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0. Introduction

In this paper we deal with a degenerate version of the trisecant conjecture (see
Welters [W1]). Let K,[©]) be an indecomposable principally polarized abelian
variety and let© be a symmetric representative of the polarization. We shall
denote by 6 a non-zero section of the she@k(©). The linear system20)|

is base-point-free and it is independent of the choicedof The image of the
morphism K : X — |20|* associated with the base-point-free linear system
|260] is a projective variety which is called the Kummer variety of, [O]) .
Welters conjectured in [W1] that the existence of one trisecant line to the Kummer
variety characterizes the Jacobians (it is well known that the Kummer variety of
a Jacobian has a rich geometry in terms of trisecants and flexes).

We prove that if there exists an inflectionary tangénto the Kummer variety
associated with X,[©]), then X,[©]) is a Jacobian provided that there are
no set-theoreticaD -invariant components of the scher®® = ©N{D# = 0},
where D is an invariant vector field orX associated td.

Observe that Welters’ conjecture divides naturally into the three possible
cases which correspond to the three hypothegethe Kummer varietyK (X)
has anhonesttrisecant, i.e. there exists a linke in |20|* meeting K(X) at
three distinct pointX (a), K(b), K(c); ii) there exists a lind in [20|* which
is tangent toK(X) at a smooth pointu, and which meetsK (X) at some
other point; iii) K(X) has an inflectionary tangent at a smooth point. The
cased) andii) were considered by Debarre, see [D1] and [D2] where he gives
an affermative answer to the problem, provided that an extra hypothesis holds.
Namely, in case) the extra hypothesis is th& cannot contain invariant divisors
under the translationt,_p, t,_c, and in casei) the extra hypothesis is tha®



484 G. Marini

cannot contain invariant divisors under the translattgn. Here we deal with

the third case. Our method consists in proving that the hypothggismplies

the hypothesis of Shiota’s theorem on Novikov's conjecture, i.e. that the K.P.
equation holds, thereby proving thaX,[©]) is a Jacobian. It is worth noticing
that the K.P. hypothesis takes naturally the fourth place in the list above, indeed
it turns out to be equivalent to the hypothesis that there exixts a length 4 germ
of a one-parameter family of inflecionary tangentskaf0) (which is a singular
point of the Kummer variety), see [AD1], or [W1] p. 499, or [W2] fact 2.18.

It deserves to be pointed out that the technique used here, for some aspects,
goes back to Arbarello and De Concini and their attempt to give an algebraic
solution to the Novikov's conjecture (see [A], [AD1]).

We make use of Ein-Lazarsfeld’'s theorem on Arbarello-De Concini’s con-
jecture (see Corollary 2 in [EL]), which states that the singular locus of the theta
divisor of an indecomposable principally polarized abelian variety has at least
codimension 2.

1. An inflectionary tangent to the Kummer variety

We start with a proposition translating the hypothesis that the Kummer variety
has an inflectionary tangent into an equation satiefied by the theta function.

Proposition 1. Let (X, [©]) be an indecomposable principally polarized abelian
variety of dimensiorr> 1. The following conditions are equivalent

i) The Kummer variety KX) of (X,[@]) has an inflectionary trisecant,
i.e. there exists a smooth point(&) in K(X), where K: X — |20|* is the
Kummer morphism, and a line | in the projective spd@®|* which meets
K(X) at K(u) with at least multiplicity 3;

i) There exixt invariant vector field P# 0, D, a complex number ¢ and
apoint u in X such that

PO := D26 -0y — 2D10 - D1y + 0 - D76y
(11) +D26 - 05y — 6 - Doy, +C'9-92u20,

where 0y,(2) = 6(z — 2u);
iii) There exixt an invariant vector field D# 0 and a point u in X such
that the following inclusion holds

(1.2) ©N6Ouy C DO U DOy,

where DO is the scheme of zeroes of the sectiof® B H°(O, “5(0)) .

We recall thatK (u) is a smooth point ofK (X) if and only if 2u #0. In
particular ini) it is assumed 2 # 0. On the other hand, equation 1.1 implies
2u # 0 (for otherwise D16 would vanish on®), and inclusion 1.2 implies
2u # 0 for dimensional reasons.
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Proof. It is convenient to choose a bas{@,} of H(X,(26)) having the
property that Riemann’s quadratic identi#&fz +¢)-6(z—¢) = >, 9.(2)-9.(()

holds, and to denote by} the vector (.., 9., ...). Propertyi) is equivalent

to the existence of a germ of curve(e) = u+e-D;1+€?-D, such that the
line I(t) = K(u) +t-K,(Dy) is an inflectionary tangent t& (c(c)) at K(u)
(here e and t are complex parameters). It follows that it is equivalent to the
property that the vectors?(u), 9(u +e-D;) and (U +e-Dy+€2-Dy)

are dependent module®. Thus, taking series expansion with respecteto
we infer thati) holds if and only if there exist non-simultanously-zero contants
¢, b, a such thatcd(u) + bD; 9 (u) + a[%Dl2 +Do]¢(u) = 0, or rather that
[¢d,(¢) + bD19,,(¢) + a[3D7 + D2]9,.(¢)] |, = O, for all ». Multiplying by
9,(z), taking the sum over all subscripts and using Riemann’s relation the
equalities above turn out to be equivalent to the property that the section

[ch(z+ ) 0z — Q)+ bDulo(z + O) - 6z — O]
+al ;D7 + Dall0z + Q) -0z — O] =,

is zero. Let us now assume that this is the case. The sedi@nsu)-6(z —u),
Di[8(z +¢) - 6(z — Qll¢c=u = D16_y - 6y — 0_y - D16, are independent because
2u #0 (i.e.u # —u). It follows that a # 0, so that we can assume = 2.

We can assumd = 0 up to adding a multiple oD; to D, (hamely ng).

It follows that propertyi) is equivalent to the existence of invariant vector fields
D; #0, D,, aconstantc, and a pointu in X such that

[c-0(z+¢)-0(z— () + [Df +2D,][0(z + () - (z — C)H‘“ =0,
which is propertyii) (modulo rescalingD,, and translating byu ).
From the equation 1.1 we obtain th846 - D10,, vanishes on® N Oy,
it follows thatii) impliesiii). On the other hand, if the inclusion 1.2 holds, the
sectiono = D20-0,,—2D10-D16,,+6-D 20y, vanishes on the schen®@NOy, .
Looking at the exact sequence

0 — p(O) = Co(O +Ox) — Cone,(© +64) — 0,
it follows that there exists an invariant vector fiely such thato |¢ = —D,0-

02y lo. Thereforeo’ = o + Dyf - 0 — 0 - Dofp,, which is a section of
(O +Oy), vanishes on®. Looking at the exact sequence

0 — (x(O2) = Cx(O +On) — Co(6 +6) — 0
it follows that there exists a section = —c-6, of the line bundle@x(©4)

such thate’ = 6 -7. This gives 1.1.
g.e.d.
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Theorem 2. Let (X,[©]) be an indecomposable principally polarized abelian
variety. Assume that the Kummer varietyXd of (X,[©]) has an inflectionary
trisecant, i.e. that the condition ii) of proposition 1 holds, and assume that the
scheme PO does not contain set-theoreticalfnvariant components. Then,
(X,[€)]) is the Jacobian of a smooth curvé .

Proof. We want to prove that¥?—D;)¢-(D?+D,)d vanishes on the schen@n
{D;16 =0}, which we shall denote byD;© . The above property characterizes
Jacobians by Shiota’s Theorem (see [S]). In fact, the restriction of the K.P.
equation toD;0 is (D?—D,)d-(D#+D,)d, and the K.P. equation is equivalent
to its vanishing onD;© (this is a particular case of a standard fact proved in
[AD1], p. 118).

Let W be a component of the schenla©, and letp be a generic point
of the underlying reduced schem&loyq. By Ein-Lazarsfeld's theoremg@ is
smooth atp. Hence there exist an irriducible elemeht, invertible elements
3, v, 6, and elements,” 3, 5, 6, all of them in the local ring % ,, and
integersm > 1, s, r, t, such that the ideal oM,eq at p is (h,0), and such
that

D16 LR

92u =ﬁ'hs+ﬁ'0a

@1 (D2+D)0 = 7N + 5.0,
(D? - Dy)d = 6-ht +46-0

We can now translate the result that we need to prove in terms of the setting
above. The ideal oW at the pointp is (h™,6). On the other hand,

(D — D)0 - (D2+D)f = ~6-h™  mod@) .
Thus to conclude our proof it suffices to show that
(*) r+t > m.

Since the restriction ofP¢ to W equals D7 + D,)0 - 6p,, in casefy, is
invertible at p we are done. Thus we can assume thgat vanishes onWq.

This givess > 1. By substitution of the equalities in 2.1 into the expressions
of PO and D;P# we obtain the equations 2.2 and 2.3 below

2.2) 0 =Po = (Df +D2)0 - Oy — 2D160 - D16y, =
' By -h'*s —2h™m. mod @),
where w = Difp = [s6-Dih-hs"t+Dy3-h%+5-h™ mod();
(2.3)
0 = DiPO =
—(D? — D)0 - D16y + Dy(D2+D3)0 - Oy +
D10 - [C “Opy — (Df + Dg)egu] =

—6ht-w + (Dy(y-h")+5h™) - Bh® + c~hm"~S

— h™- [(D£+D2)(6h®) + Byh" +2(D1f) - h™]  mod @)
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Let us look at the equation 2.2. Singg- v is invertible, r +s > m+s if
w € (h%,0). So that, if this is the caser;, > m and we are done. We can
therefore assume that

(24) w = D192u Q/ (hs, 3) .

We now come to our first reduction: roughly speaking, we shall reduce our
problem to the case where the order of the contagt aetween the hypersurface
{D;16 = 0} and © equals the one between the hypersurfd@a6,, = 0} and

© . More formally, our reduction shall lead us to 2.5 below. For this reduction
we distinguish the two casesn > s, and s > m. First, assumem > s.
Computing 2.3 modulo h¢, §) we obtain —6 - ht - w = 0 mod S,6). This
implies t > 1 because$ is invertible andw ¢ (h%,6) (by 2.4). Looking at
the definition ofw, or rather looking at its expression modul6) ( we see that
our assumptiorm > s implies thatw isin (hs~,8). Then, going back to 2.2
wegetr+s > m+s—1. Thisgivesr >m— 1. It follows thatr +t > m

and we are done. Let us now turn to the case m, thatis, sincem > 1,

s> m+1l1 > 2.

First, we observe thaﬁ’ must be invertible. In fact, ifE is an invariant vector
field on X, then Efp, = EB-hS+SEh-hS1+E3-0+3-E6. So that,
as s> 2, if B would not be invertible thenEf,, would vanish onWi;eq
for all invariant vector fieldskE , i.e. 6, would be singular alongW,eq and
Ein-Lazarsfeld’'s Theorem would be contradicted. Sisce m, the elementw
is in (h™,0) by its very definition. If s = m+ 1, then w ¢ (h™?,6) by 2.4.
If s>m+1, thenw = 3-h™ mod ™2, 6), so thatw is notin (™2,0)
because is invertible. It follows that, in any case, we are allowed to write

(2.5) w=p-hm+5.0,

where p is invertible. As for the next reduction, we shall prove that (unless
to conclude) the restrictionsD@ + D,)0|o, (D? + Dy)f|e vanish atp with

the same multiplicity (namely, we shall prove that we can assume 2.6 below).
Substituting 2.5 into 2.2 we obtaimByh"*s — 2ph?™ = 0 mod @), it follows

that r +s = 2m. In view of this equality, writing 2.3 moduloh™ 1, 9) we
obtain

—(5-p-ht+m _ 5'7'hm+r = 0 mod02m7170)'

Then, since bothyp and 57 are invertible, eithem =t <m-2, orr,t >
m—1. In the latter case, either=t=m—1, or r +t > m which is ). It
follows that, in any event, we can assume that

(2.6) r =t < m-1

(for otherwise we would be done). We are now going to conclude our proof
(it is worth noticing that we use here our extra hypothesis &ty is not
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D;—invariant). First we prove an equality (2.7 below) which turns out to take
care of the case whereDf — Dy)f vanishes onW,eq (this is the case where

t =0); then, we give a formal argument (not using the prop&ty= 0) which

turns out to take care of the case wherehencet, is up to m—2. Writing down

(Dl2 +D3)P6# and omitting the terms inh(" ) such asf, D16, 6, D16

we obtain D2+D,)P§ = —2(DZ—D,)f-D26,, mod ™, 6). Therefore, since

P6# vanishes by hypothesis, substituting 2.1 and 2.5 into the equality above we
obtain

(27) 0 = @#+DyPO = —26h'-mpD:h-h™1 mod (™, 6) .
Now plug 2.1 into the equatiorD1(D? + D,)d = (DZ + D,)D16. We get
(2.8) Di(y-h" + 5-0) = (D?+Dy)(h™ + a-0).

We are now going to prove that

(29) either r =0, or r=m-1, or D;h € (h,0) .

We proceed by contradiction. Since< m — 1, contradicting 2.9 is equivalent
to assume thar # 0, m >r +2 and thatD;h is invertible. Sincem >r +2,
the right hand side of the equality 2.8 belongs td,¢). On the other hand,
sincem >r > 0 and bothy and D;h are invertible, the left hand side of 2.8
does not belong toh{, ). This is a contradiction.

We now conclude our proof. The schenWeq is not Di-invariant by hy-
pothesis. First, we prove that this is equivalent to saying thah ¢ (h,6) .
Recall that the ideal ofW,¢q is (h,0), and that D, is tangentto© at all
points of Weg (by definition of W). On the other hand,D;h vanishes on
Wieq if and only if D; is tangent to the locugh = 0} at all points of Wieq .
Therefore, as H,0) defines Wieq, the vector fieldD; is tangent toW,eq at
all points of Wieq (i.e. Wieq is Ds-invariant) if and only if D;h € (h,6).

Let us go back to 2.7. Sincé, p and D;h are invertible,t > 1. Since
r =t > 1 and sinceD;h is invertible, 2.6 and 2.9 give =t=m—-1>1.

It follows that r +t = 2(m — 1) > m which proves %).
g.e.d.

2. Complements: an application to the non-degenerate case

Let (X,[©]) be an indecomposable principally polarized abelian variety. Assume
that there exist pointa, b, c in X such thatK (a), K(b) and K(c) are distinct
and collinear, whereK : X — |20|* denotes the Kummer morphism. By Fay’s
trisecant formula (see [F], p. 34) there exist non-zero constants, v, such

that

(3 a-ly-0_ g+ [-0g-0p+v-0-0_c = 0,

where 6y := 6(z — x). First, one would like to prove the following
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1) @a n Qb C 9_(; U @a+b+c
(4) 2) Qb N @C C @_a U @a+b+c
3) @C N @a C @_b U ea+b+c

(the geometrical interpretation of each inclusion in 4 is that there exists a degen-
erate trisecant to the Kummer variety of. More precisely, as 2 =a —b

and v = u+b+c, the inclusion 4.1 is equivalent to the inclusigs, N _, C
6,U6_, (viatranslation byu+b). This, in turn, is equivalent to the property
that the line joiningK (u) and K(v) is tangent toK (X) at K(u) and meeets
K(X) at K(v) (see [D1]). We can easily prove that the inclusions in 4 hold
provided that an extra hypothesis holds. Indeed, defining

Wap = US| Sisacomponent 0B, NOy, S¢Z O_cUBOaipic
Wh.c US| Sisacomponent 0B, NO¢, S Z O_a U Oaipc
Wea = US| Sisacomponent oB:NOa, S ¢ O_pUBOaipic

one has the following:
Lemma 5. (Wab) oy = Whe)eqg = Wea) o -

Proof. It suffices to prove that (Wa7b)red C (Wbp)red . For this we need to
prove that if S is a component of©, N @, such thatS ¢ ©@_; U Ozupc,
then there exists a compone@ of @, N O, such thatQ ¢ O_,5 U Ozipsc,
and moreover Seq = Qreg- Let S be as above and letp be a generic
point of Seq. By Ein-Lazarsfeld's theoren®y, is non-singular alondSeq, i.€.

h =6y is an irreducible element in the local ringx , . Since Seq is reduced
of codimension 2, there exists another irreducible elemenm % , such that
the ideal definingSeq at p is (h,k). Let I, r, m, s, t be integers such that

Oarbic e (K)— (K" modt)

A e (k) — (K™ mod ()
0_a € (k™) — (K™1) mod )
_c € (k%) — (K=*1) mod )
0. e (kY — (K" mod ) .

By Fay'’s trisecant formula 3 we gat+ m=s+t. Thereforel +s < m if and
only if l+r <t, i.e. 0_¢-Oaspec € (N, k™) ifand only if 0_5-0aspec € (h, k),
i.e. 0_¢ - basnscls 7 0 if and only if 6_5 - Oaspsclo # O.

g.e.d.

Lemma 5 implies that the inclusions in 4 are equivalent, and that the scheme
(Wab)red is invariant under the translations,_p, to—c, tc—a. TO prove this,
denote by px the involution X — X, p — x —p. Since both©®, N 6y
and O_¢ U Oaipic are parp-invariant, the schemeéi, ,, is pawp-invariant, so
(Wab)red IS pasp-invariant. Similarly, Wh c)red IS pprc-invariant and W a)red
iS pera-invariant. By lemma 5 it follows thatWa p)red IS (patb, Pbrc, Pota)-
invariant. This implies our claim becaudg = pa+c © pa+b and similarly for
ta_c and ty_c.
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Concluding remark

Let us go back to the list of hypotheses from the introduction, and assume that
K(X) has anhonesttrisecant. By the argument above, there exist "degenerate
trisecants” (namely the inclusions in 4, aid, hold), provided that® does

not contain (t,_p, ta_c )-invariant divisors. This extra hypothesis is exactly the
one of Debarre in [D2]. There he gives a proof of a weaker version of Welters’
conjecture. An argument similar to the one above can be used to find inflectionary
trisecants (i.e. to show thit ) holds) and eventually to apply Theorem 2 above,
thereby reproving the result in [D2]. Unfortunately we are not able to improve
the results in [D2]. Nevertheless, we think that the method of going frpio

i), to iii ), to the K.P. hypothesis has the advantage of avoiding the hierachies
in [D2]. In some sense, it shifts some of the difficulties to the last step, namely
the one involving the K.P., the proof of which has already been done (see [S],
or [AD2], or [M]).
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