p; € NU{0}, 1 <i <k, o ...at* 7

is smooth, then for each 1 <i <k the limit,

lim TN
e—0 Jlzil=claj|>e
it
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is well defined, and independent of the choice of coordinates.

Notice, critically, that the support of 7 need not be compact, and in fact something slightly stronger
is even true. Namely for each i there is a smooth function 7;, independent of the coordinate defining the
divisor z; = 0 such that,

. . dx;dT;
lim TA¢=lim T /\ —J /\ dx,dZ,
= . = . Pj
e—0 [lail=claji>e e—0 [lasl=claji>e F\ zh
j#i i 1<j#i<k J a>k

In particular if for a specific choice of coordinate system 7; is zero almost everywhere, then all of these
residues are zero. This has a manifest application to computing the pairing of any class « in A?_l’"_l with
¢1(L, V) since as post IV.1.4 the pairing may be written in the form,

— lim TA«Q

20 p |=e

of course we should a priori insist that a vanishes to sufficiently high order on non-invariant components, and
since 7 satisfies precisely the hypothesis of IV.2.3, the calculation around the invariant components when
performed in coordinates adapted to the foliation over the smooth locus of the same is zero by the above
discussion, and the obvious type reason that a is (n — 1,n — 1) ® (n,n — 2), whence it’s zero everywhere.
Consequently, we deduce,

IV.2.4 Fact Let duy, 7 be a transverse invariant measure, and (L, V) a line bundle with leafwise meromor-
phic connection, then if we have log-canonical foliation singularities around the polar locus and dyuy ;5 has
zero segre class on any non-invariant poles, the pairing, < c1(L,V),dux ;7 > depends only on Res(dux;r).

Notice that this is and isn’t the algebraic De-Rham theorem in the relative context = : X — [X/F].
It plainly isn’t stricta dictum by virtue of the fact that we supposed zero segre class along non-invariant
divisors. This is, however, trivially rectified since such divisors must be everywhere transverse to J when
the singularities are log-canonical, so one can smooth the residual measure on the divisor, propagated along
the foliation, and arrive to pure dependence on Res(djux ;) by IV.2.3. If one doesn’t do this, as Kontsevich
pointed out to me, the answer could be infinite in terms of integrals such as those post IV.1.4. On the
other hand this is a slightly irrelevant nicety since the structure here is no more or less complicated than
a punctured one dimensional disc. The real issue is that except for very special cases 7, or more correctly
[X/F] doesn’t exist as a stack in analytic spaces around the singularities. Consequently the words ‘invariant
bundle’ are ambiguous, depending on whether one asks for connections with values in KzZz or just K.
Both possibilities have enough injectives, and both give a sensible notion of 7., manifestations of which are
the different spectral sequences of IV.1. The more important part, therefore, of IV.2.4, which functorially
speaking cannot be considered a relative algebraic De-Rham theorem, is that this is the unique possible
ambiguity.

IV.3 Isolated Residues

The purpose of this chapter is wholly exemplary. It’s objects are two fold: to indicate the difficulties
involved in calculating the residue symbol, and to avoid people bombarding me with e-mails claiming that
they cannot understand the proof for surfaces in [M3]. Whence let (X, F) be a foliated smooth stack with
not just canonical singularities but satisfying the embedded resolution property 1.6.7, with 1.3.1 in force. As
such an isolated singularity where the residue symbol cannot be immediately related to the segre class s¢ 4,
along the exceptional divisor has semi-simple part of rank dimAX — 1 with, say, eigenfunctions z1,..., 2, 1.
Consequently if y is a local equation for £, which, by the way, is necessarily smooth at such a singularity, with
0 a local generator for the foliation, then dy = y?Tu(y) mod(zy,...,7, 1), p € N with u a unit. Plainly
the extra dependence of Oy on the x;’s is pretty irrelevant, e.g. we can just blow up till we get log-flat or
yP*1|0y. Whence we can normalise things so that,
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9 + N —=— 9 + stuff

oy ox;

where )\; € C*, and stuff will prove to be on the irrelevant side. As ever this formula may not be analytically
convergent, but a sufficiently good approximation to it modulo the maximal ideal of the point will be more
than adequate. Indeed ignoring this subtlety for the moment consider what might be termed the basic trick,
i.e. using sg¢ g, = 0 gives,

ﬁ . dloglyPdpxr = - Z/ dlog |y dpx /7 = — Z 27T/ d,UX/]-'

osl<e

o= yPtt =

where F; is the face |z;| = €, |y| < €, |z;] < €, i # j, and what we require is to ensure that on Fj, |0x;]
is bounded below by e. The only obstruction to this is the first order terms in the Jordan decomposition,
which can easily be killed by sequential weighted blowing up determined by Jordan blocks. Furthermore the
conclusion only requires a very good approximation modulo the maximal ideal, and so we obtain,

o< [ & 1og |y *dpy 7 < ePole)
ly|=¢, |z;|<e

where the o(¢) is an unknown function, necessarily going to zero with € by virtue of the hypothesis sg 4, = 0.
Consequently we deduce,

IV.38.1 Fact Suppose (X,F) is a foliated stack with the embedded resolution property and z € sing(F) an
isolated singularity then for \.(dux,r) just the standard Le-long number of a transverse invariant measure
dpx ;7 we have,

)\Z(d,u_)(/]:) =0= Resz(du;(/f) =0
Notice that this argument does not easily generalise to non-isolated singularities, i.e.

IV.3.2 Difficulties The non-isolated problems are at least,

(a) Unlike standard residue theory one cannot just reduce from non-isolated to isolated by a generic cutting
argument, since this would amount to finding invariant functions at each point of the singularity. Even
ignoring convergence issues, this cannot always be done. Indeed in each dimension there are new ‘non-
cuttable’ singularities proper to the dimension in the form of higher saddles, e.g. :Ua% + yp(za% +
yq“aﬁ), p,q € N which don’t even have this property formally, while untame beasts cannot posses it

y
analytically. Whence,

(b) The basic trick is in general obstructed by the curvature of £ around Z.

(c) Already in dimension 3 a purely local study of the non-isolated case looks very hard. Indeed it’s not
even clear, cf. post IV.1.4, that the residue symbol is even defined locally. A possible approach appears
to be a combination of the holonomy methodology of [B1] with the basic trick. In dimension 2 the
latter is an upside down, and 1st order, version of the former, but this ‘equivalence’ no longer holds in
dimension 3, where at least both seem to be required. One should note, however, that strict justification
of the use of holonomy tends to be quite involved, e.g. for 2-dimensional saddles one needs [HE], which
is false at beasts, together with large chunks of [MR)].

IV.4 The Birational Groupoid

Given a foliated stack (X, F) there is constructed in [M1] IL.1 an infinitesimal birational groupoid # = X
which in an appropriate sense completes the standard groupoid across the singularities. The essential of the
construction is as follows: firstly consider the infinitesimal jet groupoid, P = X, which unlike X x & has
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the property that X' actually embeds diagonally in Py. Now away from sing(F) the standard infinitesimal
groupoid is constructed by adding an infinitesimal germ in the foliation direction to every point of the
diagonal A so as to obtain a formal sub-stack of P,. In general the Zariski closure over the singularities
is all of P, so what we do is blow up Py in the diagonal embedding of sing(F) with implied nilpotent
structure, or, if one likes smooth things, resolve this by a sequence of blow ups in smooth centres, and then
to the proper transform A of A add curves in the required direction. Taking the source and sink to be the
projections to X', we therefore get our groupoid, # = X, albeit with the caveat that the identity is only a
bi-rational map.

We wish to extend this to an analytic germ, and since this is exactly the kind of area where stacks
and spaces differ we spell it out. To begin with, consider the situation at the level of the moduli, say,
F = X. The convergent Frobenius theorem applied on étale neighbourhoods of # followed by the taking
of invariants shows that every point of a posseses an analytic extension, and these inturn, by the unicity of
analytic continuation, glue to some analytic space F'. Now go back up to a point ¢ € # with Ug an etale
neighbourhood of the same, such that F is locally a formal classifying stack of the form [Ug /G¢] for some
finite group G¢. Again the Frobenius theorem gives us an analytic extension Ug of Ug, and we can consider
the groupoid,

[Tve xr v, =[] U
& 3

where ~ denotes normalisation. Completed in A the classifying stack of this groupoid is just #, so indeed
we have our desired analytic extension f,, (or just F if there is no danger of confusion), which a postiori
can be locally expressed as [Ug /G| for possibly smaller Ue.

IV.5 Harmonic theory on foliated varieties

We continue to let (X, F) be a foliated smooth (Kéhler) stack, but we fix a (supposed existent) transverse
invariant measure du. We could, of course, avoid this and proceed & la Connes, [Col, to do things independent
of a particular realisation. Nevertheless we have specific measures with specific properties in mind so we’ll
proceed somewhat more simplistically.

As ever one builds up from C°°(X). Nevertheless distributions and so forth should all be understood
relative to du. In particular we’re only interested in the initial terms derived from the filtration of IV.1 on
smooth forms, i.e.

L Fi,jA*
S — X i,j €{0,1
g FoiAL s oA {0,1}

where A% is global smooth forms on X. Consequently when we talk about a distribution dr®J this will mean
an element of gr' '~/ calculated along dpu, i.e.

IV.5.1 Definition A distribution of type (i,7) of reqularity class (p,q) is an element of the dual of gri—i1=i
in the sobolev (p,q) norm along du, i.e. the qth derivatives are du £,. In general all statements about sobolev
spaces, U1 spaces, etc. are to be understood in this sense.

The restriction of the standard differential operators gives, therefore, a Hodge diamond,

g0

N N\, 0

grl,() grO’I

0\, v 0
gr1,i

o1



so that if we think of gr i as embedded in smooth sections of K} ® Kz, with 87 a local generator of the
foliation these can be written as 7 ® 9 etc. Now the * operator from gr':? to gr®! is plainly just complex
conjugation. Whence if H is the class of a Kéhler metric, and we desire the standard formula,

/w/\*7‘d,u=/<w,7‘>Hd,u

we see that the right choice of metric on K is a norm of the form smoothx1/||1z|| where Z is the singular
substack with nilpotent structure, and ||Iz|| is as per II1.3.1. As a particular consequence, in terms of the
local generator 7 the Laplacian on gr’° has the form,

Af = —=0707(f)

1Tz

and not as one might suspect drdr(f). More generally, on identifying an element of gri/ with its image in
K ;_- ® K#’ the other Laplacians look like,

1 1
1Tz| [Tz
where we’ve been deliberately vague about which Laplacian we’re using, since, infact, the Hodge-Riemann

bilinear relations continue to hold, so they’re all the same.
Certain things are, therefore, pure formalism. For example for s € N we have sobolev spaces,

AYf = 0p(7—07(f)) , AV f = 0505 (—03

By, = {f AP <00, 0<p < S}

and their duals gré’ with an inverse limit gr o and a direct limit gr . Whence, essentially by definition,
if Af =gforgegr;,, then f €gry . What, however, is not ev1dent is that the inclusions,

* *
8ra s —* 8oy

for s > t are compact. Plainly there isn’t an obvious way to relate this to standard theory around the
singularities, and whence the lack of a general nonsense proof in the spirit of [Co] for the existence of the
Green’s operator. Fortunately, classical formulae for the Green’s operator are well known, and these will
prove better adapted to our present circumstances.

IV.6 The Green’s Operator

We continue to suppose that (X, F) is a smooth proper K&hler stack over C foliated by curves. The birational
groupoid # may equally well be observed to be the saturation of A in either of the foliation directions obtained
by pulling back a generator of F via the standard projections of the modified jet groupoid. In particular
if du is a transverse invariant measure and dji is the extension over A by zero, then there is a well defined
saturation on # which agrees with s*du = t*du over the smooth locus. Due to the lack of ambiguity we
therefore have,

IV.6.1 Notation/Definition The measure d'ujf so constructed will, lest there be cause for confusion, be

denoted as du.

Now we can construct a Green’s operator in the standard way. Specifically denote by || || a function
as per I11.3.1 which is eventually zero on F, and put,

G g™ — g0 f s /jfs*ft*wlog||]IA||2s*Hdu
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where the 7 denotes a deliberate vagueness about where the Green’s operator takes its values. Let’s proceed,
therefore, to a standard sort of computation in order to investigate how far this formula is from being correct,
ie.

G(f)(dd°¢) = /;lf d(d" (t*¢) log || Iz ||*s™ (f H)dp) — d(t* ¢)d* log ||z || (f H ) dpe

Plainly, therefore, we need to know that the first of these terms cannot develop a residue along A. At
smooth points, however, this is clear since the term in question is bounded on ||Ix || = € by,

(5" H)|[15 [I* log |1 [|*d° log || 1L ||*dya

for ¢ smooth. Equally at singular points the situation is no more complicated, since part from the above
term there is another of the form,

5]l log ||| x {smooth} x dpu

0, again, our generalities on residual measure oblige this to go to zero. Proceeding with the calculation, we
therefore have,

GUaag) =iy [ o8 (T g1 Pdu+ R I
All=¢

where here and elsewhere we’re notationally a bit loose about the difference between dd® and c¢;, and we

need to know that the residue on the left is as it should be. Again at smooth points this is clear, while at

singular points the extra terms once more give things like ||z [|d° log || Tz ]|* X {smooth} X du. Indeed even

if f isn’t smooth as per II[.3.5, Lo is more than adequate to kill either this term or the previous one, and

for that matter to deduce that the Green’s operator takes Lo forms to Ly forms. Whence,

IV.6.2 Fact Let Lg’o be the space of Lo forms deduced from grg’o, and suppose sing(F) is compact, then
there is a Green’s operator G : LQ’O — LQ’O defined as above satisfying,

AG =id — #t,(s*H A 1 (A))

Plainly the situation for L;’l is just as clean. Indeed if to clarify the notation G%C etc. is the Green’s
operator in the appropriate dimension, *G%%x is a perfectly good operator on L', and AM'GH! = id —
t.(s*H A ¢ (A))x. The situation with respect to the Ly® and L3 is that just for a Riemann surface it’s
on the tricky side to write down an explicit formula since K may not have a global smooth generator.
Nevertheless locally this isn’t a problem, so that combined with standard stuff about conjugate operators
we conclude,

IV.6.3 Fact/Summary Let (X, F) be a foliated smooth stack with projective moduli, or more generally
a germ around a compact singular locus in a complete Kdhler metric H, then there are operators x, A, G
satisfying the usual sort of relations, and the latter possibly a little different from the above, together with a
decomposition,

L;Z;u = H;;[;u @ AGL;:;u

o0 . . . 0,0 ,_ _—1¢y71,1 .
where Ly, are the Ly forms with respect to a transverse invariant measure dp, Hy'; (= H27du) is the

u holomorphic functions along the leaves; and H’;:r[i)u (= *_1H3”;u) is the u holomorphic forms.
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IV.7 Almost psh functions

The basic moral of the previous discussion is that notwithstanding the complication of the singularities
harmonic theory in the foliation direction in the presence of a transverse invariant measure du just looks like
that on a Riemann surface. As such, and with rather greater pertinence, we wish to examine to what extent
the theory of psh functions still holds. Our interest is rather specific, so we’ll confine ourselves to what is
directly relevant, i.e. closed substacks )V of X where the residual measure sy 4, has been shown to exist. As
ever let ||Ty|| be a function as per IT1.3.1 so that by hypothesis dd° log ||y ||?dy is also known to exist as a
dp bounded (1,1) form - i.e. the chern class for an actual divisor. Whence for ¢ a smooth test (1,1) form,
consider,

L dT‘ * c 2%
= s*dd° log || Ly||** s
o T Jjugl<r

In particular if v is du £, then the first of these integrals can be bounded by something of order,

([ s HCHA ol
([T <r

where as ever 1/p+ 1/q = 1. Whence the total integral certainly exists, and for any smooth 1 is equal
to,

P dr
[T st + [ tsdiog [y og |y
o T ligll<e

Now let’s consider the first of these terms. As with the discussion of the Green’s operator it is comfortably
bounded by terms which eliminate the pole in r at the singularities plus a main term which is the same
everywhere of order,

P dr . .
— d||Lyl|d®|| Ly||s"dsy,au
o T Jjugl<r

where sy g, is the infinitesimal form of the residual measure sy q,. Again the general theory of residual
measure assures us that the first integral is of order r2, so the whole thing exists, whence the 2nd term
occuring in the re-writing of our original integral exists too. Indeed, t.(s*dlog || Ly||d log ||1x ||?) is absolutely
integrable. Applying Stokes to the said term, gives, in turn,

AH | t*ps™ log || Ty ||d° log || [|*du — lim t*4s™ log || 1Ly||d° log |3 ||*dpe
All=pP

=0z ||y ||=e
+ / #1ps* log || Ty lc1 (A)dy
lall<p

There are several things to check. To begin with we view our neighbourhood of A as projecting to A,
at least locally, via ¢t and seek to integrate terms such as s* log||Tly||d¢ log||T5||?, or s*log||ly|lci(A) in
the ordinary Lebesgue sense over the fibres. The latter is trivially O(1), and the former over the boundary
I|II|| = pis no worse than log p. Consequently if we a priori take ¢ to be sufficiently zero on ||Iy|| = 0, then
the middle residue not only exists but is bounded by the sup-norm of ). Whence log ||Iy|| is actually ¢,
with respect to du - a fact we could have already concluded from our previous considerations on the Green’s
operator- and, moreover,

P d’l’a % c * * * c
/ log | Ty|ldp = — / dr / 5 (dd® log | Ty |12) "y + / £4ps* | Ty||d° log || Tz | du
pY o T Jjngli<r I ll=p

&l
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N P dr
s vestoglille@das [T [ ruston,
IIxlI<p o T Jjugz|<r

Now everything on the right is comfortably bounded by the dp £, norm of ¢ for any p, except possibly
the residual measure term. For any ¢; ¢, however, we can view the integral over ||I5|| < r against the
residual measure as a limit of some bounded function,

y / ()
s~l(y)n|ugl|<r

for y on ||y|| = €, averaged over a standard circle measure, so that the whole integral over ||[TIx|| < r is
bounded by the £; norm of ). Consequently if ¢ is actually £, we can achieve,

/ s oy,au << |1/1|p(/ || I |d° || L5 |50y, 00) /T << |/
(NG NES

where as ever 1/p+1/q = 1, and << is up to some irrelevant constants. Consequently we deduce,

IV.7.1 Fact Let Y < X be a closed substack of a proper stack then log||Ly|| is (Lx\y)dp — €, for any p,
so in particular O||Ly||/||Ly|| is €1.

proof Just apply Cauchy-Schwarz using I11.3.4. O

We next concentrate on a special case, viz:
IV.7.2 Hypothesis Suppose X itself is obtained by way of a resolution in smooth invariant centres of the
singular substack of the foliation on some Xy, so that Y is some component of the total exceptional divisor,
and, moreover the segre class of the measure around the total exceptional divisor is zero. In particular dp
has no support on the exceptional divisor.

As such, if, rather more correctly we write dd° log||Tly||* as —c;()’) then one observes that the bound for
the £, norm of log||1Iy|| is almost uniform in p. Indeed the only problem (c;1()) is after all smooth) occurs
on the integral over ||l || = p, where it’s possible to get terms of the form,

(| log nl|dd*|n[*)d* log |15 |*dpe

for ¥ some linear function of the coefficients of ¢, and n = 0 a local equation for a component of the
exceptional divisor in A (== resolution of sing(F) by a sequence of blow ups in smooth invariant centres).

Equally there’s a similar term in the integral over ||I;|| < p, but this can be absorbed on the left when
appropriate by taking p sufficiently small. Consequently if we hadn’t a priori known from the theory of
residual measure, I11.3.4, that log |n| was £, for all p with respect to dndijdp we wouldn’t have got anywhere.
Thus the Green’s operator isn’t precisely smoothing, but rather, works like : smoothing + a priori knowledge,
whence, given the stability of IV.7.2 under blowing up in sing(F) we’re going to be able to apply,

IV.7.3 Bootstrapping Procedure Given IV.7.2 we assert that ||Iy||~" is £, for all p.
step 1 We know that log ||y || is 1, so we have,

0 > = [ loglylla ()i
= tim_~ [ logmax{| Iy, t}dd log |y d
t——o0 X
N . d||y||d°|| Ty ||
—  lim lim log masc{|| Ty ||, £}d° log |y |[2dp + lim 2/ dlylldl Tyl ,
100 e=0 /i, = ¢ ) t=5=00 Jioguy)>t  [Tyll?

Now the hypothesis of the nullity of residual measure plainly obliges the first term to be zero, so infact
[Ty~ is £ with respect to d||Ty ||d°|| My]||dp.
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step 2 Step 1 is equally valid on A, so we can use this to get a respectable bound for the £, norm of
log||Ly|| on X.

Indeed the maximum of z|log z|P in the interval [0, 1] is e PpP so no worse than p!, whence a power series
computation gives ||y~ is ¢>_. for every € > 0

step 3 Suppose more generally ||Ty||~2 is £, and as before, consider,

1 : d|| My ||d°|| My ||
00 > —/ ——c1(V)dp = lim q/ —————dpu
x [[Tyl]>? =00 " Jiog [y > [ Tyl[20D)
so that ||Ty||=2 is £,41 with respect to d||Ty||d¢|| Ly ||du

step 4 Apply step 3 on A, to conclude that on X' we can improve our bound for the £; norm of | log ||y |||
to p!(q + 1)7P, whence conclude that ||y||=2 is £, 41—, for every € > 0.

step 5 Bootstrap stricta dictum, i.e. we can get from ||Iy||~2 ¢, to say lyt1/2 by step 4, so indeed
ITy]| =2 is ¢, for all ¢ < oo.

From which we obtain,

IV.7.4 corollary Suppose (X, F) is the germ of an analytic stack with proper singular locus, du the extension
by zero of a measure on X' \sing(F) with finite total mass and zero segre class along sing(F) then Res(du) = 0.

proof (No hypothesis on sing(F) ) Let p : (X,F) — (X, F) be a resolution of the ideal of sing(F) by a
sequence of blow ups in smooth invariant centres, then at every geometric point ¢ of X there is a 1-form we
with at worst meromorphic poles along the total exceptional divisor which becomes holomorphic in Kz and
generates the latter around (. In particular any residue that we may wish to compute may be expressed in
the form,

lim pewedp

701 | =e
for &£ the total exceptional divisor, and p¢ suitable C'*°-functions. On the other hand the poles of w¢ are ¢,
for every p, so we itself is £2. Whence by II1.3.5 this limit is zero. O

IV.8. Motivic Remarks

Given a foliated stack (X, F) one would like to form the classifying stack [X/F]. In an ideal world this
would be done as follows: the smooth infinitesimal groupoid # = X\ F would have a well defined Zariski
closure as a flat infinitesimal groupoid, which could be extended to a small analytic space, and from there
to a domain of holomorphy for either the source or the sink. Indeed when F is smooth, and X is a space
this is just the construction of the holonomy groupoid, and it’s already verified in [M1] VI.2 that for X
a Deligne-Mumford stack the said groupoid is representable in analytic spaces so infact there are no set
of all sets kind of problems and [X/F] is well defined. The situation when there are effectively arbitrary,
even canonical singularities, is less clear. We could try to do this at the level of rational maps, but this is
problematic since we may not be able to define composition. We are, however, just making some remarks,
so, let’s suppose,

IV.8.1 Hypothesis Suppose that we have an intelligible sense for the symbol [X /F], based around the bi-
rational groupoid, or more likely a pro-finite limit of such, or whatever, with, equally, an intelligible sense to
the statement Y — [X/F] is flat of pure relative dimension - plainly, X — [X/F]| for (X,F) with canonical
singularities is the model example.

Given these caveats and/or hypothesis we can consider the 2-category of algebraic Deligne-Mumford
stacks ) — [X'/F] which are flat of pure relative dimension such that the associated groupoid Y xx, 7Y = Y
is not only ‘representable’ in analytic spaces but is infinitesimally so in formal algebraic stacks. Rather
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abusively we’ll call this sch/[X/F], i.e. we want to think of such objects as schemes over [X'/F]. Having
got this far we can introduce some motives, i.e. a category Msch/[X /F] whose objects are [X'/F] schemes
Y but written My, and if ) has relative dimension n the morphisms to another [X/F] scheme Z are,

Hom(My, Mz) = A""™(Y X (x5 Z)

where the right hand side is defined as follows: J X[x,7) Z is almost a space. Specifically, it’s an analytic
Deligne-Mumford stack, so it has moduli, whence a perfectly sensible space A%"(Y X[x/7 Z) of smooth
compactly supported (n,n) forms, which can be completed in some norm that we’re deliberately vague about.
One notes, however, that when X is a space, F is smooth, and we complete in the sup-norm that,

End(MX) = An’n(X X[X/}-] X)

is infact the C* algebra of a foliation in the sense of [Co], and, of course, there is no need for hypothesis to
ensure the existence of [X'/F] in this case.

Now while we’ve only discussed Hodge decomposition for that which is strictly necessary, it’s plain that
the entire discussion continues to work under very mild hypothesis, e.g. say )} smooth with projective moduli,
and some technical conditions on the relevant tangent sheaf such as [Su]. Whence for a given transverse
measure with now A some birational identity on a representable groupoid with the same objects as ), the
only change in the definition of the Green’s operator ought to be for reasons of the relative dimension n, i.e.

G(f)(B) =/8*(fH)t*610gIIHAIIZ(ddCIOgII]IAIIZ’)"’ldu

with, of course, # a (n,n) form, and H a hyperplane. In particular for a given transverse measure dy the
situation is no more complicated than the situation over C. Notice, we did not in IV.6.3, nor here, make
any precise re-interpretation of L, harmonic spaces in terms of some more intrinsic derived functors due
to technical issues associated to the singularities, with, for example, as post IV.2.4, ‘natural definitions’ of
cohomology and ext disagreeing for ‘invariant’ bundles. We can, however, simply view the resulting harmonic
groups H;’du as a realisation of the motive, which themselves don’t truly depend on dpu, i.e. there is a map,

Hj : Measures on [X'/F] — Realisations of Msch/[X'/F] : du— Hj 4,

As such we can really talk about Hj, or perhaps notationally better, for 7 : Y — [X/F] in sch/[X/F],
R37.C. Better still, considerations of our initial model example X — [X/F] for E any vector bun-
dle on X and V : E - Kr ® Iz a C™ connection, Z = sing(F), suggest we can construct groups
Hs 4,,(0), Ha 4, (V), H,q,(V + 0) by way of appropriate Laplacians which have formally identical prop-
erties to the groups so defined over C. One should note, however, that if we take V to be a connection
with values in Kz the situation is a lot more delicate, since there will be residues. Regardless, and again
without trying to define it intrinsically we can define R$7, E using the d-Laplacian, or a more subtle object
R*m.(E,V) using the operator [0, [A, V]] where A is the adjoint of a hyperplane, and V is allowed to take
arbitrary bounded values in the relative co-tangent sheaf of m : J — [X'/F].

To ensure the existence of a motivic chern character it suffices to work with bundles with connection
rather than just bundles, or we can divide by an appropriate equivalence relation. Consequently up to some
suitable refinement of the discussion we would anticipate a relative Riemann-Roch theorem of the form,

> (-1)'R'n.(E,V) = /ch(E,V)td(w) + Fudge

where the fudge factor is rather big, i.e. it contains residues for the non-scheme like points of ), for the
extent to which V doesn’t factor through the relative co-tangent bundle, and both of these at the same time.
Regardless, we move to a much more satisfactory description of the residue symbol IV.1.4. Notice also that
the topological Euler characteristic also involves a residue, for example in our model example X' — [X/F]
it looks much more like 1/2{c;(Kr) — sz}, where sz is the segre class of sing(F) viewed as an operator on
measures, rather than its ‘arithmetic’ counterpart 1/2¢; (K ).
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V. Hyperbolicity (Emphasis on 3-D)

V.1 Parabolic Measures

Consider the following statements for maps to a foliated Q-gorenstein projective triple (X, B, F) with canon-
ical singularities and conventions on the weights of the necessarily non-invariant boundary B as per [M1]
1.6.1.,

V.1.1 Finiteness There exists a proper closed subvariety Z of X such that the subspace of Hom(A, X)
consisting of invariant maps not factoring through B, with f~1(B;) a divisor of weight divisible by that of
B;, for every component B; of B, and not arbitrarily close to Z in the compact open sense is compact.

Now suppose this statement is false, then by op. cit. V.6,

V.1.2 Summary We can find a transverse invariant measure duy 7 with the following properties,

(a) (KF+ B).dux;7 <0
(b) D.dux;r >0, V effective Cartier divisors D.

(¢c) For any proper generically finite map p : X — X in the 2-category of algebraic stacks there is a closed
positive transverse invariant measure dvy satisfying (b) on X and p.dvx = dux;r. Furthermore if
we have a foliated triple such that (X, B,F) is unramified in the leaf direction, then we have (a) on X
too.

In particular for the stack p : (X, F) — (X, F) with its divisorial ramification over B of [M1] 1.7.4, we get
a transverse invariant measure satisfying K z.dux,r < 0, and whence equality if Kz is nef. Consequently
we introduce,

V.1.3 Definition Call an invariant measure duyx ;7 on a minimal model (X,F) of a foliated gorenstein
stack with projective moduli parabolic if Kz.duyx 7 = 0, and we have conditions (b) € (c) of V.1.2.

A useful initial remark is to clarify the condition (c) for bi-rational modification, so let’s say p : XX
a blow up in an irreducible centre ) of co-dimension p with £ the exceptional divisor. As such we have,
multiplicity :=my(dux,r) = sup{€.dvy : p.dvxy = duy,r, dvx satisfies (b)}
and we assert,
V.1.4 Claim If dimY < numerical Kodaira dimension of Kr, then my(dux,r) = 0.

proof The proposition is absolutely nothing to do with most of the hypothesis, and is infact a simple counting
argument. Indeed let € € Qs¢, and d € N be sufficiently large and divisible, then for v the numerical Kodaira
dimension of a nef K on the n-dimensional moduli X, with H ample,

dnenfl/kVanV

(X, K@ H) < '
V.

(1+0(e))

On the other hand to vanish to order m on a sub-scheme Y of co-dimension p is determined inductively
by exact sequences,

0 — H'(X,K'@ H*Ti') — H(X,K'® H*T}) — H°(K?® H* 2 T}, |/Ti™)
for 0 < i < m, from which we deduce,
mPdn—P

pi(n —p)!
where the implied constant depends on Y. Whence if we’re aiming for multiplicity dé, then we need,

RO(X,K?® H¥*T™) > h°(X, K% ® H%) — const
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P << "V

and by hypothesis, n — v < p— 1, so if we take, as we may ¢ of order =¥/ then ¢ is at least of order ' ~'/?,
so we find,

p*(K + eH) >> ' 1/Pg

on X, from which,

e/PH > dpxr >>my(dpx,r) >0

for every € > 0. O.

As such, and particularly given that our primary interest centres on Kodaira dimension n — 1, it’s
invariably the case that we may suppose that the multiplicity is zero. In such a scenario, it’s often the case
that V.1.2 (c¢) is a bit empty. Specifically suppose p : X — X is a blow up in a lci substack ), so that the
exceptional divisor p : £ — ) is relatively smooth. Consequently for any remotely sensible metricisation of
O¢ (1) := Og(=E) the class Og (1) 2.p*sy,qy is a positive measure, and for Tydpy ;7 = 0 we get a perfectly
sensible ‘proper transform’,

Wa\edpx 7 + (ie)« O (1)P > p* sy ap

which incidentally is just p*duy, 7 as an ‘analytic cycle’ if one were to use the theory of residual measure to
adapt [F] 6.7 to measures. Nevertheless when Mydux,7 # 0 the existence of a proper transform is a highly
non-trivial hypothesis, whose relation to residual measure merits clarification. To fix ideas and/or consider a
case that captures all the essentials , suppose that duy 7 arises from a countable Zariski dense set of curves
C; = X of unbounded degree, i.e. after subsequencing,

1
_ C:
HC
where C; is equally used to denote its current of integration, or if one prefers over C;, where the latter is

smooth, scheme like, and dominates C; by way of f;. Plainly therefore we have an a priori notion of proper
transform for, say, p : X — X the blow up in Y as before, given by,

dpx /7 = lim

. 1

where C; is the proper transform of the still Zariski dense set of C;’s not factoring through ), with extra
subsequencing as necessary. In order to relate this to the theory of residual measure consider for Z — X" a
closed substack with ||Iy||, |[Iz|| as per II1.3.1, and § > 0, the various integrals over a given C;,

dd° log || Iy||* = / (d° log || Ly||* + d° loglog? | log || Lz | )

/1/ log | log [Tz || <[|Ty || <d 6=||1y ||>1/log | log ||z ||

-/ dd oglog? [1og | L2 ]| = sy.c, (T o)
6>||Ly||>1/log | log ||z |
Now divide out by the degree of the C; take the limit over 4, then let § go to zero to get,

—EMegny-1zydpx/r = gi_a%Sg),du(]ll|1lz||<exp(fexp(l/J)))_my,dux/F(]I”HZH:O)

s.au(Tj1 =0) — MY dpuz,» (M, j=0)

IN
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where s° is the segre type class, but calculated at a fixed radius ||ly|| = &, while m, evidently for mul-
tiplicity, is the multiplicity type measure arising from the normalised limits of the sy ¢,, and the terms
involving loglog |log ||Iz||| all disappear because dd°log |log ||Iz||| is absolutely integrable with respect to
dp irrespective of any choices. Obviously an equality would have been preferable, but we’ll invariably be
able to get by by via the generally valid formula,

Oc(1) edp g7 = sv,au(1) — my,au(1)

Consequently, one should note that the possibility exists to refine our definition of parabolic measure to
include,

V.1.5 (V.1.2 bis.) Summary/Definition A parabolic measure could, for all practical purposes, be asked
to satisfy the following further naturality condition for blow ups p: X — X in lci centres ) with exceptional
divisor &,

(d) = EMgrp1z)dig 7 < $y,du(Ljuz)=0) — my,au(Ljuz )=o)
for Z < X any closed substack, and ||1z|| as per I11.3.1.

V.2 Parabolic Decomposition

Suppose we’re presented with a parabolic measure duy 7 on (X, F) with, say, X smooth of dimension 3 to
fix ideas. Notice that by definition the singularities of F are canonical so any invariant divisor D that moves
in a pencil defines not just a rational map, but an honest 1st integral, A : X — C, so if D; is generic in the
pencil Op, (Dy) is at worst torsion. Consider, therefore, the condition,

]I'Dd,u_)(/]: §é 0, and D]I'Dd/,t;y/]: <0

Now certainly duy,7 may have support on curves, which are necessarily invariant, and countably many,
so write,

dpx,r = dv + Z AiL; , Tedv = 0 for all curves C
i

where L; are the classes of integration of the said curves. Consequently, if we still have D.dv < 0 then D
is the only effective Cartier divisor that meets Ipdr negatively, and indeed, C.Ipdv > 0 for all effective
Cartier divisors C on D. Now let’s proceed to an understanding of Ipdv in the usual way, i.e. as in II.1
consider the diagram,

(Yo,G0) +—— (I,9)
(D, F)

where D — D is the normalisation, p:Y — D a relatively canonical model contracting curves E;, and
m Y — ) the actual canonical model contracting curves C;. As such we get a formula of the form,

p*K]: :ﬂ'*KgO +Z+ZaiEi+ijCj
i J
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a; € Q.0,b; € Q>0, Z supported on sing(F) with parts Z', Z" invariant and non-invariant by F. In
particular it’s perhaps better to think in terms of relatively canonical & canonical models for (D, Z", F).
Regardless if (Yo, Go) or more generally (o, Z",Go) is fibred in rational curves or weighted projective stacks
then pdr has a fairly obvious shape, and we make no further comment. At the other end of the spectrum
if we have general type then Ipdr doesn’t exist by the index theorem, while rather more delicately the
classification theorem in dimension 2, [M2], tells us that that it cannot exist for numerical Kodaira dimension
1 either without being supported on curves, or arising in the obvious way from an elliptic fibration. If the
Kodaira dimension in zero then the cases where Gy is a smooth foliation is distinguished. Here there are
invariant measures unique in homology, say dvy, with the property that dv = 0, so that 7*dvy can be
identified with its extension by zero across |J C; when it’s not supported on curves, or by the pull-back of
a curve when it is. Either way, since dv itself isn’t supported on curves p*lIpdr may be identified with
the extension by zero across |J E; plus some curves, which in turn is homologous to m*dyy by the index
theorem. Furthermore the log-Kodaira dimension must also be zero, so Z" is empty, and p*Op(D) admits a
connection along the leaves with meromorphic poles on Z’. On the other hand Res(n*dvy) by construction,
so D.AIpdv = 0, contrary to hypothesis. This leaves the possibility that Z"” = 0, and (), D) is defined by
a Gy, x Gy, or G, x Gy, action, or Z" # () and we have an isotrivial family in G,,’s, nearly all of which can
occur. More precisely consider a G, x G, action modeled on P' x P! and suppose dvg is a measure on it
not supported on curves, then by [B1], Res(dvg) = 0, so by the index theorem every cycle C' supported on
invariant curves satisfies C? < 0, which is nonsense, so this case is inexistent. Similarly by op. cit. Res(dvy)
would also be zero on P! x P! for a G,,, x G,, action given by a field of the form a:a% + )\ya%, A ¢ R, the
case of A € R may, though, a priori occur. It’s therefore worth noting that apart from the real eigenvalue,
if this example did occur then the index theorem tells us that sing(F) N D has dimension zero, while (), G)
and (D, F) coincide, and are modifications of (), Go) by a sequence of blow ups in invariant centres. In
particular Ipdy is not only homologous to a positive sum of invariant curves, but is so in the strong sense
that the difference intersects any invariant object in zero, whence, to all intents and purposes we’ll be able
to assume that they are equal. Consequently, modulo bearing in mind the need for a little care in this case,
let us simply write,

dpx/r=dv+Y _ NL;

where now D.dv > 0 for every effective Cartier divisor D, and the L; are allowed to be not only invariant
curves, but invariant measures on any divisor on which the induced foliation is a conic pencil. Whence if

K% #0,

V.2.1 Fact Let things be as above with K% # 0, then dpux,F, dv, and )~ L; are all parallel when projected
into NE; (X).

This is, of course, just an application of III.2.1, but dv has further structure, such as,

V.2.2 Further Fact Let Y — X be an invariant substack of dimension at most the numerical Kodaira
dimension of F then the residual measure sy q, is zero.

proof By hypothesis Iydy =0, so if p : X — X is the blow up in Y with & the exceptional divisor then,

sy,av(l) =E.dv

where dU is the extension of dv across £ by zero. Arguing as per V.1.4, we’re plainly going to be done if
we can show that di intersects every Cartier divisor on X’ non-negatively. Replacing X by a resolution via
a sequence of blow ups in invariant centres we deduce the existence of an irreducible Cartier divisor D such
that D.dv < 0, so D.llpdv < 0. On the other hand p is bi-rational at the generic point of D, and we’ve
already removed everything that might have this property. OJ.

From which we proceed to,

61



V.2.3 Main Fact FEither the number of possible L;’s covered by a rational curve is ‘finite’ - i.e. something
appearing in the sum Y A\;L; is: one of a finite list, moves in one of finitely many families, or moves in a
family covering X .

proof Most of this has already been done in §III, so that in the notation of II1.9.2 we may assume that
X = &), and L; is a rigid curve, étale covered by a generalised weighted projective stack 7P1(p, q), where p, q
are the orders of the generic monodromy at either end modulo the ged of the same. What’s critical to know
is that ILy\r,dp has no residual measure around L;. For K3 # 0 this follows from V.2.2 & the construction
of Xp,. For K7 numerically nil, there is never an issue since the eigenvalues at any end are constant. The
case Kr #0, but K 92: = 0 is rather subtle. One has to first prove by specialisation ad nauseam to the normal
cone of L; that the only way that this could happen is if dv were infinitely tangent to the formal schemes Dy
and Do, of IL.6 at the X, level, then go back up to X and proceed as per I1.8.3 to extract a contradiction.
We don’t, however, need this for our main 3-D application, so we omit further discussion. Now we can just
construct the flap é?pr of L;, i.e. the weighted blow up mapping down to the flop, let £ be the exceptional
divisor and conclude,

E.Medfi > 0

which is nonsense, since Og(—E) is ample on £. O

V.3 The Diffuse Part

Plainly at this juncture our knowledge of the ‘atomic’ part ) L; that may appear in the parabolic decom-
position of a parabolic measure duy,r is rather good. Indeed,

V.3.1 Summary We have the following alternatives,
(i) Some rational L; moves in a family covering X, so, in particular, if K% # 0, there is a foliated surface

(S,G) and a rational map (X,F) —-» (S,G) compatible with the foliations, whence, ‘much’ of dux,r
descends to S, and in any case Kx. K% < 0.

(il) Some L; is actually elliptic, and wholly contained in the smooth locus, so its normal bundle is flat.
Whence, again if K% # 0 then such a curve is parallel to K3 and Kx. K% = 0.

(iii) The number of L;’s is ‘finite’ in the sense of V.2.3, although one should bear in mind that there may be
curves wholly contained in the sing(F), so it’s important to remember that the definition of invariant
measure supposes the vanishing of differentials in the co-normal bundle along du, so this can only
happen for curves that are singular solutions in the sense of 1.4.10 i.e. contained in the weak branch
and invariant by the induced foliation.

Otherwise we can further enhance our understanding of duy 7 under some additional hypothesis, i.e.
V.3.2 Fact If K% # 0, then either the ‘diffuse’ part dv doesn’t exist or Kx.K% = 0.

proof Suppose Kx.K% # 0, then dv is parallel to K%, so Kx.dv # 0. The co-normal bundle is, however,
invariant so by IV.7.4 sy 4, # 0 for Y — X the entire singular substack, contradicting V.2.2. O.

In particular,

V.3.3 corollary If Kx.K% > 0 then dpxF is a (possibly countable) sum of ‘finitely many’ curves in the
sense of V.2.3 which are either rational invariant not factoring through sing(F) or contained in the weak
branch, and invariant by the induced foliation on the same.
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V.4 The Weak Branch

For this section we’ll suppose K x.K3 # 0, and that we have the alternative V.3.1 (iii). As such there could
be a number of curves L; whose completion around sing(F) factors through the weak branching scheme.
Necessarily we can suppose that this happens at a single irreducible, even smooth, 2-dimensional component
¥ of the weak branch which is non-algebraic, so that by 1.4.11 the number of L; involved is finite stricta
dictum, and, to re-iterate, may contain some components of sing(F). In any case denote, slightly abusively,
by Twdpy 7 the sum Y, A\;L;, where I' is the set of L; in question. Our basic assertion is,

V.4.1 Claim ® extends as a formal scheme with trace |J L;, i € I', and for any i € I', Li Twdpx ;7 > 0.

proof For L; C sing(F) we've already done this. Otherwise as per 1.2.2, it’s harmless to blow up in
components of sing(F) sufficiently to guarantee that the L; in question is contractible, so that we can find
B around L; by way of Jordan decomposition on the contraction.

For the next part we proceed as follows: extract a dth root of ¥ around the completion in the trace so
extended to get a formal stack X, which is pseudo reflecting around ¥, then blow up in the pre-image of the
given L;. Having done this, kill all the pseudo-reflections and sew the thing back into the ambient X’ to get a
weighted blow up p : X — X with exceptional divisor £. By construction X’ has no more monodromy around
the proper transform # than X has around #®, and has extra non-scheme like structure with monodromy
Z /d concentrated on some curve L$° wholly disjoint from . Furthermore any part of the dji guaranteed by
V.1.2 which is neither on £ or factors through # meets £ in L$° by 1.4.11, whence,

1
LiTwdpyx;r + EMg\wdpx )7 > — 5L Lnwdna (1)

Within £, we’ve a priori taken Og(—E) to be ample for curves L; ; sing(F), while otherwise the foliation
in £ is of conic type with integral projection to L;, so, =€ Mx\wdpx ;7 > 0, and we let d — oco. O

The critical use of this proposition is as follows: call the induced foliation in # G, then K¢ = Kr|yy — Z,
where Z is some bunch of curves in sing(F) that may perfectly well contain some of the L;’s . Nevertheless
thanks to V.4.1, we know K¢.llwdpuy ;7 < 0, so we can examine the structure of llwdpu /7 by doing minimal
model theory on #. Even though # is formal, there’s no problem constructing a contraction 7 : ¥ — ¥,
which contracts finitely many G-invariant components of the trace such that Kg,.C' > 0 for every curve C' in
the trace of ¥y unless, of course, ¥ were a pencil of conics in the induced foliation, which would contradict
its non-algebraicity. As a result we can apply the ‘index theorem’ (more precisely elementary considerations
about quadratic forms) to conclude that Kg, # 0 unless every component of sing(F) N#®¥ is G invariant,
and deduce in any case Twduyx,r, Krlpy are parallel. Furthermore the inequality Kg.Mwdpy,r < 0
becomes an identity, and every L; C sing(F) must be rational if there is more than one component, with
any intersections being simple normal crossing and at most one for any point of singG. As such we have
two possibilities: 7. Iwdpx /7 is supported on at least one rational curve disjoint from all the others, which
would then have to move, contradicting the non-algebraicity of ¥, or m.Mwdux,r is elliptic -equivalently
the curves llwduy,7 form one of the Dynkin diagrams of [M3] IV.4.3. In addition, D.Mwdux,7 > 0 for
every Cartier divisor D. If one wishes, it’s possible to proceed as per the discussion of II.9 to flop in X
rather than just contract in ¥, albeit that we may loose projectivity of the moduli if we proceed as per
op. cit., and whence replace Iwdp 7 by a single irreducible smooth elliptic or irreducible nodal substack.
In principle one then wishes to deduce that the curve moves. This is not, indeed cannot be (just consider
an arbitrary representation of Z? in Diff(C) ), a purely formal question, and, unfortunately, neither of the
proofs in the case of # an algebraic surface generalises to the current situation. Indeed [M3] IV.5.1 is highly
global, and, although [B2] is a little better it needs meromorphic forms with poles along the curve in the
co-normal bundle of G. Nevertheless we’re happy enough to conclude,

V.4.2 Fact If Iwdpx 7 # 0, and W is non-algebraic then infact Uwdpx 7 defines a divisor of elliptic fibre
type within W, and D.Awdux,r > 0 for every effective Cartier divisor on X. In particular Twdpy /7 is
parallel to K3-.
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VI Algebraic Surfaces
VI.1 Jets

Although jets are a well documented subject, we’ll need some notation, so we may aswell establish this by
doing some definitions into the bargain. Our ultimate interest is in stacks over C, and since the semi-stability
arguments to be employed aren’t quite valid arbitrarily we may aswell suppose for simplicity that this our
base. We begin with,

VI1.1.1 Definition [GG] For n € NU{0}, let A,, = Spec C[z]/(2""1), and for X /C an algebraic stack define
a fibred category Vx ,, over C-affine schemes T by way of,

Vx nlr = Hom(A, |7, X|7)

Plainly Vy , is representable as a locally closed substack of Hilb(A,, x¢c X'), or at least it would be if
the latter were known to exist. What’s at stake, however, in this particular case is rather easy, and one just
checks it by hand - indeed, Vx ,, is a substack of the cone P — & by way of the forgetful map ng ,,, where
m;j, or just  if there is no likelyhood of confusion, goes from Vy ; to Vx; for ¢ < j. More importantly
Vx n is a principal homogeneous space under Aut(A,), and essentially what we’d like to do is construct the
quotient. Unfortunately the quotient includes the special case of G, acting on Ty, and as is well known,
one only gets a sensible answer after excluding the zero section. Ultimately, however, this is the sum total
of complication even in the general setting, so let us first note the compactified answer by way of,

VI.1.2 Further Definition ([A&] or [D2]) Suppose in addition that X /C is smooth, and define inductively
a tower P, of PYm* =1 bundles together with embeddings P, — P(Qp,_,), n € N according to,

1) Py= X
(2) P =P(Qx)

(3) Poy1 =P(Jx nt1), where Jx ni1 is the quotient of Qp, defined by the restriction to P, of the universal
sub-bundle on P(Qp,_,).

In particular we have projections, also denoted 7; j, with the same possibility of omission, from P; to F;,
1 < j, tautological bundles L,, along with short exact sequences,

0— Ly — Jxpnt1 — Qp,yp,_, — 0, neEN

giving rise to distinguished divisors 00,1 < P41, linearly equivalent to L, 1 — L,. Notation established,
up to dropping X which will be fixed, we assert,

VI.1.3 Claim Let V;; be V,, complemented by the pull-back of the zero section from Vi then the groupoid
Aut(Ay) x Vi =3 Aut(Ay,) is representable and [V,¥ [ Aut(A,,)] exists as an algebraic stack and is isomorphic
to B\ U 7rp_n1 (c0p)-
n>p>2

proof Consider first the local question, i.e. X an affine, then Aut(A,) acts on V;* without stabilisers, so
a fine quotient exists by [KM]. Better still the lack of stabilisers automatically means everything globalises
so [V¥/Aut(A,)] exists as an algebraic stack, and the projection from V¥ is flat, so the quotient is even
smooth if V, is, i.e. if X is smooth. Furthermore the inductive definition of the P,, gives a map by way of
nth derivation V;; — P,, and one easily checks that this induces an isomorphism on closed points,

Vi /Aut(A)I(©) == P\ [ mp (00,)(0)

n>p>2

and since everything is smooth, we conclude. O
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We wish to make this somewhat more explicit, so to this end observe that Aut(A,) maps naturally to
Aut(A,,_1) with kernel G, for n > 2, and of course Aut(A;) — G,,. There’s also an embedding of G,, in

Aut(A,,) by way of z — Az, but this isn’t a normal subgroup, so we have to be a little cautious as to how
we use it. Nevertheless, we’ll frequently identify G,, with its image in Aut(A,,), and use the embedding of
Oy, that it provides, i.e.

Ov,(m) :={f €0y, : f*=A"f A€ G}

In any case, we can use this to construct the quotient inductively, so that we get diagrams of the form,

Vi —— VG, —— V,}/G,/Aut(A,—1) =V, /Aut(A,) —— P\ U 7,1 (c0p)

pn
n>p>2

Vici — Vi1 /Aut(A, 1) — Ppa\ U ﬂ';nl(oop)
n—1>p>2

where the last square is fibred by virtue of flat descent. Now let’s simplify the notation a little by putting
oop equal to Wiz,l(oop), irrespective of i > p, A, the kernel of the natural map from Aut(A,) to Aut(A;),
and note the isomorphism,

Opr =5 Ov; ®0p, Im Op, (12003 + .. + £,00,)
t

where, just to clear up notation , Op, (t2002 +. ..+ £,00,) is just the push forward under m,; of Op, (t2002 +
...+ t,00,). At this point G, acts on the whole thing, so we get a map,

OAE n OVn (tl) — W*Lil (llI_I)l to00s + ...+ tnoon)
t
Now unfortunately A, doesn’t act on the individual Oy, (t)’s, but it acts on the suns of such, so that
finally we get a map,

(P H(X, 7.0y, ()" — @ lim  HO(X,m L (t005 + ... tn00,,))

t1<m t1<m (t2,..., tn)

where the directed limit structure comes from tensoring with various canonical sections 1l,,, so certainly
all the implied maps on the right are injective. Better still we don’t need the full range of (o, ...,t,) going
all the way to infinity in order to describe where an element on the left may end up. Indeed if zq,..., 1
are local coordinates on X, then, in an obvious notation we get coordinates d*z;, O < k < n on V,, where
d*z; of a jet is its kth, or more correctly 1/k! times it, derivative of its jth projection. Whence elements of
mOy, (t1) are generated as an Oy module by elements of the form,

(d'x)Pr .. (d"x)P

where P; is some multi-indice, so (d'x) = H;zl(dlxj)plf, etc., with |P;| = 3, pij, and necessarily |Pi] +
2|Py| + ...+ n|P,| = t1. In order to compute the order of pole of such a thing around any oo,, we can
proceed using appropriate liftings to Aut(A,,) of the various kernels Aut(A,) — Aut(A,_1), 2 < p < n, say,
&p(z) = z 4+ £2P, and observe that each &, acts on the basis dka:j not just in an upper semi-triangular way,
but fixing the d’“a:j for k < p. Suppose now, and without loss of generality, that we’re working on the affine
patch d'z; # 0, then we require to express the d*z;, 2 < k < n, 2 <4 <[ in terms of the d'z;/d'z;, the
eigenfunctions corresponding to the divisors at infinity, and d*z;’s. We know, however, that the quotient
exists and is smooth, so in the maximal ideal of a suitable point, say, d*z; = for k, j # 1, the eigenfunctions
cannot be in the square of the maximal ideal, since there’s obviously at least one which isn’t, and since the
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action is already linearisable on an affine by way of the &,’s we must be able to express the dk:rj’s 2 <k<n,
2 <i <l as alinear Oy sum of the d*z,’s and the eigenfunctions. Consequently the pole of an element
of Oy, (t1) which happened to be invariant under A,, around oo; would be at worst p; + pir1 + ... + Pn,
for some integers p; satisfying p; + 2ps + ... + np, = t1, so in particular, no bigger than ¢;. As such after
tensoring with appropriate llo,’s we finally obtain a map,

(P H (X, 7.0y, ()" — @ HO(Pa, L3")
t1<m t1<m
The advantage of this over the inductive definition of the L; is that the left hand side is rather computable.

Indeed the Euler characteristic of @ m.Oy, (¢1) is for m sufficiently large and divisible, asymptotic to,
t1<m
mdimX(n+1)

{(n + 1)dimX}!(n!)dimX

with appropriate corrections as per [T] when things aren’t sufficiently divisible. Better still if X' has small
dimension, i.e. 2, we can compute the higher cohomology rather easily thanks to the semi-stability of Qx
with respect Ky. Indeed this is effectively what’s done in [GG], and it works in this generality thanks to
[TY] or [Me]. Whence,

VI.1.4 Fact (cf. [GG] ) Let S be a minimal 2-dimensional algebraic stack, then for m sufficiently large,
about 9 will do,

o 1
"Cpima (K5P + O(E))

@ HO(Sa ﬂ-*OVn (tl))

t1=0
is an algebra of transcendence degree 2(n + 1).

Better still on taking A,, invariants we can profit from its filtration by G,’s to conclude that we loose
precisely n dimensions. Infact we even see that the tautological bundles L,, are big provided ¢ > n%_lc%
which isn’t bad given the approximations that we’ve employed, albeit that with a little fooling around for
small n one sees that definition VI.1.2 allows direct computation of the Euler characteristic of sums of the
L;’s, which indeed hovers around 2/n + 1. Notice also that a similar, and rather easier, argument shows
with the hypothesis of VI.1.4 that L,|p, ok is big for any n with K an appropriately general element of a

high multiple of the linear system Kgs, and so we have,

VI.1.5 Fact/Summary Let S be a smooth 2 dimensional algebraic stack with projective moduli, which is
minimal and of general type, then its nth tautological jet bundle L, is big for ¢ (S) > %HCQ (S). In addition
for K = S a generic closed substack defined by a sufficiently large multiple of Ks, Ly|p, ok s big for any n.

VI.2 Value Distribution

We wish to study the value distribution of holomorphic lines, or more generally ramified covers of the same
around divisors in surfaces. It is, therefore, notationally and conceptually convenient to pretend that the
punctured disc is a stack. More precisely rather than talking about log-stacks (S, D) we’ll make,

VI.2.1 Convention/Definition Unless there is a possibility for confusion we’ll often use the word stack to
include log-stacks (S, D), i.e. if D is a simple normal crossing divisor, we’ll think of this as a stack S with
infinite stabiliser around D in just the same way that the classical theory of 1-dimensional orbifolds thinks of
a punctured disc. Technically speaking S doesn’t exists even in the analytic topology, but the only thing that
we’ll have to be careful about is that for f : C — S a map between stacks in this broad sense, the pre-images
of points with infinite stabiliser should have the same property, while the generic stabiliser should never be
infinite.
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This is, as we’ve said, a notational /conceptual issue which allows us to re-phrase value distribution theory
in terms of maps between stacks. In this respect let’s note that for C a ‘smooth complete curve’ in the sense
of VI.2.1, and L,, the tautological bundle on any jet space 7w : P, = X over a stack of any dimension, with
f . ¢ — P, the derivative of a map f:C — X we have,

LujnC < —xg”

where Xff’p is the topological Euler characteristic of C. The log-case of VI.1.5 is known for S a minimal
log-stack of general type, so for H ample on the moduli,

1
H. C< —XtOp
for some ks < 0, unless f(™ factors through the base locus of some linear system on the form LN @n:HY,
for n, and N sufficiently large, i.e f satisfies a nth order ODE on S.

We can argue similarly not just for a complete curve C and algebraic maps f, but for ramified covers
p:C — S. In this context the Euler characteristic is a function of r € Ry, which for C(r) the pre-image of
the disc of radius r is given by,

r
—xe(r) = —deg(p) logr + Z log |@|ordc(Ramp)
0<|p(c)|<r p
where, for simplicity, we suppose p étale over 0, and conventionally ord.(Ram,) = 1 if the stabiliser is
infinite. With this in mind, and f(") the nth derivative we have,

f f(")*cl (Lp) <ewe —Xc(r) + (small error)
c(r)

where the integral on the left is the standard Nevanlinna sort of integral, and the subscript exc. means r
outside a set of finite Lebesgue measure, cf. [M1] V.3. Whence, again if f () doesn’t factor through the base
locus we get,

f frei(H) <exe iXc( ) + (small error)
c(r ks

There is also a similar statement for maps of discs to S, but unfortunately it’s only valid for discs that
are not arbitrarily close in the compact open sense to the base locus. In particular, and rather unfortunately,
one doesn’t have the situation that one finds above whereby discs failing to satisfy an analogue to the latter
inequality would have to factor through at least one irreducible component of the base, nor indeed do big
discs even need to accumulate on an irreducible component, but only a connected one. This suggests that
we make,

VI1.2.2 Definition Say that there is an isoperemtric inequality in Nevanlinna’s sense for S if there is a
proper closed substack Z, and a constant ks < 0 such that for every map f : C/C — S from a ramified
covering of the line not factoring through Z we have,

fc(r)f Cl( ) Sexc QXC(T)

Notice that the given formulation implies the boundedness in moduli of maps from honest complete
curves. Either way if the inequality is false, there is some sequence of maps f,, such that as m — oo,

Xfn = inf supxc, {}g f* ci(H)}

BCR 4
A(E)<oor¢
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where X is ordinary Lebesgue measure, without loss of generality, increases and satisfies lim,, xy,, > 0. Now
quite generally given a sequence of maps g,, from appropriate C,,’s to a stack X we can for N € N define
the Zariski closure Vn of ¢, m > N, to get a decreasing chain,

. 2VN D VNf1 2.

of reduced stacks, which must eventually stabilise at some V., which we call the Zariski closure of the
sequence. In the particular case that the isoperemetric inequality in Nevanlinna’s sense is supposed to fail
on a surface S, we can find a divisor D in some jet space P, containing the Zariski closure fr(,? ). Either D
is the closure of this sequence, or it is not, if it’s not we take a component D! of the closure which contains
an infinite subsequence. Notice that D! itself dominates some P; for i < n — 2, or maps to an algebraic
curve in S. Either way we can replace D! by the divisor in the corresponding P; 1, respectively an algebraic
curve. There is some minor possibility that the fr(,iﬂ)’s aren’t Zariski dense in this replacement, but we’ll
just continue until we eventually do get some ODE of order i + 1 (including the case i = —1) such that
an infinite subsequence of the fif!’s factor through, and are Zariski dense, in the ODE considered as a
divisor in P;y;. Plainly by the same subterfuge be it for D, or something smaller, we can even insist that
every subsequence of the appropriate derivatives of the f,,’s is also Zariski dense. As such, cleaning up the
notations by supposing that the fr(,?)’s and all subsequences thereof are dense in the nth order ODE D,
we first discuss the order 0 case. One of two things can happen: either the Oth order ODE is a curve of
genus g > 2, more generally has normalisation étale covered by a complete 1-dimensional hyperbolic orbifold,
and we immediately get a contradiction by the so called second main theorem of Nevanlinna theory, or it’s
rational or elliptic. In the latter case all such curves have to be included in Z anyway, so modulo the set
of all such being finite we have a contradiction again. Whence supposing the said finiteness, our ODE is of
order at least 1, and we have a foliation by curves of the form (D, L,|p). Supposing LCR, 1.6.1, we can clean
this up to a model 7 : (X, F) — (D, L,|p) with log-canonical singularities, and no radial singularities, then
pass to a minimal model p : (X, F) --+ (Xy, Fo)- The semi-stability of Qs with respect to Ks continues to
imply that K is big on a generic cut by some divisor in a high multiple of the Ks linear system, so K,
has Kodaira dimension at least n =dim X — 1. Furthermore K and Ky contain in the cone they span a
big divisor, so the same is true for Kz, and Kx,. Indeed we can suppose that Fy is not of general type,
and harmlessly replace X by a modification that actually maps to Ay, so we must have K XO.K;‘C(jl > 0,
which by II.2.1 is enough to guarantee that for some € > 0, Kz, + €Ky, is big. Now in carrying out these
various modifications in the 2-category of stacks we may have to introduce some extra monodromy, whence
the various maps fr(,? ) may only lift, be it on X or X on some ramified cover C,, of Cp,. At which point we
may get some slightly different Euler characteristics x 7 in the obvious notation. The difference between the
limiting values of xy,, and xj is completely dealt with by the various computations of how invariant maps
meet singularities in [M1] V.4., and by op. cit. it’s still the case that lim,, x .. 2> 0, where, without loss of
generality, we sub-sequence so that these increase. Now define harmonic measures on Xy by the formulae,

Fat)y o

Tp(r) : ALY (X)) — C 1w —> (f
Cm (7)

Cm (7)

after possible subsequencing to dump any f,,’s lying in the loci which is modified during the minimal model
algorithm, we can then subsequence in m and r to obtain a closed transverse invariant measure duyx,,r,
satisfying,

dlu’Xo/]:g = hme(r) ) K]‘—o'duXo/]:o = 0

where the latter inequality follows from [M1] V.6.1. The measure duyx,,r, is therefore parabolic satisfying
all of the hypothesis of V.1.2, including the bis., V.1.5. Similarly there is a measure duy 7 on X, or indeed
any invariant modification of it, satisfying Kz.duy,r <0, so Kr.duy,7 = 0 since duy 7 intersects every
Cartier divisor non-negatively. Furthermore any part of duy, 7 in the loci modified by the minimal model
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algorithm (cf. the next section for a precise definition of ‘any part’) must push forward by the projection =
to S to zero or one of finitely many rational curves. Consequently it is notationally unambiguous to assert,

V1.2.3 Claim Suppose LCR 1.6.1 then m.dux,,r, s at worst a countable sum of rational or elliptic curves,
i.e. Tudpiy, 7, = ) a;Li, for L; the current of integration over a closed substack of S whose normalisation
has non-negative topological Euler characteristic.

The proof of the claim will occupy the next several sections. Curiously,

VI1.2.4 Remark If similarly we suppose that solutions of the initial ODE, considered as invariant discs did
not converge in the compact open topology provided they weren’t arbitrarily close to some closed substack of
D, i.e. almost solutions of another ODE, then again by [M1] V.6.1 we’d be able to produce an invariant
measure for Fo with the same properties, and whence the same claim holds. Nevertheless it doesn’t seem to
follow from this rather strong hyperbolicity of solutions to the ODE that we get VI.2.2 due to the possible
degeneracies in the associated Kobayashi type metric.

V1.3 Inductive Decomposition

Quite generally when presented with a measure du, say of type (1, 1) to fix ideas on a stack X with projective
moduli 7 : X — X we can decompose into smaller pieces. More precisely if we filter the chow scheme of X
(bear in mind the existence of the Hilbert scheme of X' isn’t actually a theorem, whence the subtrefuge) by
dimension d and degree §, and starting in dimension 1 ask,

V1.3.1 Question For fized 6, € > 0 and H ample, how many curves C of degree § satisfy H.lcdu > € ?

Plainly the answer is necessarily finite, since if C;,i € I is the collection of such curves then since
I¢;nc;dp = 0, we must have H.du > #1e, and so independently of the degree we find countably many curves
C; with Tc,du # 0, and we can replace du by du' defined by,

dp' :=dp— Y Tedp

Now by construction du' has no support on curves and we can ask,
V1.3.2 Question bis. For fived 6, € > 0 how many surfaces S of degree & satisfy H.Msdu' > ¢ ?

At this juncture if we have two distinct surfaces S;, S; then $;NS; has dimension at most 1 so Is;ns; dp' =
0, so that again we find, independently of the degree countably many such surfaces S;, and we write,

dp’ = dp' =) Ts,dp'

and, of course, du? cannot have support on either curves or surfaces. This process can certainly be continued
inductively to obtain,

VI1.3.3 Fact In each dimension d there are countably irreducible substacks V¢ satisfying ]Iygzd,ud’1 #0
where du® is defined inductively by,

du’ = dpc~ — Z My dp®~"
i

In particular by 111.3.3, each ]Iyied,u,e_l

support.

is a closed positive current on Y7, and not just a current on X with

It’s evidently natural enough to refer to the terms My dp®~! appearing in the implied decomposition of
a measure as its components. Notice in particular, by construction, a component which we’ll denote ]Ig,_e du

satisfies Ty. M. dp = 0 for any substack V not containing YE.
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Now if we apply the discussion in the presence of a foliation F together with transverse invariant measure
dpx 7 then it goes without saying that all the components are supported on invariant subvarieties. If
moreover, the foliation arises from an ODE D of order n on an algebraic surface S then we have more
structure still. Specifically for P,, the nth jet bundle we have, on supposing LCR, a situation of the form,

(X, F)
o Lp

P+ X, (=D)

where p : (X, F) — X,, is a resolution of the induced foliation by curves on X,,. Consequently if dv is a
component of duy /7 supported on a substack ), then o()) defines a subvariety of P,. One can then ask for
the necessarily unique P; (including, by the way, Py, i.e. our original surface) such that the image of o())
is a divisor dominating P;_; or, alternatively ) simply pushes forward to a point. This ultimate degenerate
case is plainly agreeable, since it says that our component on X" has nothing to do with S, while the other
cases allow us to think of J itself as an ODE, D', say, of smaller order m. Plainly we can use LCR to form
diagrams of the form,

(‘X:]:) <L— (yvj:b})

! !

Pn —>Pm<_(y07g)

where ¢ is an embedding, (), ) is a resolution of the foliation singularities of the mth order ODE defined
by Y, and X a possibly bigger modification of our original X’ in order to guarantee that (), F|y) maps to
Vo. In any case the important thing is that the components of a transverse invariant measure associated to
such an ODE are themselves naturally what might be termed dense, or better diffuse components of another
ODE, i.e. of the form dutop, in the notation of VI.3.3. Plainly, however, this discussion is completely useless
unless we can control the diffuse component. To this end we have,

V1.3.4 Fact Suppose LCR & let o : (X, F) — P, be a resolution of singularities of an ODE D of order n > 1
on an algebraic surface with dv the diffuse component of a transverse invariant measure with Kr.dv < 0,
then infact dv doesn’t exist.

proof By [M1] IV.7.5 there is a birational map p : (X, F) --+ (X, Fo) by way of contractions and flips
to a minimal model, such that Kr = p*Kx, + & for & C & a divisor supported on invariant substacks,
and on which the induced foliation is even by rational curves. Since dv is diffuse, &.dv > 0, so infact
0 = K, .p«dv = E.dv. On the other hand, as remarked prior to VI.2.3 the cone generated by Kr & Ky,
or better Kr, & Ky,, contains a big divisor, so Ky.dv = (Ky — Kz).dv > 0. Whence if Z — X is the
singular substack then by IV.7.4 the residual measure sz 4, # 0. Now form the blow up p : (X, F) = (X,F),
or if one prefers resolve Zz by a sequence of blow ups in smooth invariant centres, and let £ be the total
exceptional divisor with di the extension of dv across £ by zero, so that sz 4,(1) = £.dv. On the other
hand d# still intersects every Cartier divisor D on X non-negatively. Indeed if D.di < 0, then Tpdir # 0.
At the same time d has by construction no support on &£, so g must be bi-rational at the generic point of
D, whence 1,(pydv # 0, contrary to it’s construction. Better still by VI.1.5, Kz, has Kodaira dimension at
least dimA’ — 1, so arguing as per V.2.2 we deduce an absurdity. O

Which extends to,

VI1.3.5 Refined Fact Suppose LCR & let o : (X,F) — P, be a resolution of an ODE D of order n > 1
with dux 7 a parabolic invariant measure, then dux 7 has no components supported in the smooth locus of
F other than those defined by ODEFEs of order at most 0 (so say conventionally points have order —1 ), and
those of order 0 are rational or elliptic curves on S.
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proof Let dv be a component supported on an invariant substack ) whose generic point does not lie in
sing(F). Furthermore let p : (X, F) —-» (X, Fo) be a minimal model as before with Kr = p*Kz, + &.
Since duyF is parabolic Kx,.p«duyx;7 = 0. Notice, moreover, that at every stage of the minimal model
algorithm one either contracts, or flips, an invariant subvariety on which the induced foliation is by rational
curves. In particular unless ) pushes forward to a rational curve or a point on our surface S, it’s generic
point is unaffected by the algorithm, and we get a component dvy of p.dux,r which necessarily satisfies
K]:O.dl/() =0.

Better still if (M, Fo|y, ) is the induced foliation, and o# : (V,G) — P,, a resolution of singularities of the
induced ODE, supposed of non-negative order, we have a rational map (which may be highly non-birational)
of foliated varieties (Vo, Foly,) ——* (V,G), so that if p# : (V,G) -+ (Vo,Gp) is a minimal model, we can
appeal to [M1] VI.1.3 to form a diagram,

(9?0,-70) « (370;-7:0|5;0) i (Vo, Go)
invariant modification = j | d 0
(X0, Fo) < (Yo, Foly,) ——» (V,9)

where 6# is an honest map. Now for Gy the induced foliation on Yy which we may suppose smooth with
canonical singularities, we have,

K~

QOZK}—O

|5, =D
for D some effective Cartier divisor supported on )y. Furthermore we have a map from 6% K g, to K away
from sing(Gy) so at worst,

KGO = &#*Kgo + DJr -D_

where the Cartier divisor D_ maps down to sing(Gp). Now take an irreducible component D_ of D_ and
inductively blow up in the reduced structure of its image until such times that we get a map of germs,

Spec (’)5,07[,_ ;) Spec (’)1707E_

for E_ a Cartier divisor on an appropriate modification of Vo. In terms of the induced canonical bundle

Kg# on Vo we must have an honest map 6#*K g# to Kg around D_, and since the singularities of (Vy, Go)
0 0

are canonical we conclude that D_ doesn’t exist. Consequently,

Krly, = Kg +D =6""Kg, +D+Dy

15,

Now dvp is diffuse in )y, so infact Kg,.(6%).dro = 0, and we can appeal to VI.3.4, or slightly more
correctly its proof, to deduce that dvy cannot exist for an ODE of order at least 1, while if the order is zero,
the minimal model is just the normalisation of the corresponding 1-dimensional substack of S, so it must be

rational or elliptic. O

V1.4 Singular Components

To complement our previous investigation, we have to consider the possibility that a transverse invariant
measure dpy 7 on a foliated stack (&, F) develops components inside the singular locus itself, so, say a
closed irreducible substack Z < sing(F). Now the definition here is that all smooth 1-forms vanishing in
K £ vanish on Z, which is not particularly easy to work with. As such the following is rather useful, i.e.

VI.4.1 Lemma (local on X') Let V be a closed invariant irreducible substack containing Z such that for 0
a local generator of the foliation O(Ty) generates Ty, then du is invariant by the induced foliation on V.
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proof Let w be a 1-form mapping to zero on the induced canonical of V with N the kernel of QY — K. A
priori, since V is irreducible we have 0(w) € Zy,. However by hypothesis 9(Zy) generates Zy so if fi,..., f
generate 7y we can solve,

O(gidf;) = g:0(fi) = O(w)

for some functions g;. Whence w — g;df; € N, and since the component is the honest push-forward of a
measure on Z by II1.3.3, we are done. O

We can build on this to discern what happens to the component under blowing up. Specifically we have
a weak branching scheme ¥z, a priori at the generic component, but infact with well defined formal Zariski
closure by EmbLCR, albeit that this is initially irrelevant. Now suppose V is a smooth substack of sing(F)
containing Z, and let p : X — X be the blow up in V, with & the exceptional divisor, then we assert,

VI1.4.2 Claim Any singular component dv of the proper transform of du dominating our given component,
i.e. pedv = ]I%du, factors through the proper transform of ¥ z.

proof The discussion is generic on Z, so take zi,...,z, functions such that dzi,...,dz, generate Qz
locally. By hypothesis for 0 a local generator, 9(z;) € Zy, so after blowing up 9(z;) € Zg. Whence for 0g
the generator of the induced foliation g (z;) = 0. As such dd°|z;|?dv = 0 by VL.4.1 whenever the induced
foliation on X is log-flat around £ at the generic point of the support. This is, however, necessarily the case
at all points outside the proper transform of ¥z. [

Now while this doesn’t quite allow us to assert that every singular component on the modification factors
through the proper transform of the weak branch, it does allow us to assert that if we have a singular
component on X then there is a singular component on X, with similar sorts of properties, factoring through
the proper transform of #z. The consequence of this is that we may safely employ EmbLCR or more
correctly its proof, cf. 1.6.7. Specifically (starting from an empty background divisor to avoid further
confusion) we arrive to the situation where #¥z is smooth with log-canonical singularities. We may however
be unlucky and find that Z (strictly speaking a different Z, but still the support of a singular component)
is still singular in ®z. In which case we put #z = W%, with W% the weak branch at the generic point of Z
in W%. We can, without difficulty, modify the ambient space so that W} is also smooth with induced log-
canonical singularities, and, of course, continue until we find ourselves in the situation where our component is
generically smooth for the induced foliation in #%,. This latter statement has perfect sense, since components
are always inside the trace of any yiz, and the trace of this is just some bunch of components of the singular
locus of mgl.

The unfortunate thing in this discussion is that #¥7%, or indeed any of the Wiz for i > 0 may not actually
come from the weak branches in the ambient space. Necessarily there is a maximal ¢ for which this is
true, so our initial goal is simply to understand ‘Uwduy 7’ for ¥ a weak branch in X', which although not
immediately good enough to understand our given singular component is plainly very much closer to it than
what we know on X'. Before proceeding let’s pull,

VI.4.3 Rabbit out of the Hat A numerically relevant component for W of duyx,r (i.e. one that has
YV wdpy,r # 0, for Y a component of the trace, and, irrespective of how the latter is defined) is supported
on a substackV of X lying in the pseudo trace of ¥, i.e. the completion of V in the trace of ¥ is non-empty,
and factors through 3.

As such Twdpy )7 will just really be a short hand for encoding the components of duy,# supported on
substacks in the pseudo trace of #, or, if one prefers, infinitely tangent to it. To understand Twduy,r,
however, one needs some knowledge of how the eigenvalues degenerate on . Fortunately this comes out
in the wash from the proof of EmbLCR, or more correctly the above variant. Indeed there are a bunch of
smooth weak branches, albeit not necessarily very weak, in the ambient space X which we can suppose with
log-canonical singularities for their induced foliations, which we take to be nodes of a directed graph W. We
put a directed arrow ¥’ — W", if the latter has bigger dimension than the former, and the completion of
3 in the trace of " is non-empty, and locally a weak branch in ®" completed in the said intersection.
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The directed graph W is filtered by co-dimension by directed subgraphs FPW in the obvious way, and an
important thing to note is that the formal stack #i which is the union over all nodes of pure co-dimension
i is actually smooth. Plainly given VI.4.3, we can talk about Irrwduy,# etc. in the obvious way.

VI.5 Numerical Relevance

We take up where we left off, so that we have not just our foliated stack (X, F) - for the moment still with
projective moduli- but our directed graph W, and various filtrations F*W. As such for 3 a node we wish to
investigate the numerical properties of lwdv for dv a component of our transverse invariant measure duy
supported on a substack V. Our initial aim is to prove VI.4.3, so to begin with we’ll forget our previous
discussion and just pretend we can define llwdv as a germ of a closed measure around the trace of ®¥ by way
of asymptotic expansion, cf. 111.6.3. A postiori, however, a wholly algebraic definition will emerge. In any
case plainly Tlwdv should only be considered numerically relevant if V. Twdv # 0, for ) a Cartier divisor on
B corresponding to some irreducible component of the trace. We therefore have the following possibilities,

VI.5.1 Case IV is contained in the pseudo trace of ¥.

Obviously this is purely algebraic, wholly satisfactory, and we move on. In particular since dv is a
component ¥ NV must be a Zariski dense formal substack of V. This is still true no matter how much
we blow up, so we may aswell, albeit that it’s only for convenience, suppose that V is smooth, and we
distinguish,

VI1.5.1 bis Case II Otherwise

Now what we’ll do next is actually a very general fact with next to no hypothesis beyond projectivity of
the moduli, and the strict difference of dimension between ¥ NV and V. Specifically, we may aswell suppose
that the trace is ), so that Y NV is either a Cartier divisor in a given component of ¥ NV or all of the
component. In the latter case, the component is far from Zariski dense in V, so we may aswell say that
Twdv is a sum Y Iy, dv over the components which are not in ) NV, then say Y. Iw,dv # 0, and replace
Y NV by a, possibly non-reduced, but regularly embedded algebraic stack ) < ;. As such we get ideals
I,, defining #®; in the completion of V in y together with a standard thickening sequence,

0—>In+1—>In—>N§/m_ — 0

To make sections, however, of H°(V, H™I,,), for H ample on the moduli, is cheap, e.g. it’s no problem
to take n of order m?2, yet if £, is the exceptional divisor on the blow up V, — V in I,, we must have,

1
%H.du > —Epdvy 2 Y.Tiwdv > 0

where dv,, is the extension by zero of dv on V,,, and we profit from the fact that dv is a component. This,
though, is nonsense so we must be in Case I. Better still the essential of the contradiction is,

VI.5.2 Fact/Definition In the above notation, the following are equivalent,

(I) dv is numerically relevant, i,e, the limit of the above intersection numbers 1/n&, .dv which we take to
be the definition of Y. Iwdv is non-zero.

(IT) The support V of dv is in the pseudo trace of ¥.
So as promised we have VI.6.3, and we’d ideally like to deduce a nefness statement for Twduy, 7 from

the same for duy /7, and, perhaps rather surprisingly, this is indeed possible, i.e.

VI1.5.3 Fact Suppose, as it does, duy 5 satisfies V.1.2, then for any component Y of its trace, Y. Mwdux
> 0.
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proof This is a reasonably intricate extension of V.4.1, therefore, we’ll proceed in stages. Firstly we’ll do
the case when ® considered as a node of W has no directed arrows coming out, i.e. it’s at the bottom of
our Christmas tree equivalently there is no degeneration in the eigenvalues, before proceeding to the general
case. Furthermore, even in the general case, we’ll firstly give a slightly heuristic argument in order to convey
the idea, which we’ll subsequently make rigorous.

So let’s get underway with the mildly heuristic argument, according to which we’ll hypothesise a well
defined residual measure in a neighbourhood associated to # in a neighbourhood of the component Y N of
sing(F), so, for example ¥ algebraic, but the condition is radically weaker than this, cf. II1.6.3. Now take
p € N, and let I, be the ideal in X of the pth thickening of Y N®W by ¥, i.e. if z; define ¥ in the completion
of X in the trace of ®, and y = 0 is the local equation for Y N (which, without loss of generality can be
taken as coming from a global Cartier divisor) we’re just looking at the ideal (z;,y?). This has a rather easy
resolution by a sequence of blow ups X;1; — X; in smooth centres. Indeed if we blow up in Y N, with
Xp = X, and the former A, then the pull-back of I, is resolved everywhere, except at the proper transform
of W, W, , say, itself isomorphic to ¥, where it becomes ‘I,,_;’ for the induced weak branch. Plainly X5 — A3
is just the blow up in the appropriate component of the singular locus, and so forth. Denote the various
maps X; =+ &; by pij, 7 > ¢, and &; the exceptional divisor for X; =+ &;_1, p > ¢ > 1, then the resolution of
I, is,

p
=2 Pt
i=1

so that in particular on ¥,(— W), O (£7) — Oy(pY). Furthermore by hypothesis we have well defined

measures du’:\g/}. with the property that Sp.dui/f > 0. This global fact can be refined by breaking down
dul’:‘g /F into pieces. Specifically the working hypothesis on the existence of a residual measure associated to
3 implies, as per I11.3.3, that there are well defined germs of closed measures Txy\wdpx, 7, Iwdpy 7 in a
neighbourhood of Y N, and this is good enough to divide up most of the calculation. Identifying ¥ with
WP and leaving the latter alone, we certainly have,

1
561(5p)-ﬂwdux/f = V.wdpx,r

while notationally taking ) to be the same as some global Cartier divisor with ||Iw]|,||Iy|| as in III.3.1
(remember we’re being heuristic as regards ¥) we can consider the extension of Ty\wdpuy,r on &), and
notationally identify it with the same to deduce,

1 1 1.
i (EP) Mp\wdpx /7 = I;Symw,]ly\wdu(l) + D lim I = d log || Tw || * T\ wdpx /7

oy l<e?
+ lim s d°1og ||y | W\ wdpx )7
50 NvI=3 \ /

Iy lI<8P

The first of these terms is unimportant, while the quasi-heuristic hypothesis in force for the moment says
that the first of these integrals is bounded independently of p, so dividing by p certainly makes it go to zero.
The latter we calculate by Stokes. Indeed fix n > 0, then,

/Hﬂyuzs ]IX\WdlffX/]::_/“HyH:n d* log ||y ||* L\ w i/ 7

gy | <81/P Iy <51/

d°log || Ty |I* T\ wdpx 7 + o(n)

s1/P <y |<n
| Iy lI=81/P
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where, as ever, o(n) goes to zero with 1. Plainly for 7 fixed the first of these integrals goes to zero with J,
while we'’re at a singularity with weak branching so the second, given the hypothesis is O(7), albeit with a
constant depending on p. Nevertheless for p fixed, we may take 7 sufficiently small to conclude,

1C1 (EP) M\ wdpx/F = 0(1)
p p
This leaves the contribution coming from Wgrduy /7 to take care of. A quick and efficient way to do
this is to blow down, in order, the proper transforms of the exceptional divisors &i,...,&p—1 in the same
direction, then add the minimum amount of extra monodromy required to get a smooth stack XP. As ever
this is a weighted blow up resolving I, and we can identify the total exceptional divisor 5; with %5” by way
of the map between the moduli of X, and A, with the extra Z /p monodromy concentrating on a ‘hyperplane
at infinity’, Voo inside £. Outside £” nothing changes, so infat it suffices to look at ¢, (8;;).]15;\Wdu§(/f.
Now the projection from 5;’; to ) is a first integral of the induced foliation, and since VI.4.1 applies to 5;’;
off the proper transform of 3, ]Ig;\wd’u/’\(/]: intersects every (1,1) form coming from ) in zero. Necessarily
though cl(—E;’;) + p*w is a positive smooth form for some sufficiently positive w on Y, so,

1
Ecl(gp)-]lep\wduga/f = c1 (&) Lep\wipy /7 <0

From which we deduce,

1 1
0 S Ecl(é’p)d,ug(/}. S Cl(y).]]:wd,u/y/}‘ + 0(1—))
and we conclude by letting p go to infinity.

Let’s consider, therefore, what we need to make this rigorous by way of the definition of TIwdux,r
in terms of components of the pseudo trace, or more accurately for Ly \wdpx 7 as the non-pseudo trace
components. In this context there is nothing non-rigorous in regard to the computation of %cl (EP) Owdpx, F
or %cl (Sp).]Igp\Wd,u’;(/f, while for dv a component,

1
501 (EP).dvP < ¢y (EY).dv' = symy’d,,(l)

where dv? is extension by zero. Consequently to calculate the limit as p goes to infinity of %cl (E7). M\ w
dpx /7 we can divide by components, and apply the dominated convergence theorem, i.e. it suffices to show,

1
lim —¢ (EP).dv? =0

p—00 p
for dv a component supported on an irreducible substack V not contained in the pseudo trace. As such take
n € N, and deform everything to the normal cone of £} in A", IIL5, so that the deformation of 3 itself
may now be identified with an honest substack Cy/w of Cg; sx~- In addition there is a specialised measure
dv' supported on the pure dimensional cone Cg;m; /v, without support on the zero section [0,]. Better
still, cf. op. cit., for p > n, the calculation of %cl (EP).dvP commutes with specialisation to the cone. A
convenient way to re-write the calculation is to blow up in [0,] N Cy w, with say C; the exceptional divisor,
then in the proper transform C;,/W(l) Cy,w) N Cy, ete., (p —n) times. This gives us a modification

p .
Cé';/)(" — C’g;/xn, Wlth,

L. (EP).dvP = P04l 4, 42 pfc (dv')?
p p o p-n& T

where (dv')? is the extension by zero of dv' to C”; Jan- This reformulation has the advantage that although

Cy/w is a component of the singular locus of the specialised foliation, we can, for n sufficiently large, find a

75



generator 0' of the same together with a local equation y = 0 for [0,,] about C'yw N[0,] such that 0'(y) = 0.
Whence if we write,

dv'

r_ !
dl/ = ]ICy/de + ]Icggt/xn\oy/w

then what were previously heuristic considerations apply rigorously, to conclude,

1 = " 1
p—n Z Ci'(ﬂcfg/x"\cy/de.)Z - O(;D -n

i=1

)

Furthermore, the intersections [O,].1¢, /wdu’ are no bigger than the &,.dv" appearing in VI.5.2(I), so
for n a priori sufficiently large the contribution of ]Icy/wdu! in the formula for %cl (EP).dv? is o(n), so that
we deduce,

1
lim —¢; (EP).dv? < o(n)
p—0o P
for every n, and whence it’s actually zero as required.

More generally we wish to consider the situation of an arbitrary node in the directed graph W, or
equivalently its apex, i.e. the node which is not the sink of any directed arrow. Again for Y — ® a
component of its trace, and in particular a Cartier divisor, we make appropriate modifications of X. The
weighted blow up formulation A? — X with E;ﬁ the exceptional divisor is convenient. The calculation of
cl (8;&).]pr\5; d,u’;(/f just proceeds as before with no changes, and what requires a little more care is to know
that ¢; (gi).]lgi\wdug{/f < 0. Certainly it’s still the case that the projection of £ to Y is a first integral

for the induced foliation, so it’s more than adequate to know that the induced foliation of Ei, or appropriate
substacks, leaves any component of ]Ig;t\wd/,t x /7 invariant. To this end observe that the filtration F;W by
increasing dimension gives a decreasing filtration F ic‘f; of 8;&. Indeed the proper transform of the nodes of
a given dimension, say dim® + i intersected with £}, precisely define F'EL. On L \ F'EL VI.4.1 continues
to apply, so there’s nothing to do. More generally on FPE}, \ FPHIEY | we can again apply VI.4.1 to conclude
that any component with generic support in this open is invariant by the induced foliation on the proper
transform #®; of some weak branch ;. Around here, however, F' ’5;1 is the exceptional divisor on ¥;, and
since we’re off the degeneracy locus F”lc‘,’;, VI.4.1 applies again, so that once more the component is

invariant by the induced foliation in Fié‘i, which continues to have the induced projection as first integral,
from which we conclude. O

Notice that the proof works in slightly greater generality. Specifically, suppose V — X is a smooth
invariant substack around which we may extend ¥, i.e. V is a piori in the pseudo trace, but, for whatever
reason ¥ has a well defined extension around V. Suppose further that V is Cartier in #¥, e.g. blow up in
it, which we might aswell say is the case. Furthermore, albeit this is unnecessary, to keep ourselves strictly
within the previous discussion let’s say #¥ is smooth around V), then as before we have a well defined smooth
weighted blow up p : X — X with exceptional divisor £, and,

V1.5.4 Fact Let things be as above, suppose that ¢, (Ei).ﬂg;\wd/l;{/]—‘ < 0 for p sufficiently large, and all

the singularities in the induced foliation on ¥ extended around V are in the components of sing(F) contained
in the original ¥ then V. Iwdpx,7 > 0.

proof The calculation of the 5;; intersection on components outside the pseudo trace of ¥ considered as a
formal substack extended around V goes as before, since V is invariant so the intersection concentrates at
the singularities, and is given by a necessarily vanishing residue. One should note, however, that the pseudo
trace, to be more precise that of 3 defined to be the extension as a formal stack around V, may not be the
same as that of our original . Indeed viewed from V our considerations of numerical relevance VI.5.1/2
says that a component supported on A should be considered such if its completion in its intersection with
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Y is non-empty and factors through . Plainly though this intersection may not contain any points of the
trace of ¥, so in the obvious variant of our notation we have to organise a sub-calculation,

V.]deu;\g/]: = V.]Iw]de,u,X/]: + V‘]IVV\Wd:u’X/]:

In particular if the component of dv associated to A is in the ]IVV\Wdu x/F bart, then the intersection
of A with the trace of  is empty. On the other hand O 4(V) is an invariant Cartier divisor for which the
construction of a leafwise holomorphic connection depends only on the embedding of V in . By hypothesis
A doesn’t meet the singularities of 3, so, infact, V.dv = 0. The remaining part of the calculation is, of
course, gi.ﬂg;\wduk‘/f <), which we’re supposing is true. O

V1.6 Weak Flips

For X a stack the words rational curve will be employed rather than the more long winded 1-dimensional
irreducible closed substack whose normalisation has positive Euler characteristic. Now consider the situation
of the previous section with # a node of W, and G the induced foliation. We know that K¢ is related to K
by a formula of the form Kg = Kx(—£), for £ a Cartier divisor in ® supported on the trace. Better still,
we know that & Iwdux,r > 0, so,

Kg Uwdpyx r < Krldwdux/r <0

If, therefore, to fix ideas, our singular component of interest dv were generically smooth for G, then to get
Kg.dv = 0 we basically need to know that K¢ is nef. Before elaborating let’s consider how this applies to the
situation where (X, F) arises from an ODE on algebraic surface. In this situation associated to the substack
VY on which dv is supported there is a corresponding ODE, which expressed as a foliation by curves has a
minimal model of the form (Vy,Ho). As soon as we get Kg.dv = 0 for any sort of induced foliation which is
generically smooth, then we can argue exactly as in VI.3.5 to construct a modification V of V, mapping by
m to Vo with Ky, .m.dv = 0, and so conclude that the push forward of dv to the original surface is rational
or elliptic. Of course it may happen that (¥, G) is not of ‘nef. type’, but in this case it’s ‘minimal model’
will be étale covered by a bundle of generalised weighted projective stacks in the radial foliation by lines,
so apart from giving us the desired conclusion in the surface case, it also eliminates the possibility of any
‘sub-singular components’ since anything which is algebraically integrable does not exhibit weak branching.

Plainly, therefore, nef. is good. Unfortunately we’ll need a bunch of definitions and remarks to explain
what it should mean. As one can imagine there isn’t that much to do beyond this, since if ¥ were algebraic
we’d already be done by [M1] IV.7.5, and what’s involved is really just a certain amount of unraveling to
check that it works for formal stacks. Even here formal stack must be understood strictly since we’ll need
to carry with us the pseudo-trace. Whence,

VI.6.1 Definition An irreducible component V of a formal stack ¥ will be said to be in the pseudo trace of
W if,
(a) V is a stack, with not necessarily projective moduli.

(b) It intersects at least one component which isn’t a stack.

(¢) The completion of V in this intersection factors through the non-stack like components.

A connected formal stack will be called pseudo irreducible if exactly one component is an irreducible formal
stack which is not itself a stack, and every other component lies in the pseudo trace.

Basically we’re planning on proving the minimal model theorem for foliated pseudo irreducible formal
stacks, which sounds worse than it actually is, i.e. what we’re doing is keeping track of of tangency conditions.
As such we’ll view F as a not necessarily saturated foliation on #, together with a distinguished closed
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substack of the trace around which # is genuinely formal, each component of this distinguished subset is a
Cartier divisor in 3, and the induced foliation at this juncture has log-canonical singularities. This leads to,

VI.6.2 Abusive Definition (i.e. not particularly functorial with respect to the ideas) By a foliated (pseudo
irreducible) foliated stack (W, F) we mean,

(a) A pseudo irreducible formal stack ¥ together with a Q-gorenstein, not necessarily saturated, foliation
by curves F all understood functorially with respect to the ideas.

(b) A distinguished open formal substack ¥, which itself is an irreducible proper formal stack which is not
a stack, every component of the trace of which is Cartier in ¥ (whence in¥), and at which F is never
saturated.

The induced saturated foliation on Y will be written G, and the trace of Y will be refered to as the
strict trace, with trace employed for components where things are strcitly formal. Furthermore,

(c) We say that (W, F) has log-canonical singularities iff (¥,G) has log-canonical singularities in the
functorial sense.

(d) We’'ll write Ky w for the class Kr(=)), where ) is the necessarily effective Cartier divisor on ¥
defined by i.Oy/(Kxr — Kg), with i the inclusion of ¥ in W.

The model for this monologue is our original node ¥ of W together with all the components in its pseudo
trace, except that ¥ has become ¥ and the union . It may happen though that the trace can be extended.
From a notational/definition point of view this risks a certain confusion, as such one should note that
when this occurs it is not assumed to change the distinguished component ¥ in the model example. More
importantly the key instance where this occurs is when the induced foliation in a pseudo trace component
V is wholly by rational curves on which K is nil. To see why this is possible one appeals, as ever, to [EGA]
II1, I11.3.4.2 in the spirit of 1.2.2 to reduce to cases that one knows, e.g. a smooth rational curve in A’ with a
strictly convex neighbourhood, where one can then appeal to the Jordan decomposition of a global generator
on some étale cover of the neighbourhood. More generally the same argument works generically for bundles
of such, so that one can do a Noetherian induction as per the proof of 1.6.7 to conclude that ¥ can be
extended around all of V. As such ¥ unlike ¥ may be a complete mess, indeed it’s not even Noetherian,
but of course it’s a direct limit of things of ‘formal finite type’, which is all that matters, and which if one
wants, one can add as VI.6.2(e).

Now it stands to reason that one cannot just prove something by a definition in this kind of generality,
irrespective of its length. Whence we’ll need that (W, F) is dominated by a projective and indeed terminally
so. More precisely there should be a stack (/'\Nf ,F) with projective moduli, canonical singularities, and Kz
nef, together with a foliated pseudo irreducible formal stack (3, F) C (X,F) precisely as per the above
model example (indeed X' will be an invariant modification of our original X') together with an honest map
p: W — W which is an isomorphism at every generic point of # such that we have,

VI.6.3 Condition/Definition The locus where the moduli of g is not isomorphic to ¥ is Kr w terminal,
i.e. if we find ourselves at a point where p isn’t an isomorphism then it will be a point of ¥, so K w should
be understood as Kg terminality functorially with respect to the ideas. Infact the map p at the stack level
will be a sequence of blow ups in smooth centres in the strict trace, and wholly transverse to G.

It will, of course, be the case that Kr really descends to ®, so there’s no ambiguity in the notation, and
we make,

VI.6.4 Definition We say that Krw is nef., if for every curve C in the pseudo trace with Ky.C = 0,
Krw.C>0.

The critical thing is, therefore,
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VI1.6.5 Fact Let everything be as above (in particular (W, F) is terminally dominated by a projective, and
its singularities are log-canonical) then if K w is not nef there is an invariant rational stack L (generically
in the smooth locus of G) in ¥ satisfying,

KrL=0, K].‘7w.£ € [—2,0)
so in particular £ has non-empty intersection with the strict trace.

proof If K7 w is not nef., there is some component of the trace or pseudo trace V such that on the proper
transform V of V, p* Ky w is not non-negative on the half space NEON})KF:O. In particular there is an
extremal ray R in NE(Y/)Kf:g satisfying p* Kr w.R < 0. Quite generally R is a limit of sums of irreducible
algebraic 1-cycles, Z; = Z]. aijZij, + — oo. The Néron-Severi group is, however, finite dimensional of say
dimension ¢, and for fixed ¢, Ej R, Z;; is a polyhedral cone, so we need at most ¢ Z;;’s in our formula.
After subsequencing we may suppose that for each 1 < j < t, a;;Z;; converges to some R; as j — 00, s0O
R = Ry +...4+ R;. By hypothesis K is nef., so infact all the R; must be parallel since R is extremal. Whence
we can suppose that R is a limit of irreducible 1-cycles a;Z;, so in particular, Kz w.p.Z;is eventually strictly
negative.

Now denote by f; : C; — ¥ the normalisation of the irreducible 1-dimensional substack of ¥ supported
on p(Z;). Certainly C; must meet the strict trace, so we can talk about whether the completion C; in this
intersection (which is quite possibly all of C;) meets the locus where G on ¥ is smooth or not. If, however, it
didn’t it would be wholly singular, so by the log-canonicity of the singularities we’d get K w.C; = Kg.C; > 0.
Consequently C; doesn’t factor through the singular locus, and we can form the pull-back of the infinitesimal
birational groupoid &% x ;, C; of [M1] IL.1.3. Where one observes apart from the triviality of using # so as
to preserve ~ for proper transforms, that the bi-rational groupoid construction is well defined independently
of any saturation hypothesis, whence certainly for F, while the correction for the singularities of G is a local
question, so infact is well defined even if V were only in the pseudo trace. The formal stack @f X ¢, C; contains
Ci as a section with positive (infact —Kz w) normal bundle, so the Chow lemma, e.g. [M1] II.2.2, to the
effect that its field of meromorphic functions has transcendence degree at most 2 continues to hold. What,
however, is less obvious is that the said degree actually is 2. This is where V1.6.3 enters, since it guarantees
(profiting from, say, the convergent frobenius theorem to avoid some technical issues of definition) that p is
bi-rational at the generic point of @f X ¢, C;. Indeed this is clear from the description of p in terms of blow
ups, but it also follows from the terminality condition itself since any modification in a centre tangent to the
foliation, yet /n_(zf/invariant by it leads to a non-canonical singularity. As such there is a well defined proper

transform @f x ¢, C; mapping finitely to & x C;, so indeed the space of rational functions really does have
dimension 2. Consequently we find an honest 2 dimensional normal stack s : S; — C; together with a section
t(C;), say, such that the completion of S; in (C;) is &% xf, C; with it’s natural section.

On the normal surface S; we have an honest Mumford type intersection theory, NS™ or NEM for the
cone, and as per [M1] I1.3.3 for every ¢; € C;(C) we have an invariant (possibly wholly singular) rational
curve L., (i.e. a curve in the fibre of s through ¢;) satisfying the basic estimate,

N, <2 Nl
—K]."Vv.fici

for every nef. (in the sense of Mumford) divisor N in NS™. In particular taking N to be K, we see that
Kr is eventually < epsilon for ¢ sufficiently large, and since it takes discrete non-negative values Kr is
actually zero on every fibre of s : §; = C;. What remains, therefore, is to produce some £.; on which Kz w
is negative. The key point, irrespective of any projectivity assumptions, is that the effective Mumford cone
doesn’t contain lines, which allows us to assert,

V1.6.6 Claim There is a decomposition,

NEM(S) = NEY (8) ks w0 + 3 Ry [Ln]

79



where the Ly, are Kz w invariant (i.e. fibres of s) rational substacks of S; satisfying Kr.L, = 0, —2 <
K]:yw.ﬁn <0.

proof Following [K] III.1.2, we prove the closure of the right hand side is the left hand side, which is enough
since S; is a surface. Whence if things are false there is a nef. (Mumford sense) Cartier divisor H on S;
strictly positive on the right hand side, and vanishing on some extremal ray D of NEM(S;). As such, arguing
as before, we produce a sequence a,, D,, of irreducible 1-cycles on S; converging to D, but with the additional
property that not only is —Kzw.Dy, > 0 but (—Kzw.D,,) *(H.D,,) = 0 as m — oo. Continuing in the
same vein, one therefore finds for each point d € D,,,(C), D,,, a stack with support D,,, a rational invariant
curve L4 on S; satisfying,

N.D,,
—Krw.Dp,

for every nef. divisor NV on S;. As such if we take N to be H we deduce that H.L,,q goes to zero as m — oo
for every d. We already know, however, that Kx.L,,4 = 0 for all m and d, while quite generally any invariant
curve satisfies Kr w.Lmqa > —2, so that for m sufficiently large we contradict the strict positivity of H on
the cone on the right hand side. O

N.Lpa <2

Back at VI.6.5 therefore, we quickly conclude that indeed there must be an invariant rational curve £
satisfying 0 > Kr w.L > —2. It must, of course, meet the strict trace non-emptily, so if L is its completion
in the same, then G must be smooth at the ‘generic point’ of ﬁ, or technically better £ doesn’t factor through
sing(G), since G has log-canonical singularities. O

We will refer to the curves guaranteed by VI.6.5 as Kr w negative curves. Notice that if £ is such,
and the distinguished open formal substack ¥ is smooth then it’s extension around £ (whose existence has
already been noted) is smooth. Indeed if £ factors through the strict trace there is nothing to do, otherwise
sing(®) N L is a closed invariant substack of £ so it certainly contains the unique point of sing(G) N £ (use
the adjunction formula of I1.3 together with the weakness of W, I1..3.5) where, as ever, £ is the completion
in the intersection. By definition, though, #¥ is smooth at sing(G) N ﬁ, so this is nonsense. Consequently
the analysis of [M1] §III goes through verbatim, or strictly speaking a slightly more involved variant to deal
with generalised weighted projective stacks, to conclude,

V1.6.7 Fact The deformations of K w negative curves in ¥ are unobstructed. Better still the local germ of
deformation is (up to étale covering) that of an invariant curve for a bundle of radial foliations in generalised
weighted projective stacks over a locally smooth component of sing(G), and the formal neighbourhood structure
in W splits, cf. [M1] V4.

At which point,
V1.6.8 Difficulties We face the following problems,

(a) We need to guarantee that the local germ of deformation converges.

(b) Even after we do (a) we have to avoid a foliated variant of a Hironaka type example [H] - which
certainly exist by the way.

Both problems are resolved by VI1.6.3. In case (a), as in the proof of VI.6.5, it guarantees that if p is an
isomorphism at the generic point of the germ of deformation - infact even on the original curve- then the
said germ has a well defined proper transform. By the definition of # all we have to do is check that the
dimension of the deformation space is correct, which itself reduces to a surface question, i.e. does a rational
curve in the broad sense of nodal and every sub-curve of negative arithmetic genus & trivial normal bundle
move, which indeed it does, so this is okay. As to (b), suppose we’re presented with a Kz w negative curve
L°. If it doesn’t move, we don’t care. It may, however, move and break up into £7,...,£?. Certainly all
the L are invariant, K .L? for each i, so we can find one of them £!, say, which is a Kr w negative curve.
There is, though, no guarantee that a Hironaka example won’t form, i.e. this will continue ad nauseam.
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Again, VI.6.3 comes to the rescue, since all of the individual specialisations L0~ L1~ L2 ~s, ete. can be
lifted to X’ without any loss (indeed there may be a gain) in the number of extra components introduced
when a given L' breaks. Consequently,

VI.6.9 Definition/Summary Given a Kz w negative irreducible curve L° there exists another (possibly
the same) Kz w negative irreducible curve L such that every germ of deformation of L that may exist by
VI.6.7 not only converges, but every curve obtained by the deformation is also K w negative and irreducible.
Such a curve without breaking will be termed pseudo extremal.

Now pseudo extremality, as opposed to extremality, is all that one needs for the analysis of [M1] III.3-6
to go through, i.e.

VI1.6.10 Fact The deformations of a pseudo extremal Krw negative curve L in ¥ sweep out a bundle of
radially foliated generalised weighted projective stacks P, with the base of the bundle Z a smooth substack of
the strict trace. Indeed Z is a connected component of sing(G), and the normal bundle of P in W is, up to
étale covering, locally on Z a sum of relatively negative line bundles whenever P # 3.

The formal form of the flip theorem, [M1] IV.2 & IV.5, therefore goes through without change. Indeed
the only quibble that one might have is at the pseudo trace, but since the flip is actually a flap this is
guaranteed by Theorem 3.1 of [A], and the unicity of contraction, which extends op. cit. to stacks. Whence,

VI.6.11 Fact Suppose the P of V1.6.10 is not all of ¥ then putting W_ =W there is a flip/flap diagram of
pseudo irreducible formal stacks,

w#
weighted blow up \ weighted blow down
W ————— W,
Kz w_ negative \( " Krw, positive
Wy

In addition having started from the situation that the distinguished irreducible open (W_,G_) is smooth
with log-canonical singularities, the same is true of (W4, G.), while the centre of W — W, is contained in
the strict trace of W, and everywhere transverse to G, .

On a slightly technical point: one should note that ‘weighted blow up’ on the left includes the possibility
of extracting a root of a Cartier divisor if P is such or the identity if this is unnecessary. This allows us to
assert that the distinguished open (W#, G_) again is smooth with log-canonical singularities. Plainly if 3_
is terminally dominated by a projective in the sense of V1.6.3 & prequel then after sufficient modification of
the ambient space (including extraction of invariant roots if necessary) there is, thanks to the transversality
of the W# — 3 centre, no problem to conclude the same for ., since everything is actually F invariant,
while K r itself obviously descends to #, by a standard theorem of formal functions type argument. Taken
in combination with VI.6.5, together with the termination of flipping thanks to the destruction of a singular
component of G at each stage, we obtain,

VI1.6.12 Let (W, F) be a weak foliated pseudo irreducible formal stack inside a stack (X, F) with projective
moduli and Kx nef. such that the distinguished open (¥,G) is smooth with log-canonical singularities, then
there are diagrams,

(a) The minimal model algorithm,

(wvj:) = (yg,}—) - ("ml:]:) R R R (mnvj:)

The arrows here are the Kx w minimal model algorithm as described above, so either Kr w is nef.
in the sense of VI.6.4 or (W,,,F) is a radially foliated bundle of generalised weighted projective stacks,
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with the base of the bundle the unique smooth component of sing(G). In any case all the (V;,G)’s are
smooth with log-canonical singularities.

(b) Domination by a projective for all i,

Ji pi

Indeed each of the (@i,]:) ’s are as in the exemplary discussion of a foliated pseudo irreducible stack
post V1.6.2, with the j;’s embeddings in stacks with projective moduli, while the p;’s are as per V1.6.3.

(¢) Composition by invariant modification,

(X, Fi)  —— W, F)

Ji

! !

(Xi-1, Fi-1) A W;_1,F)
i—1
All of the vertical maps i € N are modifications in Kx nil invariant centres. Infact they are composi-
tions of weighted blow ups in the broad sense post V1.6.11.

It’s worth closing by way of,

VI1.6.13 Remark As one can imagine from the emphasis on Kx centres, it would certainly have been
preferable to preserve the immersion (W, F) — (X, F), i.e. flop. Already in dimension 8 if one wants to
preserve projectivity of the moduli then it’s necessary to create nodes. Of course, one can think to finesse the
situation in the spirit of I1.9 combined with V1.6.3 but this is in general impossible when the weak branch has
co-dimension at least 2. The technical difficulty in working with nodes is rather small, but would still require
several more pages of justification than those required to define ¥. Irrespectively, the key would remain
VI.6.5.

V1.7 Inductive Remarks

To begin with, for ¥ a node of the weak branching graph W as defined in VI.4 let’s see how VI.6.12
applies to the study of Twdpy 7, where lw is now understood functorially with respect to the ideas
for ¥ the associated pseudo irreducible formal stack with ¥ the distinguished open, and this even agrees
with the previous rabbit out of a hat notation VI.4.3. Anyway, as post VI.4.2 we can modify X' as we
please, and so assume that X is the X,, of VI.6.12. Plainly if (3, F) is a modification of a radially foliated
weighted projective stack then we’re rather happy, and the discussion finishes, otherwise there is a map
p:(WF) = (Wi, F) such that p* Kr w, is non-negative on all Kr nil curves in the pseudo trace of .
Now let dv be a component of Iwdu ;7 supported on a closed substack V factoring through #. Everything
has projective moduli, and we just project dv into NS; (V), i.e. view it as an operator on bundles, whence
this projection [dv] is in NE; (V) k=0, so by construction p*Kr w,.dv > 0. We further assert,

VL.7.1 Claim For every dv as above, p*Kr w,.dv = Krw_.p«dv = 0.
proof By VL.5.3, we know that K7 w.lIlwdv < 0, while Kz w is related to Kz w, by a formula of the
form,

Krw=p"Krw, +&

where without loss of generality £ is an effective Cartier divisor in the ambient space, and £ N #® is an
effective Cartier divisor supported on K nil invariant rational curves. It may, however, happen that £ "%
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isn’t contained in the strict trace, so VI.5.3 doesn’t apply, and to conclude what is obviously sufficient, i.e.
Edwdpyx 7 > 0, we may have to try to use VI.5.4. Whence let J be a component of the trace in £ N
which isn’t strict, with £y the component of £ affording ) which by blowing up we may not only assume is
irreducible, as we may indeed suppose ) smooth, but that,

Ny/X AN Ny/w @Ny/gy

Now to prove that V. Iwdpx 7 > 0, it will suffice, thanks to VI.5.3., to do it on any modification which
only involves blowing up in things inside the strict trace. Necessarily ) is covered by F invariant rational
curves C; all meeting sing(G) without factoring through it, so by blowing up enough we can assume that
N)\,/ / yle. is ample for generic C;, where, without loss of generality, generic means not factoring through the
strict trace. Furthermore if I, is the sheaf of ideals used to define the weighted blow ups A? — & employed
in VL.5.3, adapted to Y as in VI.5.4, then we have an exact sequence,

0 — Nyl — Ip/I; —> Ny e, — 0
and an extension of ample by ample is ample, so without loss of generality I, /Ig|ct is ample for C; not
factoring through the strict trace, which we’ll denote Z. Consequently if 7 : 5; — ) is the projection of the
exceptional divisor of X? then we organise our computation of E;ﬁ-llg;\wdu’}( /F according to,

giﬂsi\wdﬂi/f = gi-ﬂg;\ww—l(z)dui/}- + 5;;;.]177—1(2) ]IS:#\Wdugg/]:

The part off Z pushed forward to J comes from a measure d\ on V/F, i.e. the moduli (even coarsely
speaking) of our rational curves, so that,

EP Mer 1(z)dpk :/ dA(t)/ ELdu
# EL\WN\r 1 (2) Oy /7 /7 (e U

for du; some invariant measure on 7~1(C;). By construction, however, (’),,71(@)(—5;;) is ample, so this is at
most zero. The part over Z is as before, i.e. here the induced foliation on 5; has 7 as a first integral, hence
we may argue exactly as in the proof of VI.5.3 by way of vigorous application of VI.4.1 to deduce that the
conditions of VI.5.4 hold. O

This completes the discussion if our original singular component of interest meets the locus where the
induced foliation on a single weak branching stack in X is smooth. Unfortunately, as we’ve noted post
VI.4.2 the general situation is that we need to go down a chain ¥ O ... D ¥? with ¥*! a weak branch
in ¥ before concluding to generic smoothness. This is more notationally fastidious than anything else. For
example given that ¥ is defined as the smallest weak branching stack in X' containing our component the
notation ¥' O ¥? is unambiguous, but ¥' O ¥? O ¥ may not be, depending on whether ¥? extends
to a weak branch in ¥' or not. Consequently we do some relabeling/throwing out so that ¥? is actually
the smallest weak branch in ¥' containing our component, idem for ¥?* in ¥? etc., and write this as
Yl > ... > VP Assuch ¥ in ¥ has the additional property that if it contains a component of the
singular locus of the induced foliation G*!, say, on ¥ ! then it actually equals it. Necessarily we can
suppose that each (Wi, G?) is smooth with log-canonical singularities, indeed even EmbLCR, and we have
associated pseudo irreducible formal stacks W' F ) defined in the obvious way as post VI.6.2, i.e. throw in
the pseudo trace components of ¥, and extend ¥* were possible. A moments reflection shows that (¥, F)
is actually contained in (@’;1,.7:), and plainly what we’ll have to do is prove that Kz wr is nef. in some
suitable sense. Certainly Kz we is wholly well defined as a bundle on WP, but just as the definition of
nefness for Kz w1 was only for K nil curves we’ll have to do something similar here - this results from the
relations governing K r wi+1 in terms of Kz w:. In this respect observe, apart from the ubiquitous we’re
done if 3’ is foliated in conics (which we’ll systematically ignore from now on to simplify the discussion),
that the minimal model algorithm has nothing to do with weak branching, i.e. no flipping variety ever meets
a weak branch, so infact Kr w1 is K}—7W3r around ®?, in an obvious extension of the notations pre VI.7.1.
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This suggests (for notational reasons if nothing else) that we proceed back to front, since VI.6.3 is already
a given for the image W7 of ¥? in mi. Now define nefness for > to mean that K w2 is non-negative
on curves which are K FWL and K7 nil, or better: just define a Kz w2 negative curve to be an invariant
rational curve in ®? on which Kz, K F,w} are nil, and Kr w= is negative. Rather helpfully all of VI1.6.7-11
is valid, independently of VI.6.5 so without having verified that it satisfies the nefness criterion, we can
nevertheless define wi by the condition that we’ve exhaustively flipped all pseudo extremal K 7 w= negative
curves in #¥3, and whence there are no more such. In addition we can use all the other arrows in VI.6.12 so
that mi gets modified just as X' in op. cit. by weighted blow up in K FWL invariant centres, and needless
to say & gets modified too. Subsequently we define Kz ws negative curves in the obvious way, flip all of
these, and continue till we eventually get,

VI.7.2 Diagram WP cwcw cx
N’ ¢2 il
wlC...... CW Ccw,

\ LQ
W C...... C W,
4
J/P
w+

where all the arrows pl., : W!* — W’, are a sequence of weighted blow ups in centres contained in the strict
trace, and wholly transverse to the induced foliation around the distinguished open "U!., and any extensions
thereof. Now for each 1 < i < p, j < i, and each component V of the trace or pseudo trace of #¥°, let
NE(V); be the curves in NE(V) on which (p+)*Kjr7W:Jcr is nil for all k¥ < j, including K nil, ¥ = 0. Having
thus defined everything, it remains to check that it works. Obviously it would be very disappointing if the
following proved insufficient,

VI1.7.3 Fact (p’j_)*Kf’wi is non-negative on NE(V),_1 for all V in the trace or pseudo trace of ¥P.

proof VI.6.5 has been constructed to generalise easily to these circumstances. Since, however, we’re deter-
mined to sail close to the border where this sort of thing fails, we give some extra details. We go by induction
on ¢, 1 < ¢ <p, with ¢ = 1 being precisely VI.6.5. To do the case ¢ (> 2), supposing ¢ — 1 we use VL.7.2,
but with ¢ instead of p.

On starts therefore, for an appropriate V, with an extremal ray R in NE(V),_1, supposed to have
(PL)* K f7wgr.R < 0, while the inductive hypothesis allows us to suppose R is a limit of irreducible 1-cycles
a; Z; such that,

L) Krwr - Zi
(+q)* 50, i 00
—(p3) K]—‘,Wj_-Zi
for each r < ¢, including K5 for r = 0. The log-canonical nature of the singularities of (¥4 ,G9) together
with the structure of the left most column of VI.7.2, i.e. Kf’wgr terminality, allows us to play the bi-rational

groupoid trick. Whence for f; : C; — ®% the normalisation of the substack supported on (p)(Z;) we
produce a normal surface s : S; = C; together with a section whose normal bundle is O, (_K]:’W?l—)’ so that

for every ¢; € C;(C) there is an invariant rational curve L., satisfying the basic estimate,
N'fi C;

N.L., <2——h=t
¢ _K]-—,Wgr‘fici

(=0, as i — 00)

for every nef N (as ever Mumford sense) divisor on S;. In particular, as per VI.6.5, K is nil on every L.,
and more generally on every fibre of s.
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To get from here to a contradiction we require to prove that all the other K]—"WT‘_'_,S, for r < q are nef.,
stricta dictum, on S;. To do this one does an induction within an induction a la VI.6.6. Indeed with VI.6.6
as is, and the nullity of Kz on the fibres of s, one sees that K]'—7W~1+ is already nef. on S;, so for i >> 0 the
basic estimate applies to deduce that K FWL is nil on all the fibres of s too. Now reprove VI1.6.6, but for
Kf’wgr with the polyhedral part generated by Kf’wgr negative curves (bearing in mind this includes K,
Kjr,Wgr nullity). Since there are no such curves, K];Wi is nef., and so forth till we get up to Kf’wgr nef,
so as to contradict Kz we C;<0.0

By the usual expedient of projecting into Néron-Severi, it goes, without saying, that we have,

V1.7.4 Corollary For every component dv of a transverse parabolic measure duyx 7 supported on a substack
factoring through the trace or pseudo trace of some ¥, (p_qi_)*K]:7W3_.dV >0, provided (p4.)*Krwr .dv > 0,
for each 0 <r <gq.

The next thing to observe is that the proof of VI.5.3 doesn’t depend on the fact that X is a stack, but
that duy/r satisfies V.1.2 (b) & (c) - (a) & (d) are irrelevant- provided that Cartier divisor is understood
in the more expedient sense of directly relevant to the proof of VI.5.3 (4), so, infact one can even tone down
V.1.2 (c) to (notations as per op. cit.) p an invariant (including root extraction) modification of pseudo
irreducible formal stacks. Consequently since VI.5.3 is as valid on any modification which in current notation
is G' invariant seen from ¥' as the A’ we first thought of, we can induct through the ' to conclude,

VI.7.5 Fact For any 1 < q < p, and any component of the strict trace of W, Y. Mwadpx ;7 > 0, where, as
ever wadpy 7 is the sum of components of the trace or pseudo trace of W', and, of course, these are the
only numerically relevant components as per V1.5.1/2.

Now we have to carefully use VI.7.2 to induct up to p, by way of the formulae,

(h1)" Krwe + (Pg—1)" (-1 + &) = (pg1) Kz war

where the effective Cartier divisors £,_1,&" are the differences between K r e L and Kz w1 respectively
W ,

K]_-7W3r_1. As such &' is in the strict trace of mg,l, and p371 is even an isomorphism here, so VI.7.5 is well
adapted to dealing with this, as it is for any components of £,_; in the strict trace. Where we have to be
cautious is at a component £, say, which lies outside the strict trace of Wg_l. In this respect observe that
the role of the projectivity of X is limited. The place (in this context) where we need this is the implication
that numerically relevant things must be of pseudo trace type. This, however, we can do a priori in X’ with
a possibly different notion of pseudo trace which pushes forward under p', to what we want. Consequently
the difficulty rests in knowing that if we start associating weighted blow ups, Uz’q_l : @1”_1 — wi—l to
£ inside m‘fl with associated exceptional divisors £} and modify the whole of VI.7.2 appropriately then

((::’Z_.]Iwi,q—ldﬂx/f > 0, since otherwise VI.7.1 goes through without change. To this end, therefore, consider

a generic curve C in &, evidently rational & invariant, which doesn’t lie in the strict trace of mg,l. Viewed

in mi it’s either in the strict trace or it isn’t. If it is then we’re happy since all the p',’s pull back strict
trace to strict trace, so we’ve got what we need by VI.7.5, which is valid for any modifications which seen
from Y7 are G invariant. Otherwise we look at the proper transform C of C in WZ:;. If this is in the strict

trace of wq;? then we stop. If it isn’t then we appeal to the nullity of K, w2 along C and II.3. Indeed

the index set J of op. cit. can be viewed as the number of curves contracted by pgj 4 meeting C, which has

to become an inded set I viewed from WZ__Q, so infact J is empty, i.e. pgj_,_ is an isomorphism around C.
Thus,

VI1.7.6 Possibilities Continuing we get exactly one of,

(a) We find some W'y, 1 < r < q containing the proper transform E" of € in its strict trace. Better still
or each v < s < q an invariant rational curve C in the proper transform E5 of £ in W is either
+ +
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wholly contained in the strict trace, or meets it, infact in a unique point, and all the singularities of
the induced foliation on W% around £ are contained in the strict trace.

(b) & even meets the smooth locus of X, with everything as in (a), except that r = 0.

Now to conclude we argue as follows. To begin with, albeit that it’s convenient rather than important,
everything in VI.7.2 is smooth around £ and its proper transforms for the habitual reason, i.e. singularity is
an invariant condition, yet everything is smooth around the distinguished opens (W!, G'). Next we a priori
blow up a lot in sing(G?) to guarantee that around an invariant rational curve C in £, not in the strict
trace, the ampleness of various bundles such as , NCV/W;|C, NWi/WHC’ etc. The entire discussion is G¢
invariant, so this changes nothing. Our starting point therefore (with the obvious notation) is £ inside
W’ mapping to £, so that necessarily (II.3.5) the points where this isn’t an isomorphism are in the strict
trace of W:“. Next, in a notation that’s rapidly getting out of hand, form for each n weighted blow ups
W™ — W', associated to the nth power of the pull back of the ideal of £{*" viewed in W', with Ey" the
total exceptional divisor, and Z the locus where £7*! isn’t isomorphic to Sfrl. At which point we have
everything we need: Sgn.ﬂwi.ndux/f > 0, by VL.7.6 (a) or (b), g;én.]lé‘;"\w:v"du)(/f < 0 as in VL.7.1,
i.e. off Z we have our ampleness argument, while over Z the induced foliation on 5;;’”|3 — Z has Z as a
first integral, and the numerically relevant components all lie in Iy r+1dpx 7 by VI.5.4, or more correctly
its proof. More generally the same argument works for any scheme structure, or better sequence of scheme
structures, supported on Sfrl which when pulled back to . " differ from that on @’fl only around the
strict trace of W:H. All of which is equally valid for any of steps,

s+1 s
7 AR

+1
w;
for any ¢ — 1 > s > r, with the exception of the positivity of the ambient weighted blow ups on # , which
we obviously do by induction down from r. Whence,
VL.7.7 Fact For every 1 < q <p, (p}_1)*E1.Twadpx/7 > 0.
Thus by VI.7.4 we obtain,
VI1.7.8 Final Fact For any singular component dv of a parabolic invariant measure in the strict trace of

Wp, (pg-)*K]:,Wi'dV =0.

In the particular case that our foliated stack (X,F) comes from an ODE on a 2-dimensional algebraic
stack & with projective moduli by VI.4.2, and as noted pre VI.6.1, this provides the missing piece of the
jigsaw required to extend V1.3.5 to singular components, so that indeed in the presence of LCR. (1.6.1), VI.2.3
holds as asserted. To conclude from here to the statements of the introduction is an immediate application
of [M4].
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