

A geometrical argument for a theorem of G. E. Welters

Giambattista Marini

Dipartimento di matematica, II Università di Roma "Tor Vergata", Via della Ricerca Scientifica, I-00133 Roma, Italy (e-mail: marini@axp.mat.uniroma2.it)

Received February 18, 1998; in final form August 10, 1998

The existence of a one parameter family of trisecants to the Kummer variety of an indecomposable principally polarized abelian variety characterizes Jacobians. This result was first proved by Gunning in [G] under additional hypotheses. Then Welters removed the additional hypotheses and considered the degenerate cases, see [W1] and [W2]. In this note we provide a short geometrical argument for the inflectionary case.

Theorem (Welters). Let $(X, [\Theta])$ be an indecomposable principally polarized abelian variety. Let Y be the Artinian subscheme of X of length 3 supported at 0 defined as the image of $Spec \mathbb{C}[\epsilon]/(\epsilon^3)$ in X via the immersion $\epsilon \mapsto \epsilon 2D_1 + \epsilon^2 2D_2$, where $D_1 \neq 0$. Denote by $K: X \to |2\Theta|$ the Kummer morphism. Assume that the algebraic subset

$$V = \{ 2u \in X \mid u + Y \subset K^{-1}(l) \text{ for some line } l \subset |2\Theta| \},$$

has positive dimension. Then V is a smooth irreducible curve through zero, and $(X, [\Theta])$ is the polarized Jacobian of V.

The proof of this theorem is naturally divided in two steps. First one proves that the endomorphism δ associated with the pair (\mathcal{C},Θ) is a positive multiple of the identity; here \mathcal{C} is any curve contained in V. Then one proves that δ is the identity over the flow generated by D_1 (thus δ is the identity and Matsusaka's criterion applies, moreover $\mathcal{C}=V$ by curve theory). For the first step we go back to Welters' homological argument in [W1]. For the second one we present a geometrical argument. We recall that $\delta(x)$ is, by definition, the sum in X of the points of the intersection $\mathcal{C}.\Theta_x$, opportunely translated in order to have $\delta(0)=0$ (namely $\delta(x)=\sup \mathcal{C}.(\Theta_x-\Theta)$). We shall use the following remark.

506 G. Marini

I Remark. Assume that V and W are subvarieties of X of complementary dimensions and assume that they intersect transversally at distinct points $p_1, ..., p_r$. If a point x is in a small analytic neighborhood of zero, we are allowed to number the points of the intersection $V.W_x$ according to the numbering of the p_i 's. Thus, we can single out the contribution of p_i to the differential $d\delta$. We shall denote this contribution by $d\delta_{p_i}$. Let D be a vector in $T_0(X)$, or better an invariant vector field on X. We claim that, for $d\delta_{p_i}(D)$, which is the i^{th} -contribution to $\lim_{\epsilon \to 0} \frac{1}{\epsilon} \mathrm{sum} \left(V.(W_{\epsilon D} - W))$, the following holds. If D is tangent to V at p_i , then $d\delta_{p_i}(D) = D$. If D is tangent to W at p_i , then $d\delta_{p_i}(D) = 0$. Our claim is a trivial consequence of the fact that since V and W intersect transversally at p_i , for the computation of the contribution δ_{p_i} up to its first order, we are allowed to work with tangent spaces.

Let us go back to the hypothesis of the theorem. The image under K of the germ of curve $u+Y=u+2\epsilon D_1+2\epsilon^2 D_2$ is the germ of curve $\stackrel{\rightarrow}{\vartheta}(u+2\epsilon D_1+2\epsilon^2 D_2)=\stackrel{\rightarrow}{\vartheta}(u)+2\epsilon D_1\stackrel{\rightarrow}{\vartheta}(u)+2\epsilon^2(D_1^2+D_2)\stackrel{\rightarrow}{\vartheta}(u)\bmod(\epsilon^3)$, where $\stackrel{\rightarrow}{\vartheta}:=(...,\vartheta_\sigma,...)$, $\{\vartheta_\sigma\}$ is a basis of $H^0(X,2\Theta)$. The image germ above, viewed in $\mathbb{P}H^0(X,2\Theta)$, is contained in a straight line if and only if the three terms of degree 0, 1 and 2 are dependent, thus

$$2u \in V$$
 if and only if $\operatorname{rank}(\overrightarrow{\vartheta}(u) \ D_1\overrightarrow{\vartheta}(u) \ (D_1^2 + D_2)\overrightarrow{\vartheta}(u)) \leq 2$.

Observe that V parametrizes inflectionary points of the Kummer variety. Also, we recall that by a well know degeneration of Fay's trisecant formula (e.g. see [W1]),

$$(\star) \ \ x \in V \ , \ x \neq 0 \qquad \text{if and only if} \qquad \Theta \cap \Theta_x \subset D_1\Theta \cup D_1\Theta_x \ ,$$
 where $D_1\Theta := \Theta \cap \{D_1\theta = 0\}$, and θ is a generator of $H^0(X,\Theta)$.

2 Remark (see [W2]). If V has positive dimension at 0, then V is smooth, one-dimensional at 0. Furthermore $T_0(V) = \langle D_1 \rangle$. To prove this claim, first observe that the condition

$$\operatorname{rank}(\overrightarrow{\vartheta}(u) \ D_1 \overrightarrow{\vartheta}(u) \ (D_1^2 + D_2) \overrightarrow{\vartheta}(u)) \le 2$$

gives rise to natural determinantal equations defining V as a scheme. These equations are the determinants equated to zero of the minors of order 3 of the matrix above. For computational purpose it is convenient to work with $\Lambda^3H^0(X,2\Theta)$, so that

$$V = \{ 2u \mid f(u) := \overrightarrow{\vartheta}(u) \land D_1 \overrightarrow{\vartheta}(u) \land (D_1^2 + D_2) \overrightarrow{\vartheta}(u) = 0 \}.$$

Furthermore, once for all we recall that $\mathcal{D}\overrightarrow{\vartheta}(0) = 0$ whenever \mathcal{D} is a derivative of odd order. Note that, in particular, f(0) = 0, i.e. $0 \in V$.

As $E \in T_0(V)$ if and only if Ef(0) = 0, to prove the claim it suffices to show that

$$Ef(0) = 0$$
 if and only if $E \in \langle D_1 \rangle$.

We have $Ef(0)=E(\overrightarrow{\vartheta}\wedge D_1\overrightarrow{\vartheta}\wedge (D_1^2+D_2)\overrightarrow{\vartheta})(0)=\overrightarrow{\vartheta}(0)\wedge ED_1\overrightarrow{\vartheta}(0)$ $\wedge D_1^2\overrightarrow{\vartheta}(0)$ which equals zero if and only if $E\in \langle D_1\rangle$ by Wirtinger's theorem stating that the matrix $(\overrightarrow{\vartheta}(0),...,E_iE_j\overrightarrow{\vartheta}(0),...)$ has maximal rank $1+\frac{1}{2}n(n+1)$, where $n:=\dim(X)$ and $\{E_1,...,E_n\}$ is a basis of $T_0(X)$, provided that $(X,[\Theta])$ is indecomposable. Thus we are done. We now come to the proof of the theorem.

Proof (of the Theorem). Let \mathcal{C} be an irreducible (and reduced) curve contained in V. We want to prove that the endomorphism δ is the identity. By hypothesis, the following inclusions hold

$$(\star) \qquad \Theta \cap \Theta_x \quad \subset \quad D_1 \Theta \cup D_1 \Theta_x \,, \qquad \forall x \in V, \ x \neq 0 \,.$$

Step 1. The endomorphism δ is a multiple of the identity.

This follows by Welters' homological argument (see [W1], p. 503), which we now recall for the sake of completeness. By the inclusions above there exist algebraic cycles of codimension 2 in X, M' and M, such that

$$\Theta \cap \Theta_x = M' + M_x, \quad \forall x \in \mathcal{C}, x \neq 0.$$

The M_x 's cover Θ as x moves in \mathcal{C} . It follows that the Pontryagin product of homology classes $[M]\star[\mathcal{C}]$ is $c\cdot[\Theta]$, where c is a constant. On the other hand, since $\Theta_{-x}\cap\Theta=M'_{-x}+M$ and since the cycle $-\mathcal{C}$ is homologically equivalent to the cycle \mathcal{C} , there exists a constant c' such that the Pontryagin product $[M']\star[\mathcal{C}]$ equals $c'\cdot[\Theta]$. Thus $[\Theta^2]\star\mathcal{C}=[M'+M]\star[\mathcal{C}]=(c'+c)\cdot[\Theta]=const[\Theta^2]\star[\Theta^{n-1}]/(n-1)!$. As Θ is ample, the map $([\Theta^2]\star):H_2(X)\longrightarrow H_{2n-2}(X)$ is an isomorphism. It follows that $[\mathcal{C}]=const[\Theta^{n-1}]/(n-1)!$, so that the endomorphism δ is a multiple of the identity as claimed. This multiple must be positive because \mathcal{C} is effective and Θ is ample.

Step 2. The differential $d \delta$ sends the vector field D_1 to itself.

Both the inclusions (\star) and the endomorphism δ are independent on the translate of the theta divisor we choose. Denote by $D_1\mathcal{C}$ the set of points p of \mathcal{C} such that D_1 is tangent to \mathcal{C} at p (in particular $D_1\mathcal{C}$ includes singular points of \mathcal{C}). Note that $D_1\mathcal{C}$ is finite. Otherwise, the curve \mathcal{C} would be D_1 -invariant, thus it would be an elliptic curve, and the image of δ would be contained in the translate of \mathcal{C} through 0, contradicting that δ is a non-zero multiple of the identity. Modulo translations of Θ we can assume the following:

508 G. Marini

- 1) $\mathcal{C} \not\subset \Theta$;
- 2) $0 \in \Theta_{\text{smooth}}$;
- 3) $D_1 \notin T_0(\Theta)$;
- 4) $\mathcal{C} \cap \Theta_{\text{sing}}$ is empty;
- 5) $D_1C \cap D_1\Theta$ is empty.

Indeed, in order to find a translate $\Theta := \Theta_{-x}$ satisfying 1, 2, 3, 4, 5, it suffices to require that the point x is in

$$\Theta_{\text{smooth}} - \left(\Delta \left((\{0\} \cup D_1 \mathcal{C}) \times D_1 \Theta \right) \cup (\mathcal{C} \times \Theta_{\text{sing}}) \right)$$
$$\cup \left\{ x \in X \mid \mathcal{C} \subset \Theta_{-x} \right\} \right),$$

where Δ is the difference map $\mathcal{C} \times \Theta \to X$, $(p.q) \mapsto q-p$. We claim that the set above is not empty. The set $\Delta \left(((\{0\} \cup D_1 \mathcal{C}) \times D_1 \Theta) \cup (\mathcal{C} \times \Theta_{\mathrm{sing}}) \right)$ has at most dimension n-2, thus it does not contain Θ_{smooth} (here we use Ein-Lazarsfeld's theorem on Arbarello-De Concini's conjecture stating that $\dim \Theta_{\mathrm{sing}} \leq n-3$, cf. [EL]). If the set $A := \{x \in X | \mathcal{C} \subset \Theta_{-x}\}$ has dimension n-1, the inverse image $\Delta^{-1}(A)$ is $\mathcal{C} \times \Theta$. In fact, the product $\mathcal{C} \times \Theta$ is irreducible and the fiber $\Delta^{-1}(x)$ has positive dimension for all $x \in A$ (as $\mathcal{C} \subset \Theta_{-x}$, $\mathcal{C} + x \subset \Theta$ and $\Delta^{-1}(x)$ is the set of pairs $(p,p+x)_{p\in\mathcal{C}}$). As a consequence, if Θ_{-x} meets \mathcal{C} , then it contains \mathcal{C} . This leads to a contradiction. In fact, it would imply that the general translate of Θ does not meet \mathcal{C} . This concludes the proof of our claim.

By remark 2, if C contains zero, then it is smooth at zero and $D_1 \in$ $T_0(\mathcal{C})$. It follows that if $0 \in \mathcal{C}$, the theta divisor meets \mathcal{C} transversally at zero by the 3^{th} condition. Set now $\{x_1, \dots, x_r\} := \Theta \cap (\mathcal{C} - \{0\})$. As 0 and x_i are in Θ , the point x_i is in the left hand side of the inclusion $\Theta \cap \Theta_{x_i} \subset D_1\Theta \cup D_1\Theta_{x_i}$, so that it must be in the right hand side. This implies that either D_1 is in the tangent space $T_{x_i}(\Theta)$, or D_1 is in the tangent space $T_0(\Theta)$. The latter case does not occur by the 3^{th} condition, thus D_1 is in the tangent space $T_{x_i}(\Theta)$ for all i. On the other hand, by the 5^{th} condition, the intersection $D_1 \mathcal{C} \cap D_1 \Theta$ is empty, so that $D_1 \notin T_{x_i}(\mathcal{C})$. In particular, Θ and \mathcal{C} meet transversally at the x_i 's, hence they meet transversally (recall that if $0 \in \mathcal{C}$, then Θ and \mathcal{C} meet transversally at zero). We now apply remark 1. Since D_1 is in the tangent space $T_{x_i}(\Theta)$ for all i , then $d \, \delta_{x_i}(D_1) = 0$ for all $i \, (d \, \delta_{x_i}$ has been introduced in remark 1). If C does not contain 0, it would follow $d \delta(D_1) = 0$. This is impossible because, by the first step, $d \delta(D_1)$ is a positive multiple of D_1 . On the other hand, again by remark 1, $d \delta_0(D_1)$ equals D_1 because D_1 is tangent to \mathcal{C} at zero, and it is transverse to the tangent space $T_0(\Theta)$. Taking the sum over all points of the intersection $\mathcal{C}.\Theta$ we obtain that the image of D_1 under the differential $d\delta$ is D_1 as claimed.

References

- [EL] L. Ein, R. Lazarsfeld, Singularities of theta divisors, and the birational geometry of irregular varieties, Preprint (alg-geom/9603017)
- [G] R. C. Gunning, Some curves in abelian varieties, Invent. Math. 66 (1982), 377–389
- [W1] G. E. Welters, A criterion for Jacobi varieties, Ann. Math. 120 (1984), 497–504
- [W2] G. E. Welters, On flexes of the Kummer variety, Indagationes Math. 45 (1983), 501–520