Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. **59**, 2 (2008), 167–190 © 2008 Universitat de Barcelona

Tautological cycles on Jacobian varieties

GIAMBATTISTA MARINI

University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy E-mail: marini@mat.uniroma2.it

Received July 13, 2007. Revised November 19, 2007

Abstract

In this paper we study the algebraic structure of the Tautological ring of a Jacobian: by the use of hard-Lefschetz-primitive classes we construct convenient generators that allow us to list and describe all the possible structures that may occur (the explicit list is given for $g \leq 9$ and for a few special curves).

§1. Introduction

Let \mathcal{C} be a complex curve of genus g and let $J(\mathcal{C})$ denote its Jacobian. We consider the group of rational cycles modulo algebraic equivalence

 $\mathcal{A}_{\bullet}\big(J(\mathcal{C})\big)_{\mathbb{Q}}$

and the so called "tautological ring" $\mathcal{R}(\mathcal{C})$, that is, the subgroup of $\mathcal{A}_{\bullet}(J(\mathcal{C}))_{\mathbb{Q}}$ containing \mathcal{C} and stable with respect to the Fourier transform, the intersection product, the Pontryagin product, pull-backs and push-forwards of multiplication maps by integers. The tautological ring has a mysterious algebraic structure, which has not been completely understood so far. Beauville proved that $\mathcal{R}(\mathcal{C})$ is finite dimensional as a \mathbb{Q} -vector space [4]. He proved that the W^{d} 's and their intersections generate $\mathcal{R}(\mathcal{C})$ as a vector space (this gives a rough bound for its dimension). Polishchuk found a set of equivalence relations between tautological cycles and also show compatibility with the action of the Fourier transform [19], Colombo-van Geemen [7] found relations for curves that are a *m*-cover of \mathbb{P}^1 , Herbaut [12] and Kouvidakis-Van Der Geer [16] found relations for curves carrying a g_d^r . The difficulty of understanding the structure of $\mathcal{R}(\mathcal{C})$ comes from the fact that for a Jacobian, the cycles occurring in nature, such

Keywords: Tautological ring, Chow group, algebraic cycles, Jacobian varieties.

MSC2000: 14C25, 14C15, 14H40, 14K12.