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Introduction

Unlike honest arithmetic, function field arithmetic comes equipped with a deriv-
ative, so differential algebra is a more accurate description. As such if K is the
field of meromorphic functions on a proper curve S over an algebraically closed
field k, the study of algebraic points on varieties X⊗K/K, equivalently families
X → S has some a priori relation with what in characteristic zero would be the
holomorphic sectional curvature of X. Simplification is often possible since
one can often profit from working at the generic point of S, but, nevertheless,
the appeal to differentiation always ends up studying ΩX⊗K/k. This is not,
however, what is required if one wishes to relate the arithmetic of X ⊗K/K to
the curvature of the generic fibre, which is in fact governed by ΩX⊗K/K . The
new technique achieves this with moderate success, and for example, I.3, gives,
Theorem Let X ⊗K/K be a curve over a field of functions in characteristic
zero, then for every ε > 0 there is a constant α(X, ε) such that any algebraic
point f on X satisfies,

hωX⊗K/K
(f) ≤ (1 + ε) discr(f) + α

Here, and throughout, heights and discriminants are normalised by the de-
gree (K(f) : K), and we ignore irrelevant dependencies of the former on a choice
of models. The optimality of the theorem leads to the interpretation: X⊗K/K
has arithmetic (in the function field sense) sectional curvature −1. It solves a
conjecture of Vojta, [V1], and Osterlé, [O]. The method can be uniformised
over the moduli of X, and/or extended to quasi-projective curves. We eschew
these extensions for ease of exposition, but the former implies that α is uniform
in the genus. The dependence on ε would appear to be ineffective beyond hope.

The trouble with the new technique is that it is very sensitive to bad reduc-
tion. This is not an unknown phenomenon when trying to relate function field
arithmetic to hyperbolicity properties in characteristic zero. Indeed, by base
change, we can (and will without comment) always suppose that S is as hyper-
bolic as we please. Hyperbolicity of the total space X → S is invariably stronger
(if not as precise as a result such as I.3) than some Mordellic/boundedness
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property of algebraic points. By [B] this would follow if every fibre were hy-
perbolic. Unfortunately bad reduction makes this unlikely, but [Gr] provides
a quasi-projective complement which is wholly sufficient in the case of curves,
I.1. Although, in a certain sense, the above results of Brody and Green are
optimal, they are in higher dimensions, even for questions of disc convergence,
inadequate to treat varieties containing a large, but, say, finite to fix ideas, set
of rational curves. In principle, the new technique can cope with this, but it
requires work. As such, it should be possible to extend the strong hyperbolicity
theorem, [M3], for surfaces with c2

1 > c2 to an ‘effective Mordell type theorem’
for algebraic points over function fields. Issues, however, still need to be ad-
dressed. Roughly speaking: ‘Néron models for ODE’s on surfaces’ are required.
Consequently, our second result, §II, is a little retrograde in that it emphasises
the co-tangent bundle of the total space, i.e.
Theorem Let X ⊗K/K be a surface of general type and positive index, equiv-
alently c2

1 > 2c2, over a field of functions in characteristic zero, then there are
constants −κ(X) < 0, α(X) such that any algebraic point f on X satisfies,

hωX⊗K/K
(f) ≤ κ discr(f) + α

Here the convention −κ < 0 is chosen to emphasise the connection with
curvature, since one should bear in mind that if p : T → S is the unique
proper cover modeling K(f)/K then, up to normalisation, the discriminant is
minus the topological Euler characteristic χT , which also has sense for stacks,
log-stacks, and in any characteristic. The second theorem is quite delicate, and
uses the theory of minimal models of foliations by curves. It’s very delicacy, and
restrictive hypothesis (albeit that there are plenty of examples of such surfaces)
suggest that the old methodology is not sustainable.

Both these theorems need characteristic zero. At the very least the first
needs a co-homology theory with values in an archimedean field. The second, in
an implicit way, uses local integrability of foliations, which implies, for example,
some peculiarities for heights of algebraic points invariant by a foliation com-
puted with respect to bundles which are also invariant. Already for curves, such
peculiarities make α effective if we replace 1 + ε by 2 + ε, but in characteristic
p the optimal height vs. discriminant relation is un-clear, I.2.

These theorems constituted the last chapter of an ill-fated manuscript, ‘Can-
onical models of foliations’. In the course of extended editorial deliberation oc-
casioned by a proportionally long manuscript, K. Yamanoi, [Y], also proved the
1 + ε theorem. The proofs are, however, quite different, and, indeed, rather
interestingly so, with [Ga] providing an excellent comparison, which we quickly
summarise in regard to Yamoni, who observes that Ahlfors’ isoperimetric in-
equality is way better than the isotrivial case, infact so much better that em-
ployed on P1 it would actually yield the theorem were it not for bad reduction
in the moduli of divisors of degree at least 4, and to this problem the author
subsequently addresses himself. The emphasis here, however, is that many big
algebraic points (or for that matter discs in a suitable sense) lead to a derivative,
in characteristic zero, in the projective tangent space relative to K rather than
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k. As such, the key point which constitutes the new method, valid in all dimen-
sions, is I.3.1, of which the almost trivial proof of the 1 + ε theorem is simply
an illustrative example. I’m indebted to Cécile for the original typesetting, and
I apologise for mucking it up by clumsy cutting and pasting.

I. Curves

I.1 Brody’s lemma

A log-variety (X, D) which is complete hyperbolic automatically admits a con-
stant −κ(X) < 0 such that,

H.fT ≤ −κ χ(T,B)

for all maps from curves f : (T,B) → (X, D). A non-isotrivial family X → S of
curves with boundary the fibres of bad reduction has, more or less, a complete
hyperbolic space of complex points, whence, it’s almost immediate that algebraic
points f ∈ X(K) satisfy,

hωX/S
(f) ≤ κ discr(f)

There are plenty of proofs in the literature, [L], which make this rigorous. These
proofs, however, give the impression that this requires something other than
Green’s complement on Brody’s reparameterisation lemma, [B], [Gr]. Indeed it
appears impossible to deduce from Green’s lemma, the complete hyperbolicity of
a semi-stable, non-isotrivial, family X → S outwith its fibres of bad reduction
Xsi

since the lemma would require that the family is stable. Certainly, this
would amount to a genuine impossibility if X were required to be smooth, but
Green’s lemma is wholly valid whenever the components of the boundary are
Q-Cartier, so on passing to a stable reduction we conclude,
I.1.1 Fact Let X ⊗ K be a curve over a function field of characteristic zero,
then there are constants κ(X), α(X) such that for all algebraic points f ,

hωX⊗K/K
(f) ≤ κ discr(f) + α

I.2 Vojta’s 2 + ε theorem

The argument here admits a positive characteristic variant, which will be similar
in spirit to how we’ll study surfaces. The important protagonist is the projective
tangent space of the total space, and its tautological bundle, i.e.
I.2.1 Notation Let X → B be a separable map of schemes, or, better, Deligne-
Mumford stacks, then π : PX/B → X will denote the projective tangent cone
P(ΩX/B) with LX/B it’s tautological bundle, where the EGA convention on pro-
jectivisation is followed here, and throughout.

In the particular case that B is a field k, of any characteristic, and f : T → X
a separable map from a proper curve, there is a derivative f ′ : T → X, satisfying,
I.2.2 Tautology LX/k.f ′T ≤ −χT
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In the situation, where X → S is a family of curves, possibly iso-trivial,
Riemann-Roch gives,
I.2.3 Lemma [V2] For every rational ε > 0, there is an effective Q-divisor Dε

on PX⊗K/k such that,

(2 + ε)LX/k = Dε + π∗ωX/K

Combining I.2.2 and I.2.3, immediately yields,
I.2.4 Lemma For every ε > 0, there is a constant α(X, ε) such that a point f
of X ⊗K over the separable closure of K satisfies,

(a) hωX/K
(f) ≤ (2 + ε)discr(f) + α(X, ε) and/or (b) f ′ ∈ Dε

Vojta’s 2+ ε theorem is, up to changing α, that in characteristic 0 all points
satisfy (a). Notice that changing α also allows us to assert that Dε is finite at
each of its generic points. On the other hand,
I.2.5 Lemma If ΩX |X⊗K is semi-stable, and Dε is finite at each of it’s generic
points, then there is a Q-Cartier divisor Fε on the support |Dε| of Dε such that,

(2 + ε)LX⊗K/k ||Dε|= Fε + ωX/K ||Dε|

This is immediate from the definitions, and whence I.2.4 (a) holds for all
points unless ΩX⊗K/C is unstable. In characteristic zero this is related to the
Bogomolov stability of ΩX , or more correctly the proof [B2]. Indeed taking
models, allows us, any characteristic, to write the destabilising exact sequence
as,

0 → ωX/F → ΩX → KFIZ → 0

for ωX/F the co-normal bundle to a foliation by curves, F , with singularities
Z supported in co-dimension 2. Again I.2.5 is valid on any subscheme of Dε

whose generic point is distinct from the section of π defined by F . As such, we
can suppose that all points not satisfying I.2.4 (a) are invariant by F . Points f
invariant by F have co-homology classes in,

Im{Ext1X(IZ , ωX/F ) → H1(X, ΩX/k)}

As does c1(ωX/F ). In characteristic 0 one can blow up until only finitely many
points are actually in the image of H1(X, ωX/F ), cf. [B1], so,

hωX/F (f) ≤ 0(1), characteristic zero, f invariant by F

In characteristic p, there is still some truth in this, but only on taking intersec-
tion numbers with values in Fp. Whence, we use that degX⊗K(KF ) > 0 unless
X ⊗K/K is iso-trivial, so that,
I.2.5 Corollary For every ε > 0, there is a constant α(X, ε) such that every
point f of a curve X ⊗K, of genus g, over the separable closure of K satisfies,

hωX/K
(f) ≤

{
(2 + ε) discr(f) + α(X, ε) , characteristic 0
(2g − 2 + ε) discr(f) + α(X, ε) , characteristic p
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I.3 Vojta’s 1 + ε conjecture

Needless to say this involves replacing 2 by 1 in I.2.5. We will need characteristic
zero, and in many ways the full force of C, which from now on is our base.
Singularities will also be important, so say X → S a semi-stable family over a
smooth proper curve S. The key point is I.3.1 below, if it held for logarithmic
derivatives then singularities would be trivial to handle. Unfortunately, the
proof fails because x 7→ x−1 is not an integrable function of a real variable
at zero. However x

1
n−1 is integrable, so for each n ∈ N consider algebraic

stacks Xn → X, with moduli X, obtained by extracting nth roots about every
irreducible component of every singular fibre. The order in which this is done is
un-important, and one obtains a stack whose local monodromy at a non-scheme
like point is (Z/n)r, where r is the number of components of the fibre through
the point. Indeed the (étale) fundamental group of a strictly local regular affine
scheme punctured in a strict simple normal crossing divisor with r components
is Ẑr, so this is manifestly well defined, cf. [V], proof of proposition 2.8. Now
let fi be a sequence of algebraic points on X ordered by increasing height for
which the 1 + ε conjecture fails. We view these as S-maps from proper covers
pi : Ti → S, with Tin a normalised component of Ti ×X Xn. As such, we have
liftings fin, and one should note that,

deg(ωTin/C) ≤ deg(ωTn/C) + 0((Tn : S))

for the simple reason that Xn → X is ramified only in fibres. Furthermore
Xn is smooth in its étale topus, so smooth function, distribution etc. have
perfect sense. In particular on an étale neighbourhood a basis of differential
forms permits a non-canonical identification of forms with a finite dimensional
vector space of functions, and, in an a priori basis dependent way, we can talk
about Lp, 1 ≤ p ≤ ∞ forms, or measured valued forms, or whatever ones
favourite function space is. Plainly, however, the induced topology on the space
of (canonically defined) smooth forms is independent of the basis, so that after
completion in the relevant topology we get sheaves of topological vector spaces
Li,j

p of forms of type (i, j) with Lp coefficients, or even just M i,j with measure
coefficients. Furthermore for any stack with a moduli space, a partition of unity
on the moduli space allows one to conclude that the Li,j

p are actually sheaves
of Banach spaces. Similarly on measured valued forms, M top, of top weight
the dual of pulling back bounded Borel functions from the moduli to the stack
defines a push-forward to top weight measured valued forms on the moduli,
which one can compose with integration on the moduli, to define integration
on any stack with a moduli space. As it happens, this is a somewhat stupid
way to proceed, and integration is best defined wholly moduli space free, [M5].
Nevertheless such a degree of sophistication is irrelevant to the current simple
context which wholly suffices to define currents of integration,

Fin : A1,1(Xn)|L1,1
∞
→ C : τ 7→ 1

H.fin
Tin

∫
Tin

(fin)∗τ
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where A is for smooth, albeit understood here in the topology induced by its
inclusion in L∞, and H is an ample divisor on X. A smooth metric on Xn

may be taken as the pull-back of a metric on X plus ddc of a suitable Hölder
continuous function, c.f. [M6] III.2.1, so by Stokes, the integral of Fin against
a smooth metric on Xn is bounded independently of i. Consequently, we can
subsequence in i, so that the Fin converge to some Φn in the weak dual of L∞
forms, i.e. in M1,1. Similarly, we obtain on differentiating,

F ′
in : A1,1(PXn/C)|L1,1

∞
→ C : τ 7→ 1

H.finTin

∫
Tin

(f ′in)∗τ

Supposing the fi violate the 1+ε conjecture, these will also have bounded mass,
so, without loss of generality, there’s no trouble subsequencing to a weak limit
Φ′

n such that, (π)∗Φ′
n = Φn. Or, better, do this latter subsequencing first, and

simply define Φn as the push-forward.
Notation done, the key point is as follows: PXn/S embeds in PXn/C, with a

distinguished component D which is the closure of the unique component over
K, and we assert,
I.3.1 Claim If the normalised heights of the fi go to infinity, then,

(π)∗1IPXn/C\DΦ′
n = 0

proof Suppose otherwise, then we require to understand what it means to be a
distance δ > 0 off D. The situation is most complicated at the singularities, so
we’ll exclusively work there. By construction we have analytic local coordinates
x, y, s such that Xn is given by s = (xy)n, with s a coordinate on S. As such
an equation for D may be identified with the differential form,

xdy + ydx =
1
n

(xy)−(n−1)ds

Whence if Zn → S is the stack with moduli S obtained by taking nth roots
at points where the fibre is singular, then for |.|, and ‖.‖ metricisations of the
tangent bundles of Zn, and Xn respectively, to be a distance at least δ from D
amounts to,

‖dx‖+ ‖dy‖ � 1
δ
|dz|

where, of course, z is a local coordinate on Zn. Whence if w is a smooth metric
on Xn, then, ∫

f−1
in (distD>δ)

(f ′in)∗w �n
1
δ
(Ti : S)

where the implied constant may depend on n. �
Now, by I.2.2, the 1+ε conjecture will follow if for sequences fi whose height

goes to infinity, we can show,
I.3.2 Further Claim For n sufficiently large,

ωX/S .Φn ≤ LXn/C.Φ′
n + ε
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proof This follows, trivially, from I.3.1 & [M6] III.3.3 if X → S is smooth, and
the stack structure is there so as to make better, and better approximations to
this situation. Specifically D → Xn is a blow up in some bunch of geometric
points {z} lying over the singularities, so denote by Enz an exceptional divisor
over any such, then it will suffice to show that given ε we can find a large n
such that Enz.Φ′

n ≤ ε. To this end let B be an irreducible curve in the fibre of
X → S through z with Bn its nth root in Xn, and B̃n its proper transform in
D. By hypothesis, and I.3.1,

Enz.1IDΦ′
n = −B̃n.1IDΦ′

n

On the other hand,

B̃n.1IDΦ′
n ≥ B̃n.1I eBn

Φ′
n =

1
n

(B − C)1IBΦ0

where C is the other curve in the fibre through z. Since Φ0 can be fixed as a
current on X independent of n we conclude. �

II. Surfaces

II.1 Riemann-Roch calculations

Unlike curves, the sectional curvature of surfaces does not enjoy any a priori
relation to the ampleness of any line bundle. As such, we’ll need some Riemann-
Roch calculations at the generic point of a proper family X → S of surfaces,
which is generically smooth, and, for convenience, say X non-singular, since
from now on the base will be C. Over the generic fibre, we have a short exact
sequence,

0 → OX⊗K → ΩX⊗K/C → ΩX⊗K → 0

So that in particular, st (Ω∨
X⊗K/C) = st(Ω∨

X⊗K/K), where st is the Segre poly-
nomial, and whence: s2 (Ω∨

X⊗K/C) > 0, if s2 (Ω∨
X⊗K/K) > 0. On the other hand

from the point of view of the projective bundle, π : PX⊗K/C → X ⊗K this says
L4

X⊗K/C > 0, and so, as ever by Riemann-Roch,

χ (PX⊗K/C, L⊗n
X⊗K/C) ∼ n4

4!
LX⊗K/C,

grows positively in n, for c1(X⊗K)2 > c2(X⊗K). We calculate the cohomology,

Hi(PX⊗K/C, L⊗n
X⊗K/C) ∼−→ Hi(X ⊗K, Symn ΩX⊗K/C),

where we profit from Rjπ∗L
⊗n
X⊗K/C = 0 for j > 0. So if we’re interested in

conditions for large h0, we need only concern ourselves with the H2, which is
isomorphic to H0(X ⊗K, SymnTX⊗K/C ⊗ ωX⊗K/C). Whence we may conclude
that L is big provided that TX⊗K/C is not big. In fact,
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II.1.1 Lemma Suppose that the generic fibre X⊗K is minimal of general type,
and the family is not iso-trivial, then, h0 (X ⊗K, SymnTX⊗K/C) = 0, ∀n ∈ N.
Proof. Suppose otherwise, and let C be a generic member of a sufficiently high
multiple of ωX⊗K/K . Then ΩX⊗K/K |C is semi-stable, and ωX⊗K/K .C > 0
so in fact, ΩX⊗K/K |C is ample. Now choose the smallest n ≥ 1 such that
h0 (X ⊗K, SymnTX⊗K/C) 6= 0, and consider the exact sequence,

0 → Symn−1 ΩX⊗K/C → Symn ΩX⊗K/C → Symn ΩX⊗K/K → 0

then if n ≥ 2 we obtain an element of H0 (X ⊗ K, Symn TX⊗K/K), while if
n = 1, given that H0 (X ⊗K, TX⊗K/K) = 0, ΩX⊗K/C must be a split extension
of ΩX⊗K/K by OX⊗K , and so X ⊗K/K is isotrivial. �

Consequently, h0(L⊗n
X⊗K/C) grows like n4 for c2

1 > c2 on the generic fibre, so
applying I.2.2 we obtain,
II.1.2 Fact Let X ⊗ K/K be a surface of general type with s2(X ⊗ K) > 0,
then for H ample, there are constants −κ(X) < 0, α(X) > 0, and a divisor
D ⊂ PX⊗K/C such that any algebraic point f satisfies,

(a) hH(f) ≤ κ discr(f) + α and/or (b) f ′ ∈ D
The extra dimensions make (b) more difficult to deal with. To be sure I.3.1

is valid in all dimensions on replacing Xn by X, so we can almost reduce to the
main lemma of [M3]. Unfortunately, there are several issues of bad reduction
not just for the family X → S, but also of foliations, and currents to deal with,
so we’ll proceed in a spirit more akin to I.2. Regrettably, this involves a serious
weakening of the surfaces we may study, since we appeal to,
II.1.3 Fact (cf. [Mi], [Lu]) Again let X⊗K be a non-isotrivial minimal surface
of general type, but with positive topological index, τ , equivalently i.e. c1(X ⊗
K)2 > 2c2(X ⊗ K). Furthermore let D ⊂ PX⊗K/C be a divisor each generic
point of which dominates X ⊗K, then LX⊗K/C|D is big.
proof We may suppose D is irreducible, so there is an integer m and a line
bundle M on X ⊗ K such that, OP (D) ∼−→ L⊗m

X⊗K/C ⊗ π∗ M∨. We wish to

calculate the intersection number, L3
X⊗K/C.D on the generic fibre. To this end,

observe:

L3
X⊗K/C.D = L3

X⊗K/C.(m LX⊗K/C −M) = m s2 (TX⊗K/C)− ωX⊗K/C.M .

On the other hand, D defines a map, 0 → π∗ M → L⊗m
X⊗K/C, which we may

push forward to obtain maps,

M → SymnΩX⊗K/C → SymnΩX⊗K/K ,

while D irreducible implies the composite map M → Symm ΩXK
is non-zero, so

we may apply ωX⊗K/K semi-stability of the generic cotangent bundle to obtain,

M ·ωX⊗K/K ≤ m

2
c1 (X⊗K)2 and whence, L3

X⊗K/C ·D ≥ 3m

2
τ (X⊗K) > 0 .

To determine the cohomology Hi (D,L⊗n
X⊗K/C), we use the exact sequence,

0 → L⊗n
X⊗K/C (−D) → L⊗n

X⊗K/C → L⊗n
X⊗K/C |D→ 0
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so, that on taking n sufficiently large, we are reduced to excluding the possibility
that H2 (PX⊗K/C, L⊗n

X⊗K/C) grows in dimension like n3. Arguing as before we
must simply exclude that H0 (C,Symn TX⊗K/C) admits a similar estimate, for
C a generic member of a suitable multiple of ωX⊗K/C. Proceeding exactly as in
II.1.1 we see that we are done unless H0 (C, TX⊗K/C) 6= 0. This of course forces
TX⊗K/C |C to split, and better still the semi-stability of ΩX⊗K/K |C obliges,

0 → ΩX⊗K/K |C → ΩX⊗K/C |C → OC → 0

to be the Harder-Narismhan filtration for the bundle ΩX⊗K/C, and whence the
tangent sheaf of the canonical model of X ⊗K splits, which again implies that
X ⊗K is isotrivial. �

Now components of D appearing in II.1.2 (a) which don’t dominate X ⊗K,
are the pull-backs of curves. If these curves aren’t rational or elliptic, then
any of the height bounds of §I can be used to deduce a height bound of the
form II.1.2 (b), there are, however, by [B1] only finitely many of these under
the chern class inequalities that we’ve given, so without loss of generality D
satisfies II.1.3. Again, we may appeal to II.2.2, change our constants to account
for non-dominant components of the appropriate linear system, and deduce,
II.1.4 Fact Let X ⊗ K/K be a surface of general type with τ(X ⊗ K) > 0,
then for H ample, there are constants −κ(X) < 0, α(X) > 0, and a sub-scheme
Y ⊂ PX⊗K/C, finite over X ⊗ K at each of its generic points such that any
algebraic point f satisfies,

(a) hH(f) ≤ κ discr(f) + α and/or (b) f ′ ∈ D

II.2 Foliations by curves

Needless to say the goal is to prove that on surfaces of general type and positive
index all algebraic points satisfy II.1.4(a). The obstruction is II.1.4(b), so (b)
implies (a) will do. This has nothing to do with chern numbers, and we assert,
II.2.1 Claim Let X ⊗ K/K be a surface of general type and Y ⊂ PX⊗K/C a
sub-scheme finite over X ⊗ K at each of its generic points, then for H ample
there are constants −κ(X, Y ) < 0, α(X, Y ) > 0 such that algebraic points f
with f ′ ∈ Y satisfy,

hH(f) ≤ κ discr(f) + α

The proof will occupy the rest of the manuscript. Plainly we may suppose
Y geometrically irreducible, and the points f are Zariski dense. The condition
f ′ ∈ Y is a first order O.D.E.. Sine the points f also lift to Y by differentiation,
we can replace X by Y without changing their discriminants, so without loss of
generality the O.D.E. is linear, i.e. it’s a foliation by curves F . The condition
f ′ ∈ Y may thus be replaced by f is invariant by F , which in turn is given by
a short exact sequence,

0 → ΩX/F → ΩX⊗K/C → KFIZ → o
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where the kernel is reflexive rank 2, KF is the bundle of forms along the leaves,
and Z the (generic) singular sub-scheme of F . As such Y is in fact,

Proj
(∑

K⊗n
F· In

Z

)
The singularities are important, and we blow up to make them as good as
possible. This means, functorially with respect to the ideas, canonical, [M4]
I.6.2. With current hypothesis such a modification exists, [S]. Consequently,
II.2.2 Fact Let everything be as in II.2.1, then for every ε > 0, there is a proper
sub-variety Vε ⊂ X ⊗K such that,

hKF (f) ≤ discr(f) + εhH(f), f /∈ Vε

This is immediate from the substantially more general [M4] V.6.1. Since, we
essentially only have 2-dimensions to worry about, one can also do this by mod-
ifying the original proof of the refined tautological inequality of [M1], as found
in [M2] VI.2. The upshot is that we can try to get down to a curve problem
by studying the linear systems K⊗n

F . This requires some of the theory of min-
imal models of foliations. In the current situation this enjoys some substantial
simplifications because the composite of the natural maps,

ωK/C = OX⊗K → ΩX⊗K/C → KF

is non-zero at every f , which are dense, so indeed it’s non-zero, and defines a
section Γ, which we confuse with the curve that it defines, of KF . Consequently,
though we could appeal to the minimal model theory of [M4], we can also blow
up so that Γ is simple normal crossing, and just do things by hand, i.e.
II.2.3 Facts Let C ⊂ X ⊗K be a curve then either,
(a) C is not invariant by F , and (KF + C).C ≥ 0, or,
(b) C is invariant, and, say smooth, and contained in the support of Γ, then,

KF .C = −χC + sZ(C)

proof (a) is immediate from the definitions, so let’s concentrate on (b), including
defining the segre class sZ at the singularities. Since C is invariant, it admits a
lifting C̃ to Y , and we have a surjective map,

ΩC/C | eC→ KF (−E) | eC→ 0

where E is the, not necessarily reduced, exceptional divisor. By definition,
sZ(C) = E.C̃, so C ⊂ Γ implies (b), and even the nullity of the natural map,

ΩX/F → ΩC/K �

The first of these tells us that the conditions KF .C < 0, and C contractible
are incompatible, the second that C must be a rational curve. The self intersec-
tion may well not be −1, so contracting it may lead to a quotient singularity. As
such there is a minimal smooth stack whose moduli is that of the contraction,
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[V]. On the said stack, the non-scheme like points are terminal for the induced
foliation, so, in fact, smooth, [M4] I.6.11. Since there is a unique smooth in-
variant hypersurface through a co-dimension 2 terminal singularity, the push
forward of Γ to the contracted surface followed by it’s pull-back to the stack
has an invariant part which is still simple normal crossing, while II.2.3 (a) is
evidently still valid for smooth stacks. Consequently, there is a contraction
ρ : X ⊗ K → X0 ⊗ K to a variety with quotient singularities, with canonical
bundles related by,

KF = ρ∗KF0 +
∑

z

Ez

where z are the centres of the contractions, Ez are Q-divisors supported on
chains of invariant rational curves and KF0 is nef. As such, K2

F0
6= 0 implies

II.2.1 by II.2.2, while if the Kodaira dimension is zero, then a cyclic cover of
X0 ⊗K is isotrivial. This leaves the possibility that the push-forward Γ0 of Γ
is nef., non-zero, and Γ2

0 = 0. To cope with this we have to know how curves in
Γ intersect, i.e.
II.2.4 Lemma Two integrable hypersurfaces C, C ′ in the support of Γ can only
meet generically in a foliation singularity.
proof Suppose there is no singular point in the intersection then there is a
neighbourhood U of C containing C ∩ C ′ which does not contain any foliation
singularities, so,

c1 (C ′ |U ) ∈ Im {H1 (U,ΩX/F ) → H1 (U,ΩX⊗K/C)} .

Consequently, c1 (C ′ |C) is in the image of the natural map from H1 (U,ΩX/F )
to H1 (C,ΩC/K) which we’ve noted is zero, which is absurd. Otherwise there
are n singular points z1, . . . , zn, say, in the intersection, which by base change
we may suppose is simple so if we blow up in these points to obtain C̃ and C̃ ′,
say, then by the above C̃ · C̃ ′ = 0, and so C · C ′ = n as required. �

Now, suppose every curve in Γ0 were invariant, and write ρ∗Γ0 =
∑

aj Cj .
By II.2.4 this is a normal crossing divisor with the crossings occurring only in the
foliation singularities. Moreover it is nef. of square 0 so we have the formulae,

− aj C2
j =

∑
k 6=j

ak Ck· Cj and (ωX⊗K/K −KF )· Cj ≤ −C2
j −

∑
k 6=j

Ck· Cj

for all j. So that multiplying the latter by aj and combining we obtain,

ωX⊗K/K· p∗ Γ0 ≤ KF · p
∗ Γ0 = 0,

which is absurd since ωX⊗K/K is big.
Consequently Γ0 contains a non-invariant irreducible curve C, so by II.2.3(a)

(stack version) and the index theorem C is parallel to Γ0 in Néron-Severi. We
use the foliation to move C. This is most conveniently done on the minimal
smooth stack over X0⊗K. Since X⊗K has general type, C cannot be rational,
so it’s pre-image in the said stack admits an étale neighbourhood U which is
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everywhere scheme like, and we, legitimately, confuse C with an irreducible pre-
image in U . If either C were not smooth in U or there were induced foliation
singularities on C then II.2.3(a) would be a strict inequality, which is absurd.
Thus the foliation is given on a cover

∐
Uα → U by non-vanishing vector fields

∂α, C by coordinate functions xα = 0, and Γ0 |U= nC, for some n ∈ N. We
further assert,
II.2.5 sub-claim Let Um, m ∈ N be the mth thickening of C in U , then,
OUm(C) is at worst n + 1 torsion.
proof m = 1 follows from II.2.3(a), so without loss of generality we have a
torsion bundle L on U with transition functions ζαβ such that L∨ |C

∼→ OC(C),
and we go by induction. Quite generally there is an exponential sequence,

H0(O×
Um

) δ−→ H1(C, Im
C /Im+1

C ) −→ Pic(Um+1) −→ Pic(Um) −→ 0 .

Consequently, we may choose our local equations for C, so that the transition
functions fαβ satisfy fαβ = ζαβ(1 + hαβ) for hαβ a 1 co-cycle in Im

C /Im+1
C . As

such if gαβ are the transition functions for K∨
F then,

∂αxα = ζαβexp((m + 1)hαβ)gαβ∂βxβ

(
mod Im+1

C

)
leads to a trivialisation of L + (m + 1)C + KF mod Im+1

C , and we’re done since
Imδ is a K-vector space. �

Dismissing cases where X ⊗ K is an irregular surface is straightforward,
so we get an actual Kodaira fibration, q : X0 ⊗ K → B := |K⊗n

F |, for some
appropriately large n. Furthermore, the natural map q∗ΩB/C → KF , allows us
to conclude that we may descend the foliation, and obtain generically a map
of foliated varieties (X,F) → (B,G), i.e. leaves go to leaves. Without loss of
generality, however, the images of our algebraic points in B are Zariski dense,
so by [J], G has a first integral. This first integral won’t be generically flat over
S, so we take models, and denote by p : X0 → C the Stein factorisation of
the composition of the Kodaira fibration with the first integral, where C is a
curve over C. The fibres are a family of foliated surfaces of foliated Kodaira
dimension 1, with the Kodaira fibration transverse to the foliation. Since X⊗K
has general type, this implies that the foliation on the generic fibre over p is the
suspension of a representation in the automorphism group of a curve of genus
at least 2, so the fibre is an isotrivial family, over S, of curves of genus at least
2. Consequently, there are certainly constants −κ < 0, and α such that any
map f : T → X from a smooth curve factoring through a fibre of p satisfies,

ωp−1(c).fT ≤ −κ χT + α

while by adjunction ωp−1(c) = ωX0 |p−1(c), and we conclude to II.2.1 �
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