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Algebraic Cycles on Abelian Varieties
and their Decomposition.

GIAMBATTISTA MARINI

Sunto. — In questo lavoro consideriamo una varietd abeliana X ed il suo anello di
Chow CH *(X) dei cicli algebrici modulo equivalenza razionale. Tramite la decom-
posizione di Kiinneth della diagonale AcX X X é possibile ottenere delle formule
esplicite per i proiettori associati alla decomposizione di Beauville (1) di CH *(X),
tali formule sono espresse in termini delle immagini dirette e tnverse dei morfismi
di moltiplicazione per un intero m. Il teorema (4) fornisce delle drastiche semplifi-
caziont di tali formule, la Proposizione (9) ed il Corollario (10) forniscono alcuni
risultati ad esse correlati.

Summary. — For an Abelian Variety X, the Kiinneth decomposition of the rational
equivalence class of the diagonal AcX x X gives rise to explicit formulas for the
projectors associated to Beauwville’s decomposition (1) of the Chow ring CH ® (X)), in
terms of push-forward and pull-back of m-multiplication. We obtain a few simplifi-
cations of such formulas, see theorem (4) below, and some related results, see propo-
sition (9) below.

0. — Introduction.

Let X be an abelian variety of dimension »n and denote by CH,(X)
its Chow group of algebraic cycles modulo rational equivalence. In our
notation, CH;(X) is the subgroup of d-dimensional cycles and CH?(X) :=
CH, _;(X) is the subgroup of p-codimensional cycles. For m € 7, let mult (m)
denote the multiplication map X— X, x— max. By the use of Fourier-Mukai
transform for abelian varieties (see [M] and [Be]), Beauville has established
a decomposition

n—d
o)) CHd(X)Q = S@d[CHd(X)Q]s

where, by definition, CH (X)), = CH;(X)® Q is the Chow group with Q-
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coefficients and the right-hand-side subgroups are defined as follows:

[CH,(X)o), := {W e CH;(X)o | mult(m), W =m?**W, VmeZ}
= {WeCH?(X), | mult(m)* W=m2 "W, YmeZ},

where p =n —d is the codimension of W.

This decomposition is a tool to understand cycles and rational equivalence
on abelian varieties and it would give a beautiful answer to many questions
concerning the Chow groups of abelian varieties (see [Be], [Bl], [J], [Ku] and
[SD), provided that Beauville’s vanishing conjecture [Be] holds. This conjec-
ture states that the factors of CH,(X) with s < 0 vanish (see B.C. below). As
pointed out in the abstract, by the use of Deninger-Murre projectors 6 ;, (see
[DM], [Ku]), the projections CH;(X) — [CH;(X)], with respect to Beauville’s
decomposition (1) can be written as linear forms of mult(m), and mult(m)*.
Theorem (4) simplifies such explicit descriptions. A further simplification is
given for the case where one works modulo a piece of the decomposition, see
proposition (9); see corollary (10) for a reformulation of Beauville’s conjec-
ture.

1. — The algebraic set up.

We denote by w(z) the series expansion of log(z + 1). Namely,
1, 3
wiz)=2— =2+ =z°....
2 3

Furthermore, for k¥ and j non-negative integers we define constants a; ; via
the formal equality

0 ) 1
pi= k
207 e

Let A,eM,.;,.1(Q) be the matrix (a, ;), where k and j run in [0, ..., r].
Let B,e M, ,.1(7Z) be the matrix (b, ;), where j and % run in [0, ..., 7] and
where, by definition, b; , = (—1) *h(i ) It is understood that (2 ) = 0 provided

that h>j. For k=0, 1, ..., » we define linear forms L{”(x,, ..., x,) by the
following equality:

Lg” Lo

L @,
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namely we define (observe that a; ;=0, if <k and b; , =0, if & >j)

L/é,r)(x(h ceey x'r) - E 2 ak 7( 1)7 h( )x/w

j=k h=

and for k> r we define L") =
We now introduce a numerlcal lemma, the proof of which is very straight-
forward (and omitted).

LEMMA 3. — Let 7 =1 and 0= 0 be integers. Then

2( 1y- h(h)ho {0 if 0<j

ol ifo=j.

2. — Projections of cycles.

Next, using linear forms L”, we give a criterium to identify components
(with respect to Beauville’s decomposition 1) of the algebraic cycles. In the se-
quel, X denotes an abelian variety of dimension n; We CH;(X), denotes a ra-
tional algebraic cycle of dimension d and p =n — d its codimension; further-
more, W, denotes a component of W with respect to Beauville’s decomposition
(1), in particular s is an integer in the range [ —d, » — d]. We also consider lin-
ear forms L{” as introduced in the previous section. The interpretation, in
terms of push-forward and pull-back of multiplication maps, of the decomposi-
tion of the diagonal 4 e CH,(X x X) (see [DM], [Ku]) gives

W, = ([log (D)1*20+5 o W) /(2d +5)! = ([log (A)[*2"~24=5 . W) /(2n —2d — 5)!,

where %, denotes the relative Pontryagin product on CH4(X X X) with re-
spect to projection on the first factor and where, for a e CHq(X X X),!a de-
notes its transpose. This equality in turn, in terms of our L;” gives

W, = L7, ,(mult(0),, ..., mult(r),) W
=Lg;)- L(mult(0)*, ..., mult(»)*)W, Vr=2n.

It is worthwhile to stress that the linear forms L,” enter in a natural way (for
r=2mn) as an explicit version of Deninger-Murre-Kiinnemann projectors in
terms of push-forward and pull-back of multiplication maps. The following
theorem (4) goes further, it says that such equalities hold for » that takes
smaller values (see (4,) and (4,) below). We also want to stress that linear
forms L{” have an increasing length with respect to » (see the list at the next

page).
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THEOREM 4. — Let X, W and W, be as above. Then
4, W, = Li%, ,(mult(0),, ..., mult(r),) W, Vrzn+d;
4, W, =L, (mult(0)*, ..., mult(r)") W, Yr=n+p.

Formulas (4,) and (4;) are obtained by using lemma (7) below. We shall
also see that (4;) can be refined: the equality there also holds for r=n + p —
min{d, 2}. A similar achievement does not hold for (4,). As an explicit
example we want to point out that for a 4-dimensional abelian variety and a
2-cycle W the known formula for projectors would give

56 35
W, =8W —14 mult(2)*W + ?mult(?))*W— Emult(4)*W+

56 14 8 1
?mult(5)*W— Emult(ﬁ)*W%— ?mult(7)*W— gmult(S)*W

meanwhile, by theorem (4), or better by remark (8), one has the simpler ex-

pression Wy =4W — 3 mult(2)* W+ = mult(S) W — —mult(4) w.

REMARK. — Beauville’s conjecture (see [Be]) states that
(B.C.) [CH;(X)p),=0, if s<0.

As a consequence of theorem (4), proving the conjecture is equivalent
to proving that either

Lgit P (mult(0),, ..., mult(n + d),) or L P (mult(0)*, ..., mult(n + p)*)

acts trivially on CHy(X)y, for s<0. Another equivalent formulation for
Beauville’s conjecture (B.C.) is that the property (4;) holds also for »=2p
(this is trivial: since Ly 7’)5 =0 for s <0, if (4;) holds for » =2p, B.C. holds as
well; it is straightforward to check that the converse implication follows from
the proof of theorem 4).

REMARK. — Let us look at (4,) and (4;). The operators
2d+ g(mlﬂt(o)n ceey mult(r),)

are non-trivial for »=mn 4+ d and the operators Lz(;,”ls(mult(O)*, ..., mult(r)*)
are non-trivial for r = n + p. Infact, since —d<s<n-—d, then2d+s<n+d
as well as 2p—s<n +p.
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Clearly, one has

if d=dimW=>0;
mult(0), W= . . . . .
degW-0 if W is a 0-cycle, where o is the origin of X.
mult(1),W=W

For n+d that takes the indicated value, the operators L, =
L9, mult(?),, ...) act as follows.

n+d=1

LyW=mult(0), W
LiW=—mult(0),W+W

n+d=2
LyW=mult(0), W

Lle—Emult(O),W+2W —mult(Z)*
L,W= Emult(O),,W— W+ Emult(Z)*W

n+d=3

LoW=mult(0),W

Lle—?mult(O)*W+3W —mult(2)*W+ mult(S)*
Ly W =mult(0), W — W+2rnult(2), —%mult(?))*
L3W=——mult(0)*W+ W —mult(2),W+ mult(S),

n+d=4

LoW=mult(0),W

LW= —Emult(O),W+ AW - 3mu1t(2),W+ mult(S)* - %mult(4)*
L,W= —mult(O)*W— _W+ Imult(Z)*W— —mult(3)*W+ —mult(4)*
LyW=— %mult(O)*WnL SW -2 mult(2), W+ Emult(S)* - %mult(4),
LW = %mult(O),W— %W+ %mult(Z),W— %mult(3)*W+ 2—14mu1t(4)*W

From Beauville’s conjecture point of view the first interesting case is
W_,=L¥®C.., mult(i),,...) = L., mult@)*, ...), for We CH?*(X), and
dim X =5, see [Be]. Indeed, we have also W_, = L (..., mult(s)", ...), for
r=zb=n+p-min{d, 2}.

Next we prove theorem (4) and some related results. First, we recall that
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the Chow group of an abelian variety has two ring structures: the first one is
given by the intersection product, the second one is given by the Pontryagin
product, which we shall always denote by % . Consider the ring CH,(X X X)
with the natural sum of cycles and the relative Pontryagin product with re-
spect to projection on the first factor X x X— X (in other terms, we consider
Pontryagin product on X X X regarded as an abelian scheme over X via the
first-factor-projection). Let 4 e CH, (X x X) be the diagonal and let £ = X X
{0} e CH,(X x X) be the unit of CH4(X x X) with respect to the product
above, where o is the origin of X. The projectors o, ..., 05, are defined by
(see [Ku], pag. 200)

1 .
6.: N 10 A Ky 21 =
= Gl @)

1

1 2 1 3 Ky 20—
:(Zn—_])' (A_E)_E(A_E) rel +§(A_E) rel® .

Since (4 — E)*=27+1 = () (see [Kul]), the series above are infact finite sums.
Now let 4,, denote the graph of mult(m). By Deninger, Murre and Kiinne-
mann theorem (see [DM], [Ku]) we have

[(4,106;,=mid;, VmeZ, 0<j<2n;

6)) . ,
0j=09,—j, VYO0sj<2n;

where the composition above is the composition of correspondences and
where, for o e Corr(A4, B), ‘oe Corr(B, A) denotes its transpose. As a conse-
quence, for We CH;(X), and 0 <j < 2n, one has

mu]t(m)*(éj o W)= [tA ml O((Sj o W)
:mj((stW), VYmeZ.

Clearly, one identifies CH,(X) with Corr(Spec C, X) = CH,(Spec C X X).
Thus, by the definition (2) one has

(5" 0;0Wel[CH;(X)l;, s:=2n—-2d—j.
Since > 0 ;=4 acts as the identity map, (5) and (5") give
(5") W9:62n—2d—sOW:t52d+sOW

where, as usual, W, denotes the component of W with respect to Beauville’s
decomposition (1).
For the proof of theorem (4) we need the following.
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LEMMA 6. — Let W be as in the theorem. Then

[(A — B)*=i] o W = E( 1y~ ()mult(hx
J .

1A = EY*i] o W = Z(—nf*h(f) mult (h)* W
h=0 h

PRrROOF. — Since £ is the unit for relative Pontryagin product and since
A*l o W= mult(h), W as well as [4*<"] c W= mult(h)* W, the two equali-
ties follow by a straightforward computation. m

LEMMA 7. — Let W be as in the theorem. Then
(7o) [(4—E)*i]cW=0, Vizn+d+1;
(7) TA-E=1cW=0, Vjzn+p+1.

Proor. — We prove (7;), the proof of (7,) is very similar. By lemma (6), we
have to show that for j =n +p + 1 one has

J .
=k (] T —
hgo( 1y (h) mult(h) W=0.

By linearity of the left-hand-side operator we are free to assume that W be-
longs to one of the factors from Beauville decomposition (1), namely we are
free to assume that We [CH;(X)q], for some se [ —d, n — d]. Thus (see 2), we
assume that mult(m)*W=m?2? W, VYme 7. It follows

élﬂ(—n"h(])muluh)w 2( 1y~ h(h)w W

For s in the range above, the range for 2p — s 1s [p, » + p]; in particular, we

have 2p — s <j. By lemma (3), the coefficient E (-1y- h( ) h2P~*% vanishes.
Then we are done. =

PRroOF (of theorem 4). — We start with formula (4,). Let k =2d + s. Then,
we have

1
W, =00,_24_50 W= ———[log (A)*=2?+5] c W
v @d s B@T
2n
Z%J(A E)*ai oW,

Jj=k

Now observe that by lemma (7), we have (4 — E)*</ c W=0forj=n+d + 1.
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Thus, the summation above can be taken up to », provided that »=mn + d. It
follows that

W,= 2 a (A4 —EY oW, Vrzn+d.
Jj=k

Looking at the definition of the operators L" it is then clear that (4,) follows
from the first equality from lemma (6),

j .
A—-E)=i W= > ( —IY’h(‘Zb) mult(h), W.
K=0
The proof of formula (4;) is similar. For »=n + p we have

1
Ws=t62d+sOW: t[IOg(A)*relzpis] OW
(2p —s)!

2n

= Z a2p—syjt[(A —E)*rel.j] OW

Jj=2p-—s

r

= 2 gy, MA-E] oW

Jj=2p-s

r i .
- 3 Sams,jhg(](—w*h(jb) mult (k)" W

Jj=2p-—
= Lg)_ (mult(0)*, ..., mult(r)*) W

where the 4" equality follows by lemma (7), the 5% equality follows by lem-
ma (6) and the 6" equality follows by the definition of the operators
L. =

REMARK 8. — The equality (7;) can be improved. We have,
8" TA-E)cW=0, Vj=Zn+p+1-90

where 0 =min {d,2}. Infact, since [CH;(X)l;=0 provided that s<min{—-d+1,
—1} (see [Bel), the actual range for s can be shrinked to min{ -d +2, 0} <
s <n — d. Thus in turn, one obtains (8') by the same proof of (7,). As a conse-
quence, (4;) can be refined: the equality there also holds for all r=n+p — 9
(where O is as above).

Furthermore, for the same reason, if Beauville’s conjecture (B.C.) men-
tioned above holds, then

1A= Ey=i1.W=0, Vj=2p+1
In particular, if W is a divisor (hence it satisfies B.C.), then {(4—E)*®]c
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W =0, namely 3W — 3 mult(2)* W + mult(3)* W = 0, which is obvious (in the
case of divisors, this kind of computations provide trivial results).
Now fix s, working modulo @ [CH;(X)y];,, or rather modulo

lzs+1

z<®— 1[CI—I P(X)o];, yields simpler formulas than the ones from theorem (4); fur-

thermore, it can be used to provide a reformulation for Beauville’s conjecture
(B.C.), see corollary (10) and the example below.

ProPOSITION 9. — Let W and W, be as in the theorem. Then

1 2d+s

S

2d + s
Wy= —- (—1)2d+8h( )mult(h)*W,
O, 2d+s)! n=0 h

modulo l>€R 1[CHd X)),

Furthermore,

2p—s

1 . . (2p—s
W= — —1)2p—s—h 1t(h *VV,
©)  (@2p—s)! hgo( ) ( h )mu()

modulo [ &) 1[CHP(X)Q]Z

/< s—
2p—s
1 p

Proor. — We prove (9;). Let K= ———
@2p-9! n=0

_1\2p-s—h(2p—s *
(—1) ( h ) mult (h)".
It suffices to prove that

_Jo if Wel[CH;(X)o], 1=s+1
W if WelCH, (X)),

This is clear by the proof of (7;); as for the case We [CH;(X)u];, the equality
KW =W follows since, by lemma (3), the coefficient (- 1)"”L(Z) h? equals
0

h=
o! (here o =2p —s). The proof of (9,) is similar. =

A straightforward consequence of (9;) is the following.

COROLLARY 10. — Let X be as in the theorem. Then, it satisfies Beauville’s
conjecture for d-dimensional cycles if and only if

k k
> (—l)k_h’( ) mult(h)*
h=0 h

acts trivially on CHy(X)q for k=2p + 1, where p=n—d as usual.

For 5-dimensional abelian varieties the only bad component that might
exist is [CH3(X)g]_1. Then, by the corollary above it follows that a 5-dimen-
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sional abelian variety X satisfies Beauville’s conjecture (B.C.) if and only if
5W —10 mult(2)* W+ 10 mult(3)*W — 5 mult(4)* W + mult(5)* W =0,
for all We CH3(X)g.
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