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Abstract. The classi�cation of foliated surfaces, [McQ08], is applied to the study of curves
on surfaces with big co-tangent bundle and varying moduli, be it purely in characteristic zero,
or, more generally when the characteristic is mixed. Almost everything that one might naively
imagine is true, but with one critical exception: rational curves on bi-disc quotients which
aren't quotients of products of curves are Zariski dense in mixed characteristic. The logical
repercussions in characteristic zero of this exception are not negligible.

I. Introduction

For X/C a smooth algebraic surface with Ω1
X/C big, a theorem, [Bog77], of Bogomolov asserts

(1) The set, Z, of rational or elliptic curves on X is �nite

and, better still, for H an ample divisor on X

There is a constant −κ(X, H) < 0 such that if f : C → X is any map from

from a smooth curve which doesn't factor through Z: H ·f C ≤ −κ χ(C)
(2)

wherein, the notation is constructed according to the mnemonic: if ω is a metric on X (or indeed
any complex manifold) with (holomorphic) sectional curvature −K < 0, then (Gauss-Bonnet),

(3)

∫
C

f∗ω ≤ − 1
K

χ(C)

Nevertheless, one shouldn't, even if Z = ∅, imagine for a second that (2) is equivalent to negative
sectional curvature, e.g. there are buckets of simply connected surfaces in Bogomolov's class
with Z = ∅. Rather what (2) expresses is a weak, or (1) weaker still, algebraic vestige in complex
dimension 2 (⊂ real dimension 4) of the implication that negative Ricci curvature implies
negative sectional curvature in real dimension at most 3. Indeed, by [TY87], the canonical
model of X admits (in the orbifold sense should this not coincide with the minimal model) a
Kähler-Einstein metric of Ricci curvature −1, but, as we've remarked, will in all probability
catastrophically fail to admit a uniformisation of the type encountered in real dimension 2 or
3. There are, of course, much better holomorphic vestiges of negative sectional curvature than
(1)-(2), of which, the best to date is that Gromov's isoperimetric, [Gro07], holds, i.e.

There is a constant −K(X) < 0 such that if f : ∆ → X is any holomorphic disc

areaω(f) =
∫

∆
f∗ω ≤ 1

K
lengthω(∂f ) =

∫
∂∆
|df |ω

(4)

where for ease of exposition, we suppose Z = ∅, which gives us the right to take ω equal
to the Kähler-Einstein metric in (4). In particular, in exceptional cases where one does have
uniformisation, i.e. ball and disc quotients, one sees that the right value of −K = −κ(X, KX)−1

whether in (2) or (4) is the holomorphic sectional curvature of the Kähler-Einstein metric, so
−2/3 for balls, respectively −1/2 for the bi-disc, and, already [ACLG12], this turns out to be
best possible in the restrictive algebraic context (2)-(3).
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The much deeper inequality (4) while a�ording a revealing insight into the relation of (2)
with the isoperimetric pro�le, is, however, only really our immediate interest in respect of the
complexity, I.8, of the algebraic surface part of its proof, [McQ98], as opposed to the part,
[Kle] or [Duv08], valid on all almost complex manifolds in all dimensions, and such questions
of complexity are in turn subordinate to the main question of how does Bogomolov's theorem
vary in moduli. This already has its own interest in characteristic zero, so we set things up
accordingly: S will be an irreducible a�ne scheme of �nite type over a Noetherian integral
domain of characteristic zero, and X/S a smooth family of S-projective surfaces, with say X
and its generic �bre geometrically irreducible for convenience, then we have 2 subtly di�erent
theorems

I.1. Theorem. Suppose X/S above satis�es Bogomolov's condition Ω1
X/S big, then exactly one

of the following happens,

(a) There exists a constant −κ < 0, along with a closed nowhere dense sub-scheme Z ⊂ X such
that for every closed geometric point Spec(k) → S and every separable map f : C/k → X from
a smooth k-curve which doesn't factor through Z,

(5) H ·f C ≤ −κχC

(b) The closed points s ↪→ S of positive residue characteristic are dense, and the generic �bre
is dominated by a modi�cation of a bi-disc quotient (including b.t.w. the case of a product of
curves).

I.2. Theorem. Suppose X/S above satis�es Bogomolov's condition Ω1
X/S big, then exactly one

of the following happens,

(a) There is a closed nowhere dense sub-scheme Z ⊂ X such that for every closed geometric
point Spec(k) → S, every map f : C/k → X from a smooth rational or elliptic k-curve factors
through Z.

(b) There exists a nowhere dense closed sub-scheme Z of X; a surjective map S′ → U from
an open dense a�ne sub-scheme S′ ⊂ S, onto the spectrum of a sub-ring of Q; �nitely many
bi-disc quotients Yi/U which (over Q̄) don't admit an almost étale cover by a product of curves;
and real quadratic number �elds Ki (functorial in Y ) such that in�nitely many primes p ∈ U
are inert in each Ki; X ×S S′ is dominated by an irreducible component of Yi ×U S′ for each
i, and every rational or elliptic curve C/k → X which doesn't factor through Z is the image of
some f : P1

k → Yk of H-degree O(p), for Spec(k) → S a closed geometric point of characteristic
p inert in some Ki, and f invariant by one of the natural foliations on Yi/U arising from the
bi-disc structure, yet missing the cusps should they exist.

Before proceeding to discuss the theorems in mixed characteristic, let us note that the obvious
combination of I.1, Noetherian induction, the upper semi-continuity of h0, and (to get the
optimal Z as below) Riemann-Hurwitz gives

I.3. Corollary. Let X → S be the universal smooth family of (minimal) surfaces of general
type over some irreducible component of the moduli space/C, then if the co-tangent bundle of
the generic �bre is big, the set Z whose �bre over s ∈ S is the rational and elliptic curves on
Xs is a closed nowhere dense sub-scheme, and there exists a constant −κ < 0, such that for
every closed geometric point s ∈ S(C) and every map f : C → Xs from a smooth curve which
doesn't factor through Z,

(6) H ·f C ≤ −κχC

The case of I.3 where the bigness of Ω1 is guaranteed by Riemann-Roch, i.e. c2
1 > c2 is also

a theorem of Miyaoka, [Miy08], and, when the two overlap, Miyaoka's theorem is way better
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since it provides explicit (and very simple) functions of the chern numbers for κ and the degree
of Z, whereas I.3 says such functions exist, but they could be anything.

Now, irrespectively of whether we're in mixed characteristic or not, it's well known, and easy,
V.3, that Bogomolov's theorem reduces to studying curves invariant by a foliation F , so I.1
and I.2 are really just corollaries of

I.4. Theorem. Let (X, F ) → S be a family of foliations by curves on a family X/S of smooth
projective surfaces of general type with X and its generic geometric �bre irreducible for conve-
nience, then exactly one of the following happens,

(a) There exists a constant −κ < 0, along with a closed nowhere dense sub-scheme Z ⊂ X such
that for every closed geometric point Spec(k) → S and every separable F ⊗ k invariant map
f : C/k → X from a smooth k-curve which doesn't factor through Z,

(7) H ·f C ≤ −κχC

(b) The closed points s ↪→ S of positive residue characteristic are dense, and the generic �bre
is a modi�cation of a bi-disc quotient (including b.t.w. the case of a product of curves) with F
one of the natural foliations induced by the bi-disc structure.

I.5. Theorem. Hypothesis as in I.4, then exactly one of the following happens,

(a) There is a closed nowhere dense sub-scheme Z ⊂ X such that for every closed geometric
point Spec(k) → S, every invariant map f : C/k → X from a smooth rational or elliptic
k-curve factors through Z.

(b) There exists a nowhere dense closed sub-scheme Z of X; a surjective map S′ → U from an
open dense a�ne sub-scheme S′ ⊂ S, onto the spectrum of a sub-ring of Q; a bi-disc quotient
Y/U which (over Q̄) does not admit an almost étale cover by a product; and a real quadratic
number �eld K (functorial in Y ) such that in�nitely many primes p ∈ U are inert in K; X×SS′

is a bi-rational modi�cation of an irreducible component of Y ×U S′ with F/S′ the base change
of one of the natural foliations on Y/U arising from the bi-disc structure, and every F -invariant
rational or elliptic curve not factoring through Z is F ⊗ k invariant for Spec(k) → S a closed
geometric point of characteristic p inert in k. Moreover for each such k, with p � 0, there is a
F ⊗k invariant separable rational curve f : P1

k → Y , with Y understood as a Deligne-Mumford
champ if there are quotient singularities, missing the cusps E should these exist such that

(8)
p

2
≤ (KY + E) ·f P1

k ≤ (p− 1)c2,log(Y, E)

and, along which some non-classical modular form of weight (2p,−2) vanishes.

At �rst sight I.4.(b) may appear surprising, but it obviously happens. Speci�cally, say f =
f1×f2 : C → X = X1×X2 a curve on a product of hyperbolic curves over Fp to avoid pointless
technicalities, then f separable is only equivalent to, say, f1 separable and there's nothing to
stop us composing f2 with a huge multiple of Frobenius. As such separable curves of (a �xed)
genus g on a product of hyperbolic curves in characteristic p are not bounded in moduli once g
is (depending on X) su�ciently large , albeit, by Riemann-Hurwitz and separable/inseparable
factorisations of the fi, the above is the only way this can happen, while, plainly, there are no
rational or elliptic curves. This brings us to the case of bi-disc quotients which (up to a �nite
group action) aren't products of curves, and as one sees there is a clear distinction between
primes p which are split, as opposed to inert in the real quadratic �eld K of I.2.(b). From
the point of view of constructing counterexamples to boundedness in moduli of curves of genus
g, the mechanism, III.9, is exactly the same as the case of products of curves when p is split,
and while arguments in rigid co-homology, are more demanding than Riemann-Hurwitz, this is
again, III.8, the only mechanism. Nevertheless, in the presence of cusps there is some subtlety,

3



i.e. bounding rational curves at split p, V.2, has more to it than just the rigid co-homology
considerations of III.8.

This brings us to the amusing logical consequences of (8). More or less by de�nition, every
theorem in algebraic geometry over C is an ACF0 (�rst order theory of algebraically closed �elds
of characteristic zero) theorem. Unfortunately, and evidently, since there is quanti�cation over
a priori unbounded sets of curves in both (1) and (2) neither is a statement in ACF0. One
could, however, ask whether a theorem, T (f), about some type of curve, f on X, has a proof
which is essentially ACF0, i.e. does it have, for X �xed, the form

(9) Pi ∧ Tj(f) ⇒ T (f)

where Pi are �nitely many ACF0 theorems and Tj(f) is a, possibly in�nite, set of tautologies
valid for all curves f that we wish to study. A priori, therefore, f could be arbitrary, �xed genus,
or whatever, but in practice, and mathematical precision in I.6, f is rational. For example any
map f : C/k → X from a smooth curve to a geometric �bre has a factorisation f = f0g into
purely inseparable followed by separable, so, the existence of such a factorisation is such a
tautology. Better still separable maps admit a derivative f1 := f ′0 : C/k → P1 := P(ΩX/S) →
P0 := X, and if L1 is the tautological bundle then

(10) L1 ·f1 C = −χ(C) − Ramf0

is another tautology, which can even be iterated to an in�nite sequence of tautologies, i.e. for
Pm ↪→ P(ΩPm−1/S) the mth jet bundle, Lm its tautological bundle, and fm the mth derivative
of f0,

(11) Lm ·fm C = −χ(C) − Ramfm−1

Now Bogomolov's condition is that for some a, b the ACF0 statement

(12) Pa,b(X) : H0(X, SymaΩ1
X(−bH)) 6= ∅

is a theorem, so, choosing a, b appropriately and using just the tautology (10) the reduction of
I.1-I.2 to I.4-I.5 is essentially ACF0 in the sense of (9). On the other hand a theorem is ACF0

i� it's ACFp for p � 0, so

I.6. Corollary. For every bi-disc quotient X, possibly with cusps E and quotient singularities,
in which case X is to be understood as a Deligne-Mumford champ, but not a �nite quotient of
a product of curves, and F either of the natural foliations the following (true) statement has
no essentially ACF0 proof;

(13) There are at most �nitely many F -invariant rational curves on XC\E

Now while it's true that by I.4.(b) we could construct for high genus curves on products of
curves a related statement with no essentially ACF0 proof, this is only because of an evident
separability rather than �bi-separability� issue which we could have excluded via a more so-
phisticated variation of (9). We haven't bothered to do this, since it's not only irrelevant for
rational curves, but, manifestly, the weaker the statement with no essentially ACF0 proof is, the
more interesting it becomes. For example, the tautologies, 11, imply tautological inequalities,

(14) Lm ·fm C < 0

for rational curves, while for each m, our foliation, F , de�nes a surface Xm ↪→ Pm in the
mth jet space through which fm must factor, so for all non-negative integers n1, . . . , nm with
non-zero sum, n, all the ACF0 statements

(15) H0(Xm, L(n) := L⊗n1
1 ⊗ . . .⊗ L⊗nm

m ) 6= ∅
are false on bi-disc quotients which aren't quotients of products of curves. Now, if there are
cusps, the L(n) of (15) aren't very interesting, e.g. not even pseudo e�ective [McQ08, IV.5.7],
but by (13) we have the right to do all this logarithmically, so the natural map Xm,log → X
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is an isomorphism and the bundle in (15) (understood logarithmically if necessary) is just the
nth power of the canonical of the foliation Kn

F , so, we recover the well known fact, [SB95] or
[McQ08, IV.5.4], that KF , which is in fact nef. in characteristic zero, has Kodaira dimension
−∞, which as it happens, III.3, is a lemma in the proof of I.5.(b), but, in principle I.6, or
better, I.5.(b) is a much stronger fact than κ(F ) := κ(KF ) = −∞, c.f. I.8.(c) for another
example.

As to the proof of the theorems themselves, they are largely an application of the classi�cation
theorem, [McQ08], of foliated surfaces, the theorems of which (if not the proof) are statements
in ACF0, so by model completeness they're actually ACF0 theorems, and can be taken to
be the Pi in (9). The tautologies, Tj , of op. cit. while taking (10) as their starting point
are much more sophisticated. In particular they are false if the �bre over the generic point
of S does not have canonical, II.3, foliation singularities, and require careful analysis, (71)-
(84), of how invariant curves meet such singularities. The precise statement is the re�ned
tautological inequality, IV.2, and it is delicate. For example in characteristic zero (14) for all m
is equivalent to being rational, but not in characteristic p, III.4, and one could reasonably call
such curves pseudo-rational. Now the re�ned tautological inequality gives I.4.(a)-I.5.(a) more
or less gratis when the foliation is of general type, i.e. κ(F ) = 2, but it does not imply that
pseudo-rational curves invariant by such foliations aren't Zariski dense in mixed characteristic.
Indeed it strongly exploits the di�erence between rational and pseudo rational- or genus g and
pseudo genus g for that matter- and it may well be the case that there is a foliation of general
type in mixed characteristic with Zariski dense pseudo-rational curves, for which, by the same
reasoning as above, (15) would have to be false for all n but KF would be big. In any case since
we're also supposing that X has general type in the usual sense, the only other possibility is
that F is one of the natural foliations on a bi-disc quotient. The case of which where κ(F ) ≥ 0
is a product of curves, and we have the pleasing fact that foliated Mori theory hits the logical
obstruction of I.6 on the nose, i.e.

(16) F has only �nitely many invariant rational curves

is always a true statement for complex surfaces of general type, but

I.7. Corollary. Let F be a foliation on a complex surface of general type, then T.F.A.E.

(a) The foliated Kodaira dimension satis�es κ(F ) ≥ 0.
(b) Foliated abundance holds, i.e. ν(F ) = κ(F ).
(c) The (true) statement (16) is an essentially ACF0 theorem.

As such it remains to indicate the proof of I.5.(b), and, in particular the distinct behaviour
of the invariant rational curves according to whether p is split or inert, which are, in fact,
equivalent to the foliation being p-closed, II.5, or not. In this context, it's relevant to observe
that the way [McQ98] would prove (13) is not Liouville's theorem but Baum-Bott residue
theory which gives over C that the degree of the canonical, KG , of the other foliation along our
curve is zero, and the rest is easy. Now a particular feature of the natural foliations on bi-disc
quotients is that once they're p-closed, they're p-adically integrable, and with a bit of work,
III.8 for rational or elliptic curves missing the cusps (whence a p-adic proof of (13) provided
one chooses p correctly, i.e. split) and V.2 in general, one can push the Baum-Bott residue
theory, respectively the proof of [McQ98], through when there is p-adic intergability. In the
inert case the locus of vanishing of the p-curvature is no longer the whole surface but a divisor
cut out by the non-classical modular form of I.5.(b), and if one looks at this divisor carefully
enough, III.6, one �nds the rational curves (8).

Before concluding this introduction it is appropriate to make

I.8. Scholion. Complex hyperbolicity as an essentially ACF0 theorem We know this
can't be true by I.6, but remarkably, for surfaces in the Bogomolov class, (13) with entire
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instead of rational is almost the only problem. More precisely for pointed Riemann surfaces
there is a tautology of the from (10) but for intersection numbers and Euler characteristics
understood in the sense of Nevanlinna theory, leading to a re�ned tautological inequality (which
was actually the motivation for IV.2) and one can ask for an essentially ACF0 proof of (2),
exactly as in (9) but with the implied tautologies, intersection numbers, etc. understood in the
Nevanlinna sense. In particular, the original motivation of the classi�cation theorem was (with
a view to generalisation) to �nd an essentially ACF0 proof of [McQ98]. This is discussed in
the introduction to [McQ08] at length, so we won't go on about it here, but the basic irony of
the proof of the classi�cation theorem is (modulo soft theorems, Gromov's sense, of Brunella,
[Bru03], and Duval, [Duv08]) is that it's essentially a corollary of what it was instead to give
an essentially ACF0 proof of, i.e. the main theorem on algebraic degeneracy of entire curves
invariant by a foliation of [McQ98]. As such, the proof of the classi�cation is certainly not
ACF0. Nevertheless it's statements are, so, as we've said, by model completeness they are
ACF0 theorems. Now argue as we did before, in the Nevanlinna setting the �rst step, cf. (12),
is still essentially ACF0, and we reduce to analytic curves invariant by foliations. Again, the
F of general type case is gratis, while products of curves is easy, and again essentially ACF0,
so we're left with the class of surfaces in I.6.

At this point op. cit tells us that we're wasting our time, and we should look carefully at what
is involved. To �x ideas, say our goal is no more than [McQ98], i.e. there is no Zariski dense, F
invariant entire curve, f : C → X ′, for X ′ a smooth surface in the Bogomolov class which may
be no better than a modi�cation of a bi-disc quotient X. The cusps, E, are also F invariant,
and no invariant curve can meet them, so we certainly have f : C → X\E. There is, however, a
possible issue with quotient singularities, i.e. we may only have an entire curve on the moduli of
the Deligne-Mumford champ of (13) and not an entire curve in the orbifold/Deligne-Mumford
sense in which the curves of (13) are rational. As such one cannot a priori use Liouville,
and indeed there can be rational and elliptic curves on X\E if this is not understood in the
orbifold sense. Nor, even supposing that it can be done when there are quotient singularities,
is it necessarily appropriate to try and force a Liouville style argument, since if we want to
understand the logical structure then less is best. Consequently, Baum-Bott residue theory
still looks to be the way to go. Again this is absolutely trivial for bi-disc quotients in a way
consistent with the intuition that (13) should be trivial, and one has that the Nevanlinna
degree of the canonical, KG , of the other foliation is zero for free, with the subsequent steps
being trivial given the re�ned tautological inequality which absorbs the problem of the quotient
singularities. This line of reasoning has a number of further pleasing features, viz:

(a) Large chunks of Baum-Bott theory, cf. (55), (59), and (60), are not only valid in the Zariski
topology, but have perfect sense in ACF0.

(b) Without further hypothesis, however, in characteristic p it only calculates Fp valued inter-
section numbers of invariant bundles with invariant curves, and, as it happens, this is exactly
how one gets the lower bound in (8).

(c) Under the p-adic integrability condition, not only does it work, III.8, but the resulting
proof, V.2, it a�ords of the boundedness of rational or elliptic curves at such primes is formally
almost identical to what we've said above about the entire curve case over C, and this is how it
should be, i.e. in principle there's very little that one can say about Zariski dense entire curves
that isn't also true for a Zariski dense set of rational or elliptic curves in mixed characteristic.
Baum-Bott is, however, a statement which admits exactly this distinction, and it nails the
logical problem posed by the rational curves of (8) on the nose, i.e. forget about everything
one already knows, then, in se, the implication Baum-Bott & (8) (in fact just any lower bound
going to ∞ for rational or elliptic curves) ⇒ F is not p-adically integral for p � 0 holds.

(d) It's in excellent agreement with Miyaoka's proof, [Miy08], of I.3. In general terms, this
consists of �xing the curve and making �nitely many ACF0 statements about it and the surface.
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Amongst these statements, the only one that doesn't have the form (9) is closure of certain
global logarithmic 1-forms whose poles are allowed to depend on the curve. In the general case
I.1.(a)- I.2.(a) this strategy may well fail, but for F -invariant curves on bi-disc quotients, it
should go through in the presence of p-adic integrability.

Despite these highly attractive properties, it does not follow from I.6 or even (8) that there is
a logical necessity for Baum-Bott theory in proving the Green-Gri�ths conjecture, [McQ98],
for surfaces in the Bogomolov class. It is, however, an absolute logical necessity that some non
ACF0 statements with very similar properties to (c) must intervene. The present scholion is,
however, a best possible scenario wherein model completeness in ACF0 gets us down to the
bi-disc case. The practice is, currently, much worse, i.e. the classi�cation theorem, [McQ08],
and whence all the results of the present article depend on the general Baum-Bott �residue
estimate� of [McQ98], or some appropriate variant thereof, [Bru99]. This is much trickier than
the (trivial over C) bi-disc case, and nailing a similar �residue estimate�, [McQ12], for foliated
3-folds (whence, inter alia, Green-Gri�ths for surfaces with 13c2

1 > 9c2) can reasonably be
described as di�cult.

The original motivation for investigating the variation of (1)-(2) in mixed characteristic was an
ingenious (unfortunately, it's current status is we're stuck) idea of Fedor Bogomolov to reduce
the study of the moduli of curves on surfaces of general type to the big co-tangent case, and I
would certainly not have ventured into this area had he not prompted it. In questions of logic,
I am always indebted to Ehud Hrushowski, and, in the particular, to his very informative reply
to my query- with an eye to getting more out of (8)- as to whether there was a better way
to formulate I.6 rather than my ad hoc de�nition (9). At the risk of exposing my ignorance
in such matters, with any misunderstanding evidently being mine, his reply may usefully be
noted: there is an elaboration of a language about the �generic curve� in course, but, for the
moment, it couldn't be considered usable. Finally the in�uences of Nick Shepherd-Barron and
Torsten Ekedahl, both in the classi�cation theorem and the present article are legion. I never
met Ekedahl, but Nick has frequently communicated to me many of his insights. Amongst
which, I asked Nick how one proved the �folk theorem� (I had heard a similar thing from Oort)
I.5.(b). He replied that it was Ekedahl who had told him, and Ekedahl had said it was just a
matter of looking at where the p-curvature vanishes, and applying adjunction. As it happens,
it took me a bit of thought to �nd the seemingly not so obvious adjunction, (35), but in terms
of Ekedahl's exact sequence, (48), it's extremely natural, and to the author of the p-closed
condition it would have been wholly obvious. Requiescat in pace.

II. Singularities

By a foliation (by curves) on an algebraic space, or indeed champ, X over a locally Noetherian
base S we'll mean a rank 1 quotient of ΩX/S , i.e. a short exact sequence,

(17) 0 → ΩX/F → ΩX/S → KF .IZ → 0

This de�nition supposes a certain amount of regularity. If we were working with champs (which
won't really be the case) then X should be Deligne-Mumford, otherwise ΩX/S isn't de�ned,
while to write the quotient as KF .IZ , where KF is a bundle and Z the singular locus supposed
of co-dimension at least 2 amounts to supposing that the foliation is Gorenstein, i.e. given
everywhere by a vector �eld non-vanishing in co-dimension 1.

If we further suppose that S is a �eld, k, say, of arbitrary characteristic and X is normal
irreducible, then we can functorially extend the de�nitions of Mori theory. Details may be
found in [McQ08, I.1-I.2] for surface (which is largely our present interest), and [McQ05, I.6-7],
or [MP13, I.iii,III.i] in general. In particular it transpires that log-canonical and Gorenstein is
equivalent to non-nilpotence (at closed points of Z of (17)) in the sense of the following
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II.1. Revision. cf. [Mar81]. We let A be a complete regular local ring containing a coe�cient
�eld, k, supposed algebraically closed. Next let ∂ ∈ m Derk(A). For every n ∈ N we have an
exact sequence,

(18) 0 −→ mn

mn+1
−→ A

mn+1
−→ A

mn
−→ 0 .

We can consider ∂ as a k-linear endomorphism, ∂n, of An = A/mn for each n. Consequently
∂n has a Jordan decomposition ∂S,n ⊕ ∂N,n into a semi-simple and nilpotent part. These are
compatible with the restriction maps An+1 → An, and so on taking limits give a Jordan decom-
position ∂S ⊕ ∂N of ∂.

Observe as an immediate consequence

II.2. Fact. ∂ is semi-simple i� there is a choice of generators xi ∈ m, together with λi ∈ k such
that,

(19) ∂ =
∑

i

λi xi
∂

∂xi
∈ Derk̄(A)

Where it's important to emphasise that semi-simplicity in II.2 is to be understood in all of A,
rather than just modulo m2 since this is its sense in

II.3. Fact. ([MP13, III.i.3]) A foliation in characteristic zero with log-canonical Gorenstein
singularities has canonical singularities i� it has no semi-simple points at which, up to scaling,
the λi of (19) are non-negative integers.

Describing the nilpotent part is worth the trouble. Notice: [∂S , ∂N ] = 0, so given ∂S as above
we just compute a basis for �elds which commute with it. Putting Λ = (λ1, . . . , λn) and Λ · −,
to be the usual inner product, albeit with values in k, these are easily seen to be, cf. [Mar81]

(a) xQ xi
∂

∂xi
, Λ ·Q = 0, Q = (q1, . . . , qn), qj ∈ N ∪ {0}

(b) xQ xi
∂

∂xi
, Λ ·Q = 0, Q = (q1, . . . , qn), qj ∈ N ∪ {0} for j 6= i, qi = −1

(20)

where of course xQ = xq1
1 . . . xqn

n . As such, following [McQ08, II.1.6]

II.4. Corollary. Let ∂ be a non-singular derivation of a complete regular local ring A over an
algebraically closed �eld k of characteristic p > 0 isomorphic to its residue �eld then there is a
choice of coordinates x, y1, . . . , yn in the maximal ideal such that up to multiplication by a unit,

(21) ∂ =
∂

∂x
+

n∑
i=1

xp−1 fi(xp, y)
∂

∂yi
.

Proof. We can certainly multiply ∂ by a unit, in such a way that for some x ∈ m, ∂x = 1.
Now consider ∂̃ = x∂, and its Jordan decomposition ∂S ⊕ ∂N . Trivially ∂S = x ∂

∂x , in some
coordinate system x, y1, . . . , yn. Observe that in our formulae for the nilpotent part we must

have an exponent of x in the monomial (xQ xi) at least 1, since x | ∂̃, whence the claim. �

This is best possible, and so could reasonably be called the characteristic p Frobenius theorem.
One can only do better if,

II.5. De�nition. [Eke87] The foliation is p-closed if for some, and in fact any, local generator
∂ of the foliation the �elds ∂p and ∂ are parallel.

The special coordinates of the divertimento can be used to `compute' the p curvature, to wit:
8



II.6. Fact. The ideal where ∂p∧∂ vanishes is exactly the ideal cut out by the fi(xp, y)'s whence
(albeit this doesn't require special coordinates) it is invariant.

Proof. We have ∂p(x) = 0, while

(22) ∂p(yi) = ∂(p−1)xp−1fi =
∑

a+b=p−1

∂b

a!(b!)2
(fi)

and (fi) is manifestly an invariant ideal. �

As such, the p-curvature can only vanish if all the fi = 0, so

II.7. Fact. The following are equivalent for a smoothly foliated connected algebraic space or
indeed champ,

(I) The foliation is p closed.

(II) There exists a closed point ξ such that in the complete local ring ÔX,ξ there are coordinates
(x, y1, . . . , yn), and the foliation has the form,

(23) (x, y1, . . . , yn) 7→ (xp, y1, . . . , yn)

(III) For every point ξ there are coordinates in the complete local ring ÔX,ξ such that the
foliation has the form,

(24) (x, y1, . . . , yn) 7→ (xp, y1, . . . , yn)

Consequently, even if Z is empty, it's far from true that curves invariant by a foliation by curves
have to be smooth, and this is the case even if the foliation isn't p closed, For example,

(25) ∂ =
∂

∂x
+ xp−1(y2 + xp)

∂

∂y

then the invariant curve y2 +xp certainly isn't smooth, even though the foliation isn't p closed,
and, indeed, by II.4 the singular locus of the set where the p-curvature vanishes is essentially
arbitrary. It's therefore perhaps a little surprising that there are natural criteria whereby the
locus of vanishing of the p-curvature is extremely well behaved at the singular points, e.g.

II.8. Fact. Suppose A of II.4 has dimension 2, and that ∂ has 2-invariant smooth transverse
branches while being semi-simple modulo m2 with the ratio, λ0, of the eigenvalues not belonging
to Fp, then there is a choice of formal coordinates such that, up to rescaling by a constant,

(26) ∂ = x
∂

∂x
+ λ(xp, yp)y

∂

∂y
, λ(0, 0) = λ0

so, in particular, the ideal de�ned by ∂p ∧ ∂ is just (xy).

Proof. Just apply (20)- by hypothesis we don't have to worry about (b). �

III. Rational curves on bi-disc quotients

Now let us apply these considerations to �nd rational curves on bi-disc quotients, X, which
are not (a precision that will subsequently be eschewed) �nite quotients at a set of positive
characteristics of positive (in fact about half) density. We begin with the smooth case, so in
characteristic 0, ΩX splits as

(27) ΩX = KF

∐
KG

for 2-integrable foliations F , and G . By [ESBT, 6.2.(iii)] there is a set of primes of positive
density where F isn't p-closed (and, as it happens, at the same primes G isn't closed either,
III.7, but we don't need this for the moment). We work over the reduction modulo p at such a
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prime, with say base change to the algebraic closure k for convenience, and, of course p � 0 to
guarantee not just good reduction, but also the splitting (27). The essential fact that we will
use in analysing the locus where the p-curvature vanishes is

III.1. Revision. ([SB95] or [McQ08, IV.5.4]) In characteristic zero KF and KG are nef. line
bundles of Kodaira dimension −∞, so in particular

(28) K2
F = K2

G = 0, 2KF ·KG = c2 > 0, KX , is ample.

So that before getting underway let's make

III.2. Warning. Over our current choice of k, KF ⊗ k and KG ⊗ k will be big, whence very
far from nef., although (manifestly) (28) will continue to hold.

The �rst step is to write the locus of vanishing of the p-curvature (of F ) as a sum of irreducible
divisors

(29) P := pKF −KG =
∑

i

niCi

so that by II.6 we know the Cartier divisors OX(−niCi) are F -invariant. We wish, however,
to know that the Ci themselves are F -invariant. This will follow if we know that p 6 |ni, which
follows a fortiori from

III.3. Fact. Let Np be the maximum of the ni's in (29) then lim supp p−1Np = 0.

Proof. Suppose to the contrary that lim supp p−1Np = ε > 0, then for some in�nite set of
primes p, there is a curve Dp in characteristic p such that

(30) KF − εDp ≥ 0 ∈ NE1(X ⊗ k)⊗Q

Consequently, the degrees of the Dp are bounded independently of p, so they must belong to
�nitely many components of the Hilbert-scheme. Sub-sequencing as necessary, we can suppose
that this component is the same for all p, and whence it's non-empty in characteristic zero. As
such (30) may be supposed to hold for Dp = D0 independent of p from which KF − εD0 is
pseudo-e�ective in characteristic zero. However, cf. [McQ08, IV.5.7], by Zariski decomposition
and Hodge-index in characteristic zero this forces KF to be numerically e�ective (whence
e�ective since q(X) = 0) in characteristic zero contradicting III.1. �

As such for νi : C̃i → Ci the normalisations of the curves in (29); −χi = 2gi−2 their geometric
Euler characteristics; and ri the rami�cation of the νi we obtain

(31) KF · Ci = −χi − ri

Again, before proceeding, let us make another

III.4. Warning. It is immediate, from (28-29) that there are curves with KF · Ci < 0 and a
moments thought even shows that the tangent sheaf of Ci is even a bundle isomorphic to K∨

F |Ci .
This does not, however, imply that the Ci are rational, since tangent vectors do not necessarily
lift to the normalisation in positive characteristic. A perfectly good example is provided by (25),

which has the further curious property that the derivative ν ′i : C̃i → P1 := P(Ω1
X), and indeed

all subsequent derivatives, ν
(m)
i , to all higher jet spaces, Pm, has exactly the same rami�cation

as νi. In particular if Lm were the tautological bundle on such spaces, then

(32) Lm ·ν(m)
i

C̃i (here = KF · Ci) < 0, for all m

which for many proof theory purposes is just as interesting as Ci rational. Nevertheless, in
characteristic p, the pseudo rationality condition (32) is not equivalent to rationality.

10



Complementary to (31) we have the tangency divisor of Ci with G , i.e. the composition of

(33) OCi(−Ci) → ΩX |Ci → KG |Ci

which is necessarily non-zero since k is algebraically closed- albeit perfect, which is natural
here, since everything is arithmetic would do. Consequently if ti is its degree then

(34) ti = (KG + Ci) · Ci ≥ 0

Putting (31) and (34) together, we therefore obtain

(35) (pKF + KG ) · Ci = −pχi − C2
i + (ti − pri)

Now observe that by (28) (pKF + KG ) · P = 0, so there is at least one curve such that (34) is
not positive, and we assert

III.5. Claim. If, for Ci in the support of P , (pKF + KG ) · Ci ≤ 0 then Ci is rational.

Proof. In the �rst place, we show C2
i < 0, since, otherwise P · Ci ≥ 0, and whence

(36) KF · Ci ≥ (p + 1)−1KX · Ci > 0

so that the left hand side of (35) is at least 2p(p + 1)−1KX · Ci > 0, which is nonsense. Now
suppose that Ci isn't rational, i.e. χi ≤ 0 then we must have

(37) pri > ti

To exclude this follows a fortiori if it doesn't happen locally at any branch through a singular
point of Ci, so to this end we take a generator, ∂, of F in the special coordinates, and notation,
of II.4 with A the completion of OX in the said singularity, so that our branch is de�ned by a
prime factor g(xp, y) of f(xp, y) being equal to zero, while the local contribution to the tangency
divisor of the branch is the order of of gy(xp, y) along it. Now consider the normalisations,
ν : ∆ → ∆2, ν ′ : ∆ → ∆2 of the irreducible plane curves g(xp, y) = 0, and g(z, y) = 0 where
∆ := Spfk[[t]]. These �t into a diagram

(38)

∆
t7→(•tm,•tn)−−−−−−−−→ ∆2

t7→•td
y y(x,y) 7→(xp,y)

∆
s 7→(•sm′

,•sn′ )−−−−−−−−−→ ∆2

where (m,n), respectively (m′, n′) are relatively prime positive integers, and • denotes some
unit. As such, we obtain

(39) pm = dm′, n = dn′

and there are two cases to consider. In the �rst place suppose that p|d, then m = m′, n = pn′,
and the rami�cation is at most m − 1. If, however, we write g(xp, y) as a power series in
monomials xayb, then we must have am + bn ≥ mn, so the tangency divisor is at least

(40) (m− 1)n ≥ p(m− 1)

which contradicts (36). In the other case, m′ = pm, n = n′, so the rami�cation is at most n−1,
while if we write g(z, y) as a power series in monomials zayb, then we must have am′+bn′ ≥ m′n′,
and whence the tangency is at least

(41) n(mp− 1)

From which (36) implies n− 1 > n(m− 1/p), so m = 1, and the absurdity that the branch is
unrami�ed. �
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It therefore remains to consider the general bi-disc quotient. In characteristic zero, after re-
solving the cusps, these have at worst isolated quotient singularities. In particular they are
smooth champs in a particularly simple way, i.e. they admit a �nite étale covering by a space,
and since our interest is to �nd rational curves on such champs, there is absolutely no loss
of generality in supposing that there are no quotient singularities. As such, we can work on
a smooth surface X with simple normal crossing boundary E, each connected component of
which is a polygon of rational curves, and whence (27) generalises to a splitting

(42) ΩX(log E) = KF

∐
KG

Remaining in characteristic zero for the moment, the foliation singularities, whether of F or
G , are identical with the singularities of E (which, b.t.w., is invariant by both foliations) and
can be described [McQ08, IV.2.2] in suitable formal coordinates by a generator

(43) ∂ = x
∂

∂x
+ λy

∂

∂y

where λ is a real quadratic irrationality, and xy = 0 is the local equation for E. Consequently
if we work modulo su�ciently large primes such that X, E have good reduction; (42) continues
to hold; and (Fp(λ) : Fp) = 2, then II.8 applies. In particular, therefore, if we understand the
locus of vanishing of the p-curvature logarithmically, then it does not contain any component of
E, i.e. (29) holds with no Ci in the support of the cusps. On the other hand, [McQ08, IV.2.2],
KF ·E′ = KG ·E′ = 0 for every E′ in the support of E, so P is disjoint from E, while KX + E
descends to an ample divisor on the contraction of the cusps, whence everything is exactly as
in the smooth case, and we deduce

III.6. Proposition. Let (X, E) be a model over the integers of a smooth algebraic champ ob-
tained by resolving the cusps (if any) of a bi-disc quotient no �nite étale cover of which is a
product of curves, then for F either of the natural foliations arising from the bi-disc structure
there is a set, P, of primes of positive density such that for k an algebraically closed �eld of
characteristic p ∈ P there is a F -invariant rational curve fp : P1

k → X\E, and constants c, C,
depending on X, H, where the latter is an ample divisor, such that

(44) pc ≤ H ·fp P1
k ≤ pC

Proof. Suppose �rst that lim infp∈P H ·fp P1
k is �nite, then there is an irreducible component

of the Hilbert scheme (say of a �nite projective étale cover of X to avoid some technicalities)
which contains a rational 1-cycle missing E for in�nitely many primes, whence a non-trivial
rational curve fC : P1

C → XC\E, which is nonsense. On the other hand, cf. (55) & (60),
the residue theory of Baum-Bott, [BB72], is valid in the De-Rham co-homology over k, and f
misses E, so KG ·fp P1

k vanishes modulo p, while KF ·fp P1
k is at most −2. Consequently, since

KF + KG is ample on contracting the cusps, we must have KG ·fp P1
k = pd, d ∈ N. Supposing,

therefore, p � 0 to avoid bad reduction, we can take c in (44) anything such that H − cKG is
ample, while by (29), C is at worst KF ·H. �

Before proceeding to analyse the complimentary primes let us make

III.7. Remark. If some étale cover of our bi-disc quotient were a product of curves, then, of
course, the foliation is p-closed for all p and the divisor (29) never exists, nor, are there any
rational curves. Similarly, in the hypothesis of III.6, we can- [ESBT, remark, pg.23] when there
are no cusps, and [McQ08, II.2.3] otherwise- take, for p � 0, the complement, P ′, to P to
be primes where both F and G are p-closed. The decomposition P

∐
P ′ of su�ciently large

primes can be naturally identi�ed with those, P, which are inert, respectively, P ′, split in
some real quadratic extension (depending naturally on X) K/Q. It's both curious, and typical
of this sort of problem, that the relation of K to the geometry is more obvious when there are
singularities, i.e. in the notation of (43), it's just Q(λ).
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As to what happens at P ′ the following is surprisingly, cf. III.9, precise

III.8. Proposition. Let (X, E) be as in III.6 with (up to excluding a �nite set of primes of bad
reduction) P ′ the set of primes complimentary to P then for f : C/k → X any separable map
from a smooth curve over k of characteristic p ∈ P ′ which doesn't factor through E there is a
m = m(f) ∈ N ∪ {0} such that

(45) (KX + E) ·f C ≤ −(1 + pm)χ(C\f−1(E))

where for D a divisor on C, the Euler characteristic χ(C\D) is χ(C) minus the number,
Dred of points in D counted without multiplicity. In particular, therefore, for any such curve,
χ(C\f−1(E)) < 0, and over k, X\E is �algebraically hyperbolic�.

Proof. By hypothesis we have a non-trivial map

(46) f∗ΩX(log E) → ωC(log f−1(E))

and wild rami�cation is a help rather than a hindrance, i.e. the degree of the right hand side in
(46) is at most −χ(C\f−1(E)). Consequently if both the induced maps from f∗KG and f∗KF

arising from combining (42) with (46) are non-trivial, then we get (45) with m = 0, so without
loss of generality f is F , but not G , invariant.

This much is characteristic independent, but by the de�nition of P ′, and [ESBT, remark.(ii),
pg.23] in the smooth case, respectively II.8 should there be cusps, both our natural foliations are
p-integrable. Even better, [ESBT, remark.(iii), pg.23], they are actually p-adically integrable,
so in particular F is a height m-foliation in the sense of [Eke87] for all m ∈ N, i.e. one can
replace p by pm in II.7. This means that there are compatible factorisations,

(47) X
ρm−−−−→ Ym

σm−−−−→ X(m)

of the mth powers, Fm
X , of the geometric Frobenius together with natural exact sequences

(48) 0 → Kpm

F = ρ∗mσ∗mK
(m)
F → ρ∗mΩYm(log Em) → ΩX(log E) → KF → 0

where Em is the divisor induced by the cusps on Ym which although it will be singular if the
cusps are non-empty has the structure of a (wild) Deligne-Mumford champ which we suppose
in de�ning ρ∗mΩYm(log Em). Furthermore, the height (m + 1)-structure de�nes a section of the
left hand side of (48) so, in the sense of smooth champs should there be cusps, we again have
a splitting

(49) ΩYm(log Em) = σ∗mK
(m)
F

∐
KGm , ρ∗mKGm = KG

Now suppose inductively (we already have the case m = 1) that ρmf admits a factorisation

(50)

C −−−−→
f

X

F m
C

y yρm

C(m) fm−−−−→ Ym

where FC is Frobenius, and fm is separable. If, however, this were to fail for ρm+1f , then the
composition

(51) f∗mKGm → f∗mΩYm(log Em) → ωC(m)(log f−1
m (Em))

implied by (49) and (46) is non-trivial, so by (49)-(50),

(52) KG ·f C ≤ −pmχ(C\f−1(E))

and, by the de�nition of F -invariance, this already holds with m = 0 for KF whence (45).

As such, there remains the possibility that (50) holds for all m. Here, if it were true, that f
could be lifted to characteristic zero, then it would follow from the residue theory of Baum-Bott,
[BB72], that the degree of KG along f would be zero. Now, while f may well fail to be liftable,
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it's always �liftable in co-homology�, and a p-adic variant of [BB72] works. More precisely let W
be the Witt vectors over k, with K its quotient �eld, and Hrig the rigid co-homology of Monsky-
Washnitzer, [LS07], which is, canonically, isomorphic to the algebraic De-Rham co-homology
HDR with values in K for any proper k-variety admitting a lifting over W . By hypothesis we
already have a lifting over W of X, while every curve is liftable by [Gro63, Exposé III, 7.4], so
working over W , and denoting the special �bre by the subscript k, we have maps

(53) H2
DR(XW ) ∼−→ H2

rig(Xk)
f∗k,rig−−−→ H2

rig(Ck)
∼−→ H2

DR(CW )

Now the rigid co-homology of an a�ne is the De-Rham cohomology of the weak completion (i.e.
some p-adic convergence condition which here is always satis�ed) so we can calculate f∗k,rig via

the local global spectral sequence of any a�ne covering U =
∐

a Uα → X, and a choice of local
liftings of fα of fk. On the other hand, we have the Hodge spectral sequence for HDR(X), so, by
the aforesaid local considerations, for the usual degree reasons, f∗k,rig is zero on E2,0

HodgeH
2
DR(X),

and (quite generally for any curve on any surface) we get a map

(54) H1(XW ,Ω1
X/W )⊗K

f∗k,rig−−−→ H1(CW ,Ω1
C/W )

Now consider �rst the case where there are no cusps, then d : Ω1
X/W → Ω2

X/W restricted to KG

yields a �leafwise� connection,

(55) ∇ : KG → KG ⊗KF

so the image in H1(XW ,KF ) of the chern class, c1(KG ) ∈ H1(XW ,Ω1
X/W ) is zero, or equiva-

lently, it belongs to H1(XW ,KG ). Again, this much is quite general, i.e. it is independent of
whether p belongs to P or P ′, and the co-cycle in H1(XW ,KG ) a�ording c1(KG ) can be taken
in the Zariski topology, while (still independent of p) in terms of the covering spectral sequence

Ei,j
cov, if gαβ are the transition functions for local generators ωα of KG then

(56) c1(KG ) =
dgαβ

gαβ
= ναβ + τα − τβ ∈ Ȟ1(U,H1

DR), ναβ ∈ H0(Uαβ ,KG ), τα ∈ H0(Uα,Ω1
X)

where dωα = ωα ∧ τα, and which (by the functoriality, a.k.a. main theorem, of rigid co-
homology) on choosing local liftings fα of fk, restricts to

(57) f∗k,rigc1(KG ) = f∗α
dgαβ

gαβ
= f∗β

dgαβ

gαβ
∈ E(1,1)

cov = H1(CW ,Ω1
C/W )⊗K

for the covering f−1(U) → C/k. Now, by II.7, albeit with pm instead of p, we can (depending
on m) �nd an étale covering U → X such that the ωα are closed modulo pm, or, equivalently
the τα vanish modulo pm. Similarly, since (50) holds for all m, we can choose the local liftings
fα such that the restriction of any local section of KG vanishes modulo pm, so by (56), the
restriction (57) must be zero modulo pm. Consequently, since this must hold for all m,

(58) KX ·f C = KF ·f C ≤ −χ(C)

while KX is ample, so χ(C) < 0, and, (45) holds a fortiori with m = 0. To understand the case
with cusps, E, in the notation of (17), and again quite generally, exterior derivation always
yields a leafwise connection

(59) ∇ : ΩX/F → ΩX/F ⊗KF

which is bad since we'd have to take the τα of (56) to be KF valued rather than honest 1-forms.
If, however, one has canonical singularities, without nilpotent structure, and an invariant simple
normal crossing divisor E with 2 branches through each singularity, then it's always true that
one has a connection

(60) ∇ : ΩX/F (E) → ΩX/F ⊗KF IZ
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while, in our immediate context, KG
∼−→ ΩX/F (E), so (56) holds with the τα as stated, and

better ναβ ∈ H0(Uαβ ,ΩX/F ). Plainly, everything works as before, except that there could be a
residue about Z, which in the context of the usual Baum-Bott theory over C is already zero in
the presence of (60). Here, however, the pull back, (57), in rigid co-homology is more fastidious,
and there could be a residue modulo pm for some m, so we still need to know that KG is locally
generated by forms ωα which are closed modulo pm for every m. Should m = 1, then, [McQ08,
II.1.3], the Jordan decomposition of II.1 and p-closure combine to give what we need, i.e. in
the notation of II.8, albeit with λ0 ∈ Fp, the requisite local generator of KG is

(61)
dy

y
− λ

dx

x
mod (p); λ ∈ Zp

and what we need in general is that there is a semi-simple local generator of F modulo pm for
every m. Proceeding by induction on m, with m = 1 just being a re-statement of (61), and
taking a generator normalised by ∂(x) = 0 for x = 0 a local branch of E, linear algebra reveals
that if ∂ is semi-simple modulo pm, then we still have a Jordan decomposition ∂S +∂N modulo
pm+1, with the nilpotent part exactly as in (20).(a), i.e. for xy = 0 the local equation of E,

(62) ∂N =
∑

i+jλ=0 (pm+1)

(εijx
iyj)y

∂

∂y
, εij = 0 (pm)

Now to obtain a local generator, ∂m, of the foliation at the corresponding singular point of the
resulting foliation on Ym of (47) from ∂m−1 one applies the di�erence operator,

(63) δ(∂m−1) := p−1(∂p
m−1 − ∂m−1)

by �rst working modulo p2, then reducing modulo p. Better still the complete local ring of Ym

is easily expressed in the Jordan coordinates, i.e.

(64) k[[xiyj ]], i + jλ = 0 (pm)

and we deduce that the Jordan decomposition of ∂m is

(65) δm(∂S) + p−m∂N

Consequently, [McQ08, II.1.3] applies again to deduce that ∂N = 0 (pm+1), and whence

(66) (KX + E) ·f C = KF ·f C ≤ −χ(C\f−1(E))

which completes the proof since KX + E is ample on contracting E, so, χ(C\f−1(E)) < 0. �

Having achieved our goal let us observe that III.8 is optimal

III.9.Remark. Consider �rst the case where X = X1×X2 is a product of smooth geometrically
irreducible hyperbolic curves, and everything is de�ned over Fp to avoid some technicalities.
Then for any map f : C/Fp → X from another smooth geometrically irreducible curve, if both
projections, fi, are separable, then by Riemann-Hurwitz we get (45) with m = 0. The condition
of III.8, however, is only that f is separable, so there's nothing to stop us replacing f = f1× f2

by gm := f1 × Fmf2 for as large a multiple, Fm, of Frobenius as we like. As such KX ·gm C
grows linearly in pm, while χ(C) is constant, so the appearance of pm in (45) is unavoidable and
separable curves of bounded genus on X are not bounded in moduli. Similarly, if one toys with
the examples in [ACLG12], exactly the same mechanism should yield examples of products of
curves where

(67) KX ·fi
Ci ≥ −(1− ε)(1 + pm)χ(Ci)

for in�nitely many separable curves fi : Ci → X. As such, if, for any bi-disc quotient, X,
be it a product of curves or not, were we to de�ne PX , P ′

X as primes where the natural
foliations aren't, respectively are, p-closed then III.6, (which, III.7, is void for products of
curves) and III.8 (just apply Riemann-Hurwitz and separable/inseparable factorisation) hold
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exactly as stated. In particular, (45) is in no way the result of non-classical behaviour of bi-disc
quotients at p ∈ P ′

X - indeed the overwhelming evidence suggests that one ought to have p-adic
uniformisation at such primes, while from the proof we see that the mechanism giving rise to
the factor pm in op. cit. is exactly the same as that for products of curves. Similarly, to see
that the factor pm is necessary in (45) one can exploit, at least when there are no cusps, that
the canonical model of Ym occurring in (47) behaves, [Eke88], exactly as in characteristic zero.
Speci�cally, the 5-canonical map is very ample, while Ym has exactly the same chern numbers
as X, so there is a very ample bundle H = 5KYm whose generic member is a smooth curve
Cm ↪→ Ym with χ(Cm) independent of m. The pull-back, ρ∗mCm, is, generically, an irreducible
curve C ′ whose normalisation, f : C → C ′, satis�es (50). As such the degree of f grows like
pm, while χ(C) remains bounded. Again, however, in all likelihood, the examples in [ACLG12]
can be tweaked to give to give the lower bound (67) on the nose, i.e. ε = 0 up to the addition
of a constant o(pm).

IV. Refined tautology

Again, let X be an algebraic space or Deligne-Mumford champ over a locally Noetherian base
S. For Spec(k) ↪→ S a closed (of any characteristic) point, and C/k a proper smooth curve (or
indeed proper 1 dimensional smooth Deligne-Mumford champ), we consider a separable map
f : C → X. As such if P := P(Ω1

X/S), then by base change P(ΩX/k) = P ⊗S k, to which, by the

de�nition of separability, there is a derived curve, f ′ : C → P(ΩX/k), admitting the following

IV.1. Tautology. Let L be the tautological bundle on P , and χC = 2 − 2g(C) the geometric
Euler-characteristic of the curve, then

(68) L ·f ′ C = −χC − Ramf ≤ −χC

In the case that f : C → X is invariant by a foliation by curves F , with X/S smooth to �x
ideas, this can, in the notation of (17), be re-written as follows: outside of Z, the foliation de�nes

a section of P(ΩX/S) → X, whose closure over Z is the blow up π : X̃ → X in Z, including
any implied nilpotent structure. As such there is an exceptional divisor E, L | eX= π∗KF (−E),
and, provided that f doesn't factor through Z, the intersection E ·f ′ C can be identi�ed with
the Segre class sZ(f), so the �rst part of the tautology (68) becomes,

(69) KF ·f C = −χC − Ramf + sZ(f)

We'd like to re�ne this by �removing� the Segre class term. This can be done for S of �nite
type over Z, and (X, F ) → S a family of foliations by curves with canonical singularities over
each generic point of S- otherwise it's false, but we don't need that. The precise statement is,

IV.2. Fact. Let S/Z be of �nite type, with (X, F ) → S a family of foliations by curves on a
proper (over S) Deligne-Mumford champ with canonical Q-Gorenstein singularities over each
generic point of S, then for every ε > 0 there is a closed, nowhere dense, sub-champ Zε of X
such that every curve f : C/k → X over every closed point Spec(k) ↪→ S invariant by F ⊗S k
which doesn't factor through Zε satis�es,

(70) KF ·f C ≤ −χC + εH ·f C

where H is a line bundle on the moduli of X which is big, relative to S, over every generic
point of the same.

This is stated in [McQ05] V.6.1 for S a �eld of characteristic zero, wherein the situation even
involves invariant discs, which don't have so much sense in mixed characteristic. The proof
though, which is all of op. cit. �V, continues to have perfect sense, and works in the generality
stated. With respect to the immediate interests of this article, we only need the case of X/S a
smooth geometrically connected family of projective surfaces, and since the theorem is stable
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under base change and throwing away nowhere dense closed sets (precisions which may well be
subsequently eschewed) we can further suppose that each singularity is a section. Plainly the
di�culty is to estimate sZ(f). This is, however, subordinate to a local question: how does a local
invariant curve meet Z, so we can suppose everything complete in some connected component
of Z. Now, as it happens, the pure characteristic 0 case isn't much easier than that of mixed
characteristic. Nevertheless, the latter is a little bit more subtle, so we con�ne ourselves to it,
while supposing, for ease of exposition, that S is an open subset of the spectrum of the ring
of integers of a number �eld, K. In particular, after appropriate localisation and without loss
of generality, we can suppose that the completion in Z is an a�noid Spf(B) with trace S on
which the foliation is de�ned by an everywhere singular, but non-vanishing in co-dimension 1,
vector �eld ∂.

To �x ideas, let's begin with the easy case, i.e. a so called saddle node over K, equivalently
the semi-simple part (over K) has only 1 non-zero eigenvalue. As such, over K, one can re�ne

(20) to �nd formal coordinates x, y in B{K} (where {}̇ is formal localisation, which, [McQ02],
is not to be confused with localisation) such that

(71) ∂ = x
∂

∂x
+

yr+1

1 + νyr

∂

∂y
, ν ∈ K, r ∈ N

Now, while there is no comparably simple formula in all of B, observe that IV.2 is stable
under blowing up in the singularities, which we can suppose done a priori so we have an
exceptional divisor E ⊃ Z which, without loss of generality, in (71) is the plane y = 0. Similarly,
straightforward linear algebra shows that the plane x = 0 is a well de�ned F -invariant formal
sub-scheme in all of B, so over B we can suppose that our generator has the form

(72) ∂ = x
∂

∂x
+ yr+1b(y, x)

∂

∂y
, b(0, 0) = 1

With this is mind, we next consider what happens at s ∈ S of characteristic p, i.e. reduce
modulo k(s), and complete Z⊗k(s) to get a new local ring As in which II.1 and (20) are valid.
Consequently, for a change of coordinates of the form (x, y) 7→ (x, z = yus(x, y)) where us is a
unit in As, we can improve (72) to a Jordan decomposition

(73) ∂ = x
∂

∂x
+ zr+1bs(z, xp)

∂

∂z
, bs(0, 0) = 1, bs ∈ As

Plainly, this depends on s, but it has the manifest advantage that if f = (x(t), z(t)) : ∆s →
Spf(As) is a F -invariant map from the formal disc over k̄(s) then it must be invariant by
both the semi-simple and nilpotent parts. As such if x(t) 6= 0 then, by invariance under the
semi-simple part, ẋ 6= 0 and z = z(tp). Consequently for ord the order of vanishing under f∗

at the closed point of ∆,

(74) sZ(f)loc − Ramf,loc ≤ ord(x)− ord(ẋ) ≤ 1 ≤ 1
p
(E ·f ∆)loc

where the Segre class and intersection number are understood locally in the obvious way. In
particular, for ε given as in IV.2 and p � ε−1 we certainly have the kind of bound that we
require to deduce (70) from (69). To deal with the alternative possibility that x(t) is identically
zero: observe that for any d ∈ N this forces

(75) sZ(f)loc ≤
n + 1

d
sZd

(f)loc

for Zd the subscheme de�ned in all of Spf(B) by the ideal (x, yd) of (72). Now over the generic
point Zd has length d, while the number of sections of a multiple mH of an ample bundle grows
like m2, so throwing away a nowhere dense (dependent on d) Zariski closed subset of X, we
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have the global inequality

(76)
n + 1

d
sZd

(f) � 1√
d
H ·f C

which is again an appropriate bound for d � ε−2.

This reduces us to singularities, Z, whose semi-simple part over the generic point has 2 non-
zero eigenvalues. To avoid some pointless technicalities we can (since it doesn't change KF )
suppose that the singularities over the generic point are reduced in the sense of Seidenberg, i.e.
either the previous case of nodes, or the ratio of the eigenvalues is not in Q>0. The Seidenberg
property is stable under blowing up, so again, for convenience, we can suppose that there is an
exceptional divisor E ⊃ Z, and whence the semi-simple part over K has the form

(77) y
∂

∂y
+ λx

∂

∂x

for y = 0 a local equation for E, and, after base change if necessary, λ ∈ K\Q>0. The �rst
of a couple of additional subtleties is that unlike (72) the invariant branch x = 0 of F which
exists (just apply (20) and the Seidenberg condition) in the completion at the generic point,
may fail to exist in the completion Spf(B) over all of S. More precisely, for d ∈ N some large
integer to be chosen, linear algebra, cf. (20), reveals that the obstruction to �nding a coordinate
hypersurface x = 0 other than the exceptional divisor such that

(78) ∂(x) ∈ (x) + Id+1
Z

occurs at points s ∈ S such that

(79) λ ∈ {1, . . . , d} mod m(s)

Thanks to our Seidenberg hypothesis this only occurs at �nitely many closed points- indeed
their residue characteristics, p, must even satisfy p � d. Such quanti�cation isn't so important
however, since d � ε−2 will be �xed once we have global sections of H⊗m(x, yd) over the generic
point for m of size commensurable to

√
d, so we just discard �bres where (79) could happen.

Now the easy sub-case occurs at s ∈ S where λ isn't in the prime sub-�eld of k(s). By II.8,
Fs cannot be p-closed, while, conversely, the locus where ∂p ∧ ∂ is zero contains all invariant
curves, so our invariant curve must be one of the coordinate hypersurfaces in (26). One of these
is the exceptional divisor, so we can ignore this possibility, while the other agrees with x = 0
of (78) to order d, and in either case the maximum possible value of the local contribution

(80) sZ(f)loc − Ramf,loc

is 1. As such, if we again put Zd to be sub-scheme cut out by (x, yd), but here with x as in
(78), then

(81) sZ(f)loc − Ramf,loc �
1
d
sZd

(f)loc

and, as in (76), we have what we need.

This leaves us with the possibility that λ belongs to the prime �eld Fp ↪→ k(s), and we e�ect a
change of coordinates (x, y) 7→ (xs, y) to identify (on completion in Z ⊗ k(s)) the semi-simple
part

(82) ∂S(s) = y
∂

∂y
+ λsxs

∂

∂xs
,

of a re-scaling of ∂ over k(s), wherein the hypersurface xs = 0 may be supposed in agreement
with x = 0 to order d + 1. Writing our invariant curve as f : t 7→ (xs(t), y(t)), observe that
the maximum possibility for (80) is still 1, and it would actually be negative if f were widely
rami�ed. Plainly, this latter possibility can be ignored, but equally if t 7→ y(t) were wild then
(74) would hold, while if t 7→ xs(t) were wild then (81) holds as soon as p ≥ d. Consequently,
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we can suppose that both the coordinate projections of f are tame. As such if m, n are the
smallest positive integers whose ratio mod p is λs, then for ord again the order of vanishing on
restriction to ∆, invariance by the semi-simple part (82) implies

(83) ord(xs) ≥ m, ord(y) ≥ n

or one of f∗xs, f∗y vanishes identically. This latter possibility is exactly what we encountered
in the previous discussion of λs /∈ Fp, whence, on treating it in the same way, we can suppose
that (83) holds. On the other hand since λ ∈ K\Q>0, any Arakelov intersection of λ ∈ P1

S with
m/n is, up to the irrelevance of a choice of metric on O(1)P1

C
, non-negative, so

(84) max{m,n} � p

Finally, therefore, if p ≥ d, then, either n � p and we have the estimate (74) or m � p and we
appeal to (81). Having thus estimated all the possibilities for the local contribution to (80) we
deduce the re�nement (70) of the tautology (69).

V. Surfaces of general type

Throughout this section S is an irreducible a�ne scheme of �nite type over a Noetherian
integral domain with generic point of characteristic zero, e.g. Z, and X/S is a smooth family of
S-projective surfaces of general type, with H a S-ample line bundle. The principle conclusions,
III.6 and IV.2 of III, respectively IV, combine with the minimal model theory of [McQ08] to
yield

V.1. Proof of I.4. By III.6 and III.9, (a) is hopelessly false should (b) occur, so it remains
to prove (a) otherwise. By the classi�cation theorem, [McQ08], this amounts to the distinct
possibilities

(1) The (foliation) canonical KF is big on the generic �bre.
(2) The generic �bre is as (b) but points of positive residue characteristic aren't dense.

The �rst case is immediate by IV.2 and a suitable choice of ε. In the second case, notation as
in III.8 albeit in characteristic zero and including the case of products of curves, we have by
classical Baum-Bott residue theory, i.e. a much simpler variant of the �nal steps of the proof
of op. cit., or by op. cit. itself if one wants to be cute about it, that (66) holds, while in
characteristic zero an invariant curve can't meet E, so the left hand side of (66) is −χ(C). �

V.2. Proof of the subtler theorem, I.5. Plainly (a) holds for products of curves, and their quo-
tients by �nite group actions, while any other bi-disc quotient is de�ned over Q̄, and by III.6
we have invariant rational curves satisfying (8) whenever p is inert. As such, by I.4, it remains
to deal with bi-disc quotients at split primes, and we can, of course, suppose that we're on a
model with generically canonical singularities. Putting ourselves again in the notation of III.8,
this follows from (45) if there are no cusps, E. Otherwise, there is some subtlety, since invariant
curves can meet E in positive characteristic. In the proof of III.8, if (50) holds for all m, then
in fact we have

(85) (KX + E) ·f C ≤ KF ·f C

and there's nothing to do by IV.2. If, however, we're in the in�nitely more likely possibility
that (50) holds for some m, but fails for some m + 1, then (since C is rational or elliptic) we
only get

(86) (KX + E) ·f C ≤ (1 + pm)cardinality(f−1(E)red)

In the particular case that m = 1, we've already seen in (82)-(84) that

(87) cardinality(f−1(E)red) �
1
p
E ·f C
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where the implied constant may be no better than the Arakelov height of λ, i.e. it's arbitrary.
Nevertheless, this bounds the degree along KX + E by a constant multiple of the intersection
with E, and this works in general- just do (82)-(84) modulo pm instead of modulo p, which
actually has some simpli�cation since xy = 0 of op. cit. can be taken to be the equation of
E, while by (61)-(65) we have full p-adic Jordan decomposition. As such we deduce (p � 0
to avoid any bad reduction issues) that any rational or elliptic curve f : C/k → X where the
characteristic of k is a split prime, satis�es

(88) (KX + E)·f � E ·f C

for an implied constant depending only on X.

Now suppose such rational or elliptic, over k̄(s) are Zariski dense with s ∈ Σ of residue char-
acteristic, p, a split prime. By hypothesis, and the fact that we know, I.4, that the theorem
is true is in characteristic zero we can, cf. proof of III.6, �nd for an in�nite set of split p, a
rational or elliptic curve, fp : Cp/k̄(s) → X such that for H ample

(89) lim inf
p∈Σ

H ·fp Cp = ∞

On the other hand, for s ∈ Σ we have a specialisation map, [Ful98, 20.3] on Néron-Severi

(90) is : NS1(X ⊗ k(S))R → NS1(X ⊗ k(s))R

whence, by duality, classes in NS1(X ⊗ k(S))R de�ned by

(91) [φp] : NS1(X ⊗ k(S))R → R : D 7→ 1
H ·fp Cp

is(D) ·fp Cp

which for p � 0 certainly intersects any ample divisor, A, positively. On the other hand nH−A
is ample for n � 0, and vice-versa, so for A �xed, A · [φp] is bounded, and weak limits of the
[φp] exist. Choose one, φ, say, and throw the rest of Σ, i.e. [φp] not converging to φ, away, then
the underlying fp are still Zariski dense by (89), so φ may be identi�ed with a (non-zero) nef.
class in NS1(X ⊗ k(S))R. Now, up to introducing some harmless quotient singularities, there's
no loss of generality in identifying X ⊗ k(S) with a resolution, π, of the cusps on the canonical
model, [McQ08, III.3], (X0,F0) of F , and since φ is nef., then, sub-sequencing as necessary,
by IV.2

(92) π∗KF0 · φ = 0

while by (88), E · φ > 0. We have, however,

(93) φ = π∗(π∗φ) +
E · φ
E2

E

and φ2 ≥ 0, so π∗φ is big and nef. in the Mumford intersection theory of X0, which by Hodge
a�ords the absurdity, [McQ08, IV.5.5], that KF0 is numerically trivial. �

Now we can apply this, following, [Bog77], to curves on surfaces of general type in the usual
way

V.3. Proof of I.1, Ω1
X/S big. Let π : P = P(ΩX/S) → X be the projective tangent space, and

L its tautological bundle, then, by hypothesis, there is a δ > 0 such that L− δπ∗H is e�ective.
Again, by hypothesis, the derivative, f ′ : C → P of our curve exists, and satis�es IV.1. As
such, we're done unless f ′ factors through a divisor D ↪→ P dominating X. Such a divisor
de�nes a foliation, F , by curves (on itself) given over the generic point by

(94) Ω1
D/S

∼−→ π∗Ω1
X/S → L|D

so, without loss of generality, curves not satisfying (a) are invariant by a foliation on a surface
dominating X, and we conclude by I.4. �

V.4. Proof of the subtler theorem, I.2. Exactly as V.3, but use I.5 rather than I.4. �
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