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§ 0. Introduction.

By the fundamental work of Griffiths [Gri] one knows that for a smooth projective complex variety Y
homological equivalence and algebraic equivalence do not coincide in higher codimension. Griffiths’ proof
rests on two main steps. The first one consists in showing that the algebraic part of the intermediate
Jacobian of a general hyperplane section of Y vanishes, because of the irreducibility of the monodromy
action on the rational cohomology: this is essentially the classical Noether-Lefschetz argument. The
second one is based on a careful analysis of the normal function associated to an algebraic and primitive
cycle of Y .

In the present paper, following a similar pattern, we investigate the same question for varieties with
isolated singularities. As for the first step, the proof runs exactly as in the classical case, taking into
account a monodromy theorem for varieties with isolated singularities recently proved in [DGF]. So this
part of the proof is easy, however we reproduce it again for Reader’s convenience (see Theorem 4 below).
The hard points appear in adapting the second step to the singular case (cfr. Theorem 6, proof of Step 4
and Step 6). In particular, the proof of our Step 6 reduces to compare, in a certain range, the homology
of Y with the homology of a singular hypersurface. We believe this argument may be useful also in a
different context, as factoriality. More generally, our work may be useful to gain more information on
Noether-Lefschetz loci.

Finally we recall that a deep improvement of Griffiths’ result was made by Nori (see [N]). With a new
argument based on his celebrated Connectivity Theorem, Nori proved that homological and algebraic
equivalence do not coincide in a wider range. However one knows that Nori’s result does not completely
imply Griffiths’ Theorem (cfr. [N], p. 369, Conjecture 7.4.1).

§ 1. Notation and preliminaries.

Throughout this paper Y ⊆ PN denotes an irreducible, reduced, projective variety having at worst
isolated singularities, with

dim Y = n + 1 = 2r ≥ 4 .

Furthermore f : Ỹ → Y denotes a resolution of singularities; Σd ⊆ |OY (d)| denotes the linear system
on Y cut by d-degree hypersurface sections, Σ◦d :=

{
b ∈ Σd

∣∣Xb is smooth
}

its subset parameterizing
smooth varieties (for b ∈ Σd, Xb denotes the corresponding hypersurface section) and D := Σd \ Σ◦d
the discriminant locus; for b ∈ Σ◦d , ib : Xb → Ỹ denotes the natural inclusion; for a analytical
submanifold B of Σ◦d we consider the natural family over B

YB :=
{
(x, b) ∈ Y ×B

∣∣ x ∈ Xb

}
, π : YB → B ,
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and the natural inclusion i : YB ↪→ Ỹ × B of families over B obtained by globalizing ib. We
consider the monodromy representation associated to the universal family, i.e. over Σ◦d, π1(Σ

◦
d, b) →

Aut
(
Hn(X; Q)

)
where b ∈ Σ◦d is any point and X = Xb ([V2], Ch. 3). We want to recall that as

a consequence of Deligne invariant subspace Theorem the set I of invariant elements is the image of
the pull-back in cohomology i∗b : Hn(Ỹ ; Q) → Hn(X; Q) , in particular it is a Hodge substructure
of Hn(X; Q) . Its orthogonal complement shall be denoted by V and will be called the “vanishing
cohomology”. So, Hn(X;Q) = I ⊥ V .

We also consider the analytic map of Jacobian fibrations over B associated to the inclusion YB ⊆
Ỹ ×B , which we shall denote by i∗

Jr(Ỹ ) × B
i∗−−−−→ J :=

{
Jr(Xb)

}
b∈B

.

This map globalizes the map of Griffiths’ intermediate Jacobians i∗b : Jr(Ỹ ) → Jr(Xb) , where
we keep the standard notation Jr(W ) := H2r−1(W ;C)

/(
F rH2r−1(W ;C) ⊕ H2r−1(W ;Z)

)
for the

Griffiths’ intermediate Jacobian of any smooth projective variety W . The kernel of such i∗b does not
depend on b , in other terms the inverse image via i∗ above of the trivial section (i∗)−1({0}b∈B) ⊆ J
is a product K × B , where K is a subgroup of Jr(Ỹ ) . We furthermore denote with T the image
subtori-fibration of Jr(Ỹ ) × B in J and with Tb = i∗b

(
Jr(Ỹ )

)
its fiber over b . We have an exact

sequence of families over B

0 −−−−→ K × B −−−−→ Jr(Ỹ ) × B −−−−→ T −−−−→ 0 .

The inclusion T ⊆ J is closed and does not depend on the resolution of singularities Ỹ → Y , likewise
any inclusion Tb ⊆ Jr(Xb) .

For any m-dimensional projective variety W, Zq(W ) , Zq(W )hom and Zq(W )alg denote respectively
the group of q-codimensional algebraic cycles, its subgroup of homologically trivial cycles and its sub-
group of algebraically trivial cycles (compare with [F1], Ch. 19 and [F2], Appendix B). For a cycle
Z ∈ Zq(W ) we shall denote the corrsponding classes in the q-Chow group and in homology respec-
tively as [Z] ∈ CHq(W ) and cl(Z) ∈ H2m−2q(W ; C) . The notation for the Abel-Jacobi map (in case
W is smooth) shall be ΨAJ : Zq(W )hom → Jq(W ), we also set Jq(W )alg := ΨAJ

(Zq(W )alg
)
, the image

of algebraically trivial cycles. Furthermore, in case W is a smooth quasi-projetive variety, cl(Z)∨

denotes the cohomology class of the cycle Z in H2q(W ; C) ([V1], Ch. 11). We also recall that any local
complete intersection (l.c.i.) morphism between projective varieties induces Gysin maps in homology
and in cohomology ([F1], 19.2.1).

Let us go back to our situation. For a smooth d-degree hypersurface section X = Xb we define
Jr(X)0 as the cokernel of the map of Jacobians Jr(Ỹ ) → Jr(X) and eventually we set Jr(X)0, alg

as the image of Jr(X)alg in Jr(X)0 .
Remark 1. Let Z ∈ Zr(Y ) . If [Z]|X ∈ CHr(X)hom for some smooth d-degree hypersurface section
X ↪→ Y , then [Z]|

Xb
∈ CHr(Xb)hom for all smooth d-degree hypersurface sections Xb ↪→ Y .

We now observe that, in the hypothesis of the remark, the restriction [Z]|Xb
defines an element in

Jr(Xb) via Ψ
AJ

, for any Xb as above. So, there is a well-defined section (set-theoretical, for the
moment) associated to our cycle Z :

νZ : Σ◦d −→ J .

Remark 2. Denote by Z =
∑

niZi the decomposition of Z in its irreducible components and
by Li the subspace of Σd parametrizing hypersurfaces containing Zi . For a analytic submanifold
B ⊆ Σd \ (D ∪ ⋃

Li) define Zi,B := {(x, b) ∈ YB : x ∈ Zi ∩ Xb} . Since for any b ∈ B each Zi

meets properly Xb, then ZB :=
∑

niZi,B is a relative cycle of codimension r for the family YB , i.e.
ZB ∈ Zr(YB) and each Zi,B is flat overB. Hence from ([V2], Theorem 7.9) we know that ν

Z
is a normal

function on B (i.e. it is holomorphic and horizontal on B). Actually, up to replace Z with others
representatives of its class in CHr(Y ), one proves that ν

Z
is a normal function on all Σ◦d.

Remark 3. Besides ordinary cohomology we will also consider the intersection cohomology IH∗(W ;C),
for a complex m -dimensional irreducible projective variety W . Here we recall some properties which we
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will use in the sequel, for more details see ([D2], pg. 154-161). First, IH∗(W ;C) ∼= H∗(W ;C) when W is
smooth, Poincaré Duality, Lefschetz Hyperplane Theorem and Hard Lefschetz Theorem still hold for in-
tersection cohomology. Moreover, if W has at worst isolated singularities, then Hq(W ;C) ∼= IHq(W ;C)
for any q > m. So, by Poincaré Duality, one has a natural isomorphism Hq(W ;C) ∼= IH2m−q(W ;C),
for q > m. Finally recall that from Decomposition Theorem it follows that IH∗(W ;C) is naturally
embedded in H∗(W̃ ;C) as a direct summand, where W̃ is a desingularization of W . So we have a
natural surjection H∗(W̃ ;C) → IH∗(W ;C)∨ ∼= IH2m−∗(W ;C). For q > m, assuming W has at worst
only isolated singularities, this map identifies with the push-forward Hq(W̃ ;C) → Hq(W ;C).

§ 2. Generalized Griffiths’ Theorems.

Theorem 4. Let Y ⊆ PN denote an irreducible, reduced, projective variety of even dimension n+1 =
2r ≥ 4 , with isolated singularities. Let X denote the intersection of Y with a general hypersurface
of degree d . Assume the vanishing cohomology V is not contained in the middle Hodge component
Hr,r−1(X)⊕Hr−1,r(X) . Then we have

Jr(X)0, alg = 0 .

We want to stress that in the case where Y is a projective space, this theorem reduces to the “first
part” of Griffiths’ Theorem as stated in ([Sh], Theorem 2.2). It has a strong analogy with Noether-
Lefschetz Theorem. The present generalization is obtained by revisiting Shioda’s proof ([Sh], pg. 721-
722) in view of a result on the monodromy action [DGF]. As for a generalization of the “second part”
of Griffiths’ Theorem see Theorem 6 below and compare it with [V2], Theorem 8.25.
Remark 5. i) For d À 0 , the hypothesis on the vanishing cohomology V is automatically satisfied;
ii) in the hypothesis of the Theorem, also Jr(X)alg vanishes in case the homology space Hn+2(Y ;C)
vanishes (e.g. if Y ⊆ PN is a nodal complete intersection as well as if Y is a hypersurface, and not a
cone, with at most one ordinary singular point ([D1], (4.6) Corollary. (A) p. 164, and (4.17) Theorem
p. 214).

The first statement holds because otherwise the orthogonal complement I of V would contain
H0, 2r−1(X) and the geometric genus of X would be bounded by the geometric genus of Ỹ , which
is impossible for d sufficiently large. As for the second statement, it suffices to observe that the
map of Jacobians Jr(Ỹ ) → Jr(X) is induced by the restriction map Hn(Ỹ ; C) → Hn(X; C)
and that such map factors through Hn+2(Y ;C) , in fact it is the Poincaré dual of the composition
Hn+2(Ỹ ; C) → Hn+2(Y ; C) → Hn(X; C) , where the second map is the Gysin morphism in homology.

Here, though the proof of Theorem 4 follows a well-known pattern, we shortly outline it for the sake
of completeness (being Theorem 4 crucial for the sequent Theorem 6).

Proof of Theorem 4. Let {Xt}t∈P1 be a general pencil of degree d hypersurface sections and fix a
reference point o ∈ P1 \ D. Let U ⊂ P1 \ D be a small neighborhood of o. Take a non-zero element
γ ∈ Vo and extend it by continuous deformation to γt ∈ Vt , t ∈ U . We have the following dichotomy:
either γt ∈ Mt := Hn(Xt;Q) ∩ [

Hr,r−1(Xt)⊕Hr−1,r(Xt)
]

for any t ∈ P1 \ D and any continuous
deformation γt of γ , or the set Aγ := {t ∈ U | γt ∈ Mt} is countable. In fact, by Griffiths’
Transversality we know that the condition γt ∈ Mt is an analytic condition on t ∈ U . In the first
case, the submodule of Vo generated by γ under the action of π1(P1 \D, o) is contained in Mo . Since
Vo is irreducible ([DGF], Corollary 3.7) then Vo ⊂ Mo , and this is in contrast with our assumption
on V . So a fortiori Aγ is countable. Then also A :=

⋃
γ∈Vo,γ 6=0 Aγ is countable, and for t ∈ U \ A

we have Mt ∩ Vt = {0}. Letting X = Xt, t ∈ U \ A, on the other hand, as the orthogonal sum
Hn(X;Q) = I ⊥ V respects the Hodge decomposition, we obtain

I ⊇ M , equivalently M = I ∩ [Hr,r−1(X)⊕Hr−1,r(X)] .

Therefore, taking into account that the tangent space to Jr(X)alg at the origin is contained in Hr−1,r(X),
we obtain Jr(X)0, alg = 0 as required.

¤
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Theorem 6. Let Y ⊆ PN be an irreducible, reduced, projective variety of even dimension n + 1 =
2r ≥ 4 , with isolated singularities. Let Z ∈ Zr(Y ) be a cycle with cl(Z) 6= 0 ∈ H2r(Y ; C) . For
d À 0 , assuming that cl

(
[Z]|X′

)
= 0 ∈ H2r−2(X ′; C) for some smooth d-degree hypersurface

section X ′, a general smooth d-degree hypersurface section X of Y satisfies the following properties
a) Ψ

AJ

(
[Z]|X

)
does not vanish in Jr(X)0 ;

b) [Z]|X is not algebraically trivial.
Moreover, assuming that the singularities of Y are “mild” (see below), then

a′) property “a)” holds under the weaker hypothesis d ≥ 3 ;
b′) property “b)” holds under the hypotheses d ≥ 3 and that the “vanishing cohomology subspace”

of H2r−1(X; C) is not contained in the middle cohomology Hr,r−1(X)⊕Hr−1,r(X) .
We say that Y has mild singularities if for any p ∈ Y the exceptional divisor of the blow-up of Y

at p has at worst isolated singularities.

Proof of Theorem 6.
Step 1. We first explain how to deduce the Theorem for d À 0 from the following property (F).
(F) For d À 0 , there exists a d-degree hypersurface section Xo such that a Zariski general line

` ∈ {
lines in Σd through Xo

}
does not contain a ball U ⊆ ` \ D with

ΨAJ ([Z]|Xb
) ∈ Tb = image

(
Jr(Ỹ )

)
, ∀ b ∈ U

(note that this is the vanishing in Jr(Xb)0 condition).
Proof of Step 1. Consider the set G2 ⊆ Σ◦d of d-degree smooth hypersurface sections Xb satisfying a).
Since the normal function is analytic and T is closed in J , the complement of G2 in Σ◦d is analytic.
As a consequence, we have the dichotomy: either G2 is empty, or it is the complement of a proper
analytic subset of Σ◦d . As the first case can be excluded for otherwise (F) would be contradicted, then
G2 is dense in Σ◦d . By Theorem 4, which can be applied in view of remark 5, the set G1 of sections
satisfying Jr(Xb)0, alg = 0 contains the complement of a countable union of proper analytic subvarieties
of Σd . So, the same holds for the set G1∩G2 as well. Finally, for Xb with b ∈ G1∩G2 property b)
holds. In fact, if [Z]|Xb

were algebraically trivial, then ΨAJ ([Z]|Xb
) would belong to Jr(Xb)0, alg = 0

(this is because b ∈ G1 ), and this would contradict the fact that b ∈ G2 .
¤

Now the strategy is the following: we introduce a particular hypersurface section Xo (step 2), we
state properties of a Zariski general pencil through Xo (step 3), then we prove property (F).

Step 2. For d À 0 , there exists a d-degree hypersurface section Xo of Y intersecting properly each
component of Z , containing Ysing , and such that X̃o is irreducible, smooth, and very ample, where
X̃o denotes the strict transform of Xo in the desingularization Ỹ of Y . Note that, in particular,
Xo ∩ Ysmooth is smooth.

Proof of Step 2. One can construct f : Ỹ → Y via a sequence of blowings-up along smooth centers
supported in Ysing ([L], Theorem 4.1.3 pg. 241). Denote by g : P̃→ PN the projective variety obtained
with the same sequence of blowings-up of PN and observe that Ỹ ⊂ P̃. Since the centers are smooth,
then P̃ is nonsingular and its Picard group is generated by the pull-back of the hyperplane g∗(H) and
the components Ei ⊂ P̃ of the exceptional divisor (see [H], Proposition 7.16 and Theorem 8.24, and [F1],
Proposition 6.7.e). Therefore, for suitable integers d À 0 and mi, the line bundle OeP(dg∗(H)−∑

miEi

)

must be very ample. Let S̃o ∈ |OeP(dg∗(H) − ∑
miEi)| be a general divisor. Then Xo := Y ∩ g(S̃o)

verifies all requests. In fact X̃o is equal to Ỹ ∩S̃o, which is irreducible, smooth and very ample. Moreover
Xo meets properly each component Zi of Z for X̃o meets properly Zi \ g−1(Ysing). Finally, Xo contains
Ysing because S̃o is very ample.

¤

Step 3. A Zariski general pencil ` ∼= P1 through Xo satisfies the following properties:
• for any b ∈ ` the fiber Xb of ` meets all components of our cycle Z properly, so Z`\D is a relative
cycle for the family Y`\D (cfr remark 2);
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• `\{Xo} has finitely many singular fibers, not meeting Ysing and having only one ordinary double
point.

Proof of Step 3. Let Zi be an irreducible component of Z. Since dim(Zi) = r > 0 then Zi imposes at
least two conditions to Σd. Therefore the subspace Li ⊂ Σd parametrizing hypersurfaces containing Zi

has codimension at least 2. Since Xo 6∈ Li, then a general line in Σd passing through Xo does not meet
Li. This proves the first property.
As for the second property, embed Y via the d-Veronese and interpret Σd as the linear series cut by
hyperplane sections. We have D = Y ∗∪p∗1∪· · ·∪p∗h, where Y ∗ denotes the dual variety of Y , and the p∗i
denote the dual hyperplanes of the singular points pi of Y . Let ` be a general pencil through Xo and let
Xo, Xb2 , · · · , Xbk

be its singular fibers, namely the fibers corresponding to the points of the intersection
` ∩ D. Since Xo ∈

⋂
p∗i then ` meets

⋃
p∗i only at Xo. Moreover, since dim(Y ∗)sing ≤ dimΣd − 2, then

` ∩ (Y ∗)sing ⊆ {Xo}. Therefore {b2, · · · , bk} ⊂ Y ∗ \ [(Y ∗)sing ∪
⋃

p∗i ]. Assuming {b2, · · · , bk} is not
empty (for otherwise we would be done), Y ∗ has no dual defect and it is not a cone with vertex Xo.
We have to prove that the pencil ` meets Y ∗ transversally at bj for any j = 2, · · · , k (this means that
each Xbj

has only one ordinary double point). Proceeding by contradiction, if the general line through
Xo is tangent to Y ∗ \ (Y ∗)sing at some point, then the projection (possibly internal) of Y ∗ from Xo has
the image of R \ {Xo} equal to the image of Y ∗ \ {Xo}, where R := {b ∈ Y ∗ : Xo ∈ Tb,Y ∗} denotes the
ramification locus of the projection. Since the image of Y ∗ \ {Xo} has the same dimension of Y ∗, then
the ramification locus is all Y ∗. Therefore for a general b ∈ Y ∗ we have Xo ∈ Tb,Y ∗ . Now let J ⊂ Σd be
the cone with vertex Xo and basis Y ∗ (i.e. the embedded join of Xo and Y ∗). By Terracini’s Lemma
([FOV], Proposition 4.3.2.) we know that for a general b ∈ Y ∗ and a general c ∈ bXo the tangent space
to J at c is spanned by Xo and the tangent space to Y ∗ at b. Since Xo ∈ Tb,Y ∗ then dimJ = dimY ∗,
i.e. J = Y ∗. Hence Y ∗ is a cone with vertex Xo, and this is in contrast with previous assumption.

¤
Now, for a pencil ` ∼= P1 as in step 3, let B = P1 \D denote the set of smooth sections and consider

the natural completion of the family π : YB → B (cfr §1)

YB ↪→ Y`

π ↓ ↓ π

B ↪→ P1

where Y` is the blow-up of Y along the base locus of the pencil. Finally, consider ZB ∈ Zr(YB) as
introduced in §1, remark 2, and its class cl(ZB)∨ ∈ H2r(YB ; Z) .

We are now ready to prove property (F). For this, we proceed by contradiction.
Step 4. Let ` be a general pencil as in step 3. If there exists a ball U ⊆ B such that νZ (b) ∈ Tb for
all b ∈ U , then there exists an element ξ ∈ Jr(Ỹ ) such that i∗b (ξ) = ν

Z
(b) , ∀ b ∈ B.

Proof of Step 4. First, we introduce a natural commutative diagram

Jr(Ỹ )
y i∗b

[Z]|Xb
∈ CHr(Xb)hom

Ψ
AJ−−−−→ Jr(Xb) 3 ν

Z
(b)

ib∗

y
y ib?

ib ∗([Z]|Xb
) ∈ CHr+1(Ỹ )hom

Ψ
AJ−−−−→ Jr+1(Ỹ )

where the left vertical map ib∗ denotes the push-forward and the map of Jacobians ib? at the right-side
is the map induced by the map ib? : H2r−1(Xb; Z) → H2r+1(Ỹ ; Z) (which is the Gysin morphism
in cohomology associated to ib : Xb → Ỹ ). We now observe the following properties:
i) the vertical composition ib? ◦ i∗b can be interpreted as the map induced by the map H2r−1(Ỹ ; Z) →
H2r+1(Ỹ ; Z) given by the cap product in homology (modulo Poincaré duality) with the class of the
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“divisor Xb ” (in particular it does not depend on b );
ii) as the diagram above commutes and ib ∗([Z]|Xb

) ∈ CHr+1(Ỹ )hom does not depend on b , the
image ib? ◦ ν

Z
(b) does not depend on b as well.

We now conclude the proof of step 4 under the assumption that the restriction ib?|image(i∗b ) is an isogeny
on its image. Let us now go back to our exact sequence 0 → K × B → Jr(Ỹ ) × B → T → 0 of
families over B . Working modulo the identification Jr(eY )

K ×B ∼= T of fibrations over B , we replace

Jr(Ỹ )×B
i∗−→ T

i?−→ Jr+1(Ỹ )×B

with

Jr(Ỹ )×B −→ Jr(Ỹ )
K

×B
ι̂?−→ Jr+1(Ỹ )×B

where i? denotes the map of Jacobian fibrations that globalizes ib?. Now, our normal function ν
Z

takes
values to T and therefore induces a analytic section ν̂ : B → Jr(eY )

K ×B. As the image ib? ◦ ν
Z
(b)

does not depend on b, the composition ι̂? ◦ ν̂ is constant (as a matter of language, a section of a trivial
fibration is said to be constant if its image is the graph of a constant function). By our assumption
stating that the restriction ib?|image(i∗b ) is an isogeny on its image, the kernel of ι̂? is discrete (by
definition, the kernel of a map of fibrations is the inverse image of the zero section, and it is said to be
discrete if its restriction to any fiber is a discrete subset). As a consequence, the inverse image of ν̂
itself must be constant.
We are left to prove that the restriction ib?|image(i∗b ) is an isogeny on its image. First we may note that
in the smooth case Xb is ample on Y = Ỹ and ib? ◦ i∗b is an isogeny by the Hard-Lefschetz theorem
(and the interpretation we have given above).
Going back to our situation, we set ib, jb, f as in the diagram

Ỹ

ib ↗ ↓ f

Xb
jb−→ Y

and we investigate more closely the map ib? ◦ i∗b . As we already said, the map ib? ◦ i∗b descends
from the map H2r−1(Ỹ ; Z) −→ H2r+1(Ỹ ; Z) which, passing to complex coefficients, turns out to be
equal to the composition of all maps at the first row in the diagram below (cfr remark 3 on intersection
cohomology):

H2r−1(Ỹ ; C) ∼= H2r+1(Ỹ ; C)
f∗−→ H2r+1(Y ; C) ∼= IH2r−1(Y ; C) ∼=(1)

IH2r+1(Y ; C) ⊆ H2r+1(Ỹ ; C)

↓ i∗b ↓ j?
b l ∼=

H2r−1(Xb; C) ∼= H2r−1(Xb; C) ib ∗−→ H2r−1(Ỹ ;C).

Here i∗b is the natural pull-back and j?
b is the Gysin morphism in homology and the isomorphism (1)

is the Hard-Lefschetz isomorphism. Note that the map of Jacobians i∗b : Jr(Ỹ ) → Jr(Xb) descends
from the first one and ib? descends from the composition of the bottom row with the right “vertical”
isomorphism (Poincaré duality). Finally, an element in H2r−1(Ỹ ; C) that maps to zero in H2r+1(Ỹ ; C)
must vanish in H2r+1(Y ; C) and therefore must vanish in H2r−1(Xb; C) .
This proves that the restriction of the bottom row to the image of i∗b is injective, and therefore that
the restriction ib?|image(i∗b ) is an isogeny on its image as required.

¤
Step 5. The cohomology class of ZB in H2r

(
YB ; C

)
is zero.

Proof of Step 5. First recall the exact sequence defining the Jacobian fibration: 0 → R2r−1π∗Z/
torsion → H2r−1/F rH2r−1 → J → 0, where H2r−1 := R2r−1π∗Z ⊗ OB . From previous step we
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know there exists ξ ∈ Jr(Ỹ ) such that i∗b(ξ) = ν
Z
(b) for any b ∈ B. Let ξ′ be a lifting of ξ in

H2r−1(Ỹ ; C). Then {i∗b(ξ′) ⊗ 1}b∈B ∈ H0(B,H2r−1/F rH2r−1) is a global section whose image in
H0(B,J ) is equal to νZ (here, i∗b is the pull-back H2r−1(Ỹ ,C) → H2r−1(Xb,C)). Therefore the image
of ν

Z
in H1(B, R2r−1π∗C) vanishes. On the other hand the Leray filtration of YB → B induces a natural

map ker(H2r(YB ;C) → H2r(Xb;C)) → H1(B, R2r−1π∗C), which is an isomorphism because B ⊂ P1.
On the other hand, under this identification, one knows that the image of ν

Z
corresponds to ZB ([V2],

Lemma 8.20).
¤

Remembering our strategy, to find a contradiction, hence to conclude the proof of the Theorem for
d À 0 , it suffices to prove step 6 below. Here we shall make a strong use of the fact that ` is as in step
3, a assumption that was not necessary for steps 4 and 5.
Step 6. Keep our previous notation, in particular ` is as in step 3 and B = P1 \ D . Then,

cl(ZB)∨ = 0 ∈ H2r
(
YB ; C

)
=⇒ cl(Z) = 0 ∈ H2r(Y ; C) .

Proof of Step 6. Let Y` be the blow-up of Y along the base locus of `, let π : Y` → ` ∼= P1 be the
natural map, consider the exact sequence of the pair (Y`, π−1(D)) and maps and elements as indicated
in the diagram below:

H2r(Y ; C) H2r(YB ; C) 3 cl(ZB)∨ ( = 0)
⊕jbi∗ ↗

yλ?

y∼= l
⊕H2r(Xbi ; C) $−−−−→ H2r(Y`; C)

ρ−−−−→ H2r(Y`, π−1(D); C)
∑

ξi 7→ λ?(cl(Z)) 7→ ρ(λ?(cl(Z))) ( = 0)

where, i) {b0 = o, b1, ..., bk} = D ∩ ` denotes the discriminant locus of the pencil; ii) jbi :
Xbi ↪→ Y denotes the natural inclusion; iii) λ : Y` → Y denotes the natural projection, and so
λ? : H2r(Y ; C) → H2r(Y`; C) is the Gysin morphism in homology (note that λ is a l.c.i. morphism
because the base locus of ` is contained in Ysmooth); iv) we work under the natural identification
H2r(π−1(D); C) ∼= ⊕H2r(Xbi ; C) induced by the disjoint union decomposition π−1(D) = ∪·Xbi ,
note that $ = ⊕ιbi∗ where ιbi : Xbi ↪→ Y` is the natural inclusion.

We claim that, as cl(ZB)∨ = 0 by hypothesis,
(6.1) there exists an element

∑
ξi as indicated in the diagram and satisfying

∑
jbi∗(ξi) = cl(Z) .

The proof of (6.1) involves two statements, the first one is that cl(ZB)∨ and ρ(λ?(cl(Z))) correspond
to each other under Lefschetz Duality [Sp] (the vertical isomorphism at the right of the diagram), and
this is clear. So, as a consequence of the exactness of the pair sequence there exists an element

∑
ξi

mapping to λ?(cl(Z)) via $ above. The second one is the chain of equalities

[⊕ jbi∗]
(∑

ξi

)
= λ∗$

(∑
ξi

)
= λ∗(λ?(cl(Z))) = cl(Z)

where, the first equality is trivial, the second one follows by the definition of
∑

ξi , the third one is the
non-trivial one and follows by ([F1], Proposition 6.7,.b). This concludes the proof of claim (6.1).
Now, for any b ∈ P1 , we consider the Gysin map j?

b associated to the inclusion jb : Xb ↪→ Y and
the diagram

(6.2)

H2r+2(Y ; C)
γ−−−−→ H2r(Y ; C)

j?
b

y ↗ jb ∗

H2r(Xb; C)

where γ denotes the cap-product with cl(X)∨ ∈ H2(Y ; C) (namely γ = ∩ cl(X)∨ , where X is any
d-degree hypersurface section of Y ). This diagram is commutative and therefore, in particular, the
composition jb ∗ ◦ j?

b does not depend on b. We now show the following
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(6.3) for any i ∈ {0, ..., k} , the Gysin map j?
bi

is surjective.

To prove (6.3), we first examine the case i = 0. Consider the following natural commutative diagram:

H2r+2(Ỹ ;C) −−−−→ H2r(X̃o;C)
y

y

H2r+2(Y ;C)
j?
o−−−−→ H2r(Xo;C),

where the horizontal maps denote Gysin maps, and the vertical ones denote push-forwards. Since X̃o is
a smooth and very ample divisor on Ỹ (see step 2), then the upper horizontal map is an isomorphism
in view of Poincaré Duality and Hyperplane Lefschetz Theorem. Moreover the vertical map at the right
is surjective: this follows by the Decomposition Theorem because the restriction f |eXo

: X̃o → Xo is a
desingularization of Xo (see remark 3). Thus, since the diagram commutes, then j?

o is surjective.
Next assume i ∈ {1, . . . , k}, i.e. assume that X := Xbi

has only one ordinary double point at a smooth
point p of Y . Denote by Bp(Y ) and Bp(PN ) the blowing-up of Y and PN at p, by EY and EP the
exceptional divisors, and by φ : Bp(Y ) → Y and ψ : Bp(PN ) → PN the natural projections. Let X̃

be the strict transform of X in Bp(Y ). Then X̃ is a smooth Cartier divisor on Bp(Y ) and it is also
very ample on Bp(Y ): in fact OBp(Y )(X̃) ∼= OBp(Y )(φ∗(dHY ) − 2EY ) is the restriction to Bp(Y ) of
OBp(PN )(ψ∗(dHP)−2EP), which is very ample on Bp(PN ) (here we denote by HP the hyperplane in PN ,
and by HY its restriction to Y ⊂ PN ). Now, as before, consider the natural commutative diagram:

H2r+2(Bp(Y );C) −−−−→ H2r(X̃;C)
y

y
H2r+2(Y ;C) −−−−→ H2r(X;C).

As before the right vertical map is surjective because X̃ is a desingularization of X. Moreover, since
X̃ is smooth and very ample on Bp(Y ), then, by Lefschetz Hyperplane Theorem for “intersection co-
homology”, the restriction map IH2r−2(Bp(Y );C) → IH2r−2(X̃;C) is an isomorphism (remark 3). On
the other hand, since Bp(Y ) has only isolated singularities, then IH2r−2(Bp(Y );C) ∼= H2r+2(Bp(Y );C).
Furthermore, as X̃ is smooth, then IH2r−2(X̃;C) ∼= H2r−2(X̃;C) ∼= H2r(X̃;C). As a consequence, the
map H2r+2(Bp(Y );C) → H2r(X̃;C) is surjective. Finally, the commutativity of the diagram shows that
also the map H2r+2(Y ;C) → H2r(X;C) is surjective. This concludes the proof of (6.3).
We now conclude the proof of step 6. By (6.3), for any i ∈ {0, ..., k} there exists an element ηi

satisfying j?
bi

(ηi) = ξi . Thus, we have

cl(Z) =
∑

jbi∗(ξi) =
∑

jbi∗
(
j?
bi

(ηi)
)

=
∑

γ(ηi) = γ
(∑

ηi

)

where the first equality is (6.1), the second one is obtained substituting ξi with its expression j∗bi
(ηi) ,

the third one follows by the commutativity of diagram (6.2) and the last one is trivial.
Going back to our diagram (6.2), the equality cl(Z) = γ (

∑
ηi) shows that cl(Z) belongs to the image

of the push-forward jb ∗ : H2r(Xb; C) → H2r(Y ; C) , i.e. there exists α ∈ H2r(Xb; C) satisfying
cl(Z) = jb ∗(α) . On the other hand, choosing a smooth Xb, the composition

H2r(Xb; C)
jb ∗−−−−→ H2r(Y ; C)

j?
b−−−−→ H2r−2(Xb; C)

α 7→ cl(Z) 7→ cl([Z]|Xb
) = 0

is injective by the Hard-Lefschetz theorem. Thus we deduce that cl(Z) = 0 as required.
¤

So far we have proved a) and b). To prove a′) and b′), the previous proof can be adapted with minor
changes. First, as before, the Theorem follows by the analogue of (F) for d ≥ 3. Then one observes that
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a Zariski general pencil ` has fibers Xb’s that meet all components of our cycle Z properly and its
singular fibers are finitely many: those not meeting Ysing having only one ordinary double point, and
those meeting Ysing only at one point and generically (so, any of such sections is singular only at one
point and its singularity is a general section of a “mild” singularity). Eventually, for such pencil, one
proves the analogues of steps 4, 5 and 6.

As for it regards the latter, one has to work a little more: as in step 6, one reduces to prove that
for any i ∈ {1, ..., k} the Gysin map j?

bi
is surjective, where {b1, . . . , bk} denotes the discriminant

locus of the pencil (compare with 6.3 in the proof of step 6). Set X := Xbi . If X has only one
ordinary double point at a smooth point p of Y , then the same argument we used in the proof of (6.3)
applies (here the assumption d ≥ 3 allows us to say that OBp(PN )(ψ∗(dHP) − 2EP) is very ample). It
remains to examine the case where X is a general hypersurface section through a singular point p of
Y . Denote by Bp(Y ) and Bp(PN ) the blowings-up of Y and PN at p, by EY and EP the exceptional
divisors, and by φ : Bp(Y ) → Y and ψ : Bp(PN ) → PN the natural projections. Let X̃ be the strict
transform of X in Bp(Y ). Since the singularity of Y at p is ”mild”, then Bp(Y ) still has only isolated
singularities and X̃ is a smooth Cartier divisor on Bp(Y ). Moreover X̃ is still very ample on Bp(Y )
because OBp(Y )(X̃) ∼= OBp(Y )(φ∗(dHY ) − EY ), and this line bundle is the restriction on Bp(Y ) of
OBp(PN )(ψ∗(dHP) − EP), which is very ample on Bp(PN ) because d ≥ 2. At this point one may prove
that j?

bi
is surjective exactly as in the ”tangential” case.

¤
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