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The Kummer variety of a Jacobian has a 4-parameter family of trisecants. Using
Riemann’s relations, Fay’s identity and limit considerations, this property has been
translated in a hierarchy of non-linear partial differential equations which is satisfied
by the theta function of a Jacobian (see [F], [Mu], [Du], [Kr], [AD3]).

Novikov’s conjecture stated that if a theta function associated with an indecom-
posable principally polarized abelian variéty, [©]) satisfies the K.P. equation,
the first equation of the hierarchy, théxX, [©]) is the Jacobian of a complete
irreducible smooth curve. Shiota originally proved the conjecture in [S] by the use
of hard techniques from the theory of non-linear partial differential equations. His
proof was later simplified by Arbarello and De Concini (see [AD2]). We give a
proof of the theorem which is more geometrical in character; in particular we avoid
atechnical point, namely Shiota’s Lemma 7, which is instrumental in both Shiota’s
and Arbarello-De Concini’s proofs. For our proof, we follow Arbarello and De
Concini algebro—geometrical attempt to solve the problem (see [A] and [AD3])
and we go further. First, let us recall that in order to prove Novikov’s conjecture, it
suffices to recover the whole K.P. hierarchy from its first equation (because of Wel-
ters’ version of Gunning’s criterion). The key point in Arbarello and De Concini
geometrical approach is that, no matter what are the parameters in the equations in
the K.P. hierarchy, it turns out that the terms to be equated to zero form a sequence
of sections of the line bundl®(20). One needs to find parameters that make
this sequence into the identically zero sequence. The difficulty comes from the fact
that the theta divisor may have, a priori, a difficult geometry. The key object in the
approach in [A] and [AD3] is the subschenig © of © defined by the zeroes of
the section ofDg () associated wittD16, where D4 is an invariant vector field
that appears in the expression of the first equation of the hierarchy] anthe
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theta function associated withx (©). As it was pointed out in [A] and [AD3],
the reduced components By © do not create much trouble. They provide a geo-
metrical proof of the conjecture under the additional hypotheses that the singular
locus of the theta divisor has codimension at least 2, and that the sdbgfne
does not contain components which are invariant undePDtxlow. We remove
Arbarello—De Concini’s additional hypotheses by proving the following. If the K.P.
equation holds, the components of codimension one of the singular locus of the
theta divisor are invariant under tti&,-flow (for this we make use of a result of
Kollar about the singularities of the theta divisor). Therefore every component of
D10 which creates trouble iB;-invariant and, in particular, it contains a translate
of an abelian subvariety of. We then prove that the theta function of an abelian
variety which contain an abelian subvariety as above, is not a solution of the K.P.
equation. For this we combine an algebraic computation which was discovered
by Shiota (namely his Lemmas A and B, which we restate and reprove for the
convenience of the reader), and a technical lemma on the obstructions to recover
the K.P. hierarchy (Lemma 3.11).

For the discrete analogue to Novikov’s conjecture see [De]. For further discus-
sions see [AD3], [Do], [GG], [Ma].

1. Introduction

Let C be a smooth complex curvé(C) its Jacobian, PigC) thePicard groupof
line bundles of degre¢on C andI” the image of” via the Abel-Jacobi embedding
associated with an element of Pi¢C).

Let (X, [©]) be an i.p.p.a.v. (indecomposable, principally polarized, abelian
variety) of dimensiom, and let® be a symmetric representative of the polarization.
We shall denote by a theta function associated withx (©); in particular,6 is
naturally a nonzero section 6fx ().

The image of the morphism

K:X — |20

associated with the base-point-free linear syq@#i is a projective variety which
is called the Kummer variety dfX, [©]).

The Kummer variety of/(C') has a rich geometry in terms of trisecants and
flexes which is a consequence of the equality

WoinW)i+4p—q)=Wr—qUWP ,+p) VpgeC, p#q,
whereW? = {|D| € Pic!(C) | dim|D| > r}. Indeed, the inclusion

©3N0O, COL,UBz, 5, Ya,B,7,0€l, [#7,
(where®, := © + p), the linear dependence of the sections

0(z—a)-0(z—p—v+0), 0(z—p0)-0(z—a—vy+9),
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0(z—7)-0(z —a— B +0),

and the collinearity in the projective spad@®|* of the points
K +a),  K(E+D5),
K(+7), Ya,,7,6€l, Viez(0—a—F-17),

are all different translations (via Abel and Riemann’s theorems) of the previous
equality. In particular, once distinct poinis 3, are fixed, one has a family of
trisecants parametrized l%)F Considering the limit situation whey@and-y tend
to « one obtain a family of flexes parametrized 1219

This property has been used to characterize Jacobians among all principally
polarized abelian varieties (see [G], [W]). Welters’ improvement of Gunning’s
theorem states that an i.p.p.a(X, ©) is a Jacobian if and only if there exists
an Artinian subschem¥ of X of length 3, such that the algebraic subBet=
{2¢ | € +Y c K1) for some linel C |20*} has positive dimension at some
point (if this is the case it turns out th&t is isomorphic to the curve’). In
particular one has:

PROPOSITION 1.1 [AD1]Let (X, [©]) be ani.p.p.a.v.. The following statements
are equivalent:

(a) the i.p.p.a.v(X, [O]) is isomorphic to the Jacobian of a curve;
(b) there exist invariant vector field81 # 0, Do, ..., on X such that

dim{¢ € X |K(¢) A D1K(§) A (D + D2)K(§) =0} > 1

(b') there exist invariant vector field®; # 0,D,,..., on X and constants
ds, ds, ..., such that

m
ng(z) = Ale — Am_l(Dz —+ D%) =+ Zdi—i—lAm—i [H(Z =+ C)
i=3

0(z = ll¢=0 =0,
for all m > 3, where theD; operate on the variabl¢, and theA ; are defined
by
1

A= D T
i1+2ip+-+jij=j J

.Di...DY
T Dt Dj.

In this case, the image cur¥&s, up to translation, the curve whose parametric
expression is

o0
€ Z&Z -2D;,
1=1
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wheree € C, and eachD; is viewed as a point of the universal coverXivia its
natural identification wittp(X).

2. Shiota’s theorem

First, we observe that
P3(D1,D3,D3;d)0 = [—iD? — D%+ D1Ds +d|[0(z + () - 0(z — )]|c=o

= —2D10- 0+ 8D30- D10 — 2D76 - D30
+2D50 - Do — 2D36 - 0

+2D1D36 -0 — 2D3f - D16 + d6 - 6. (2.0)

THEOREM 2.1 (Shiota [S], conjectured by NovikoWhe first non-trivial equation
of the K.P. hierarchy characterizes Jacobians: an i.p.p.@X.[0]) is a Jacobian
if and only if there exist invariant vector field3; # 0, D,, D3 and a constant
such that

P3(D1, Dy, D3; d)9 =0.

As we already mentioned, our proof consists in recovering the vanishing of the
whole K.P. hierarchy from the equatidhf = 0, i.e. in recovering the cuniéfrom
its third order approximation. We observe tia(. . .)6 is a section 0® x (20), for
all Dq,...,D; andds, . ..,d;y+1. Indeed, ifD is any differential operator, because
of Riemann’s quadratic identity, we have that

DO(z+¢) 0(z—llc=o= Y. Db,(0)-6,(z) € H'(X,20),
vEZ9 /279

where{6,} is the basis off%(X, 0(20)) having the property that Riemann’s
identityf(z + ¢) - 0(z — () = £,0,(2) - 0,(¢) holds. Assuming by induction that
there exist invariant vector fieldB4,..., D,,_1 and constantdy,,...,d,, such
that

P{(D1,...,Diida,...,di1)0 =0, Vi<m-—1,

one needs to find,,, andd,,,+1 such thatP,,,(...)8 = 0.

We recall that the vector spaéf (0, O(0)|e) is the vector space of derivatives
T6, with T € Tp(X'). We denote byDO the scheme associated with the section
DO € H°(O,0(0)|o), i.e. DO = © N {DH = 0}. We shall use the following
remark.

REMARK 2.2 [AD3] (private communication from G. Welters to E. Arbarel-
lo). Whenever a sectio§ € H°(X,0(20)) vanishes onDO, there exists an
invariant vector fieldZ and a constant such that

S+EDO-0—-Ef-DO+df-0=0c H'(X,0(20)).
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As a consequence of this remark , Shiota’s theorem can be stated as follows.

THEOREM 2.3.An i.p.p.a.v.(X,[©]) is a Jacobian if and only if there exist
invariant vector fieldsD; # 0 and D such thatPs;(D1, D»,0;0)0|p,e = 0.

REMARK 2.4. We work with the K.P. differential equation for a theta function,
which is an automorphic forr associated with the polarization.dfz) andé(z)

are automorphic forms associated with the same polarization, there exists a point
2o In V, whereV is the universal cover of the abelian variety and a nowhere-
vanishing holomorphic functiog(z) onV, such that(z + zo) = g(z) - 6(z). One
might havePs6 = 0 andP36 # 0 but, sinces(g-0) = g2 P30+ 6% Psg—d - g2-
92—8(D%g-g —Dh1g -D]_g) . (D%O 06— D160 -D]ﬂ), one ha§330|D1@ = g2 . P39|D1@

(so that formulation 2.3 of Shiota’s theorem is independent of the theta function
representing the polarization). In view of Remark 2.2, there eRistD», D3, d

such thatPz( D1, D7, D3; d)6 = 0O if and only if there exisD1, D>, D3, d such that
Pg(Dl, Dz, [)3; d)@ =0.

TWO FORMULAS 2.5. We have the general formulas (they can be proved by a
direct computation)

s—3

(Ps +y AiPsi> 0
i=1

= (D209 — DJf) - (—A,_16)

D1A; — (DF+ Do)As 1+ diaAg ;| 0
i—3

+0-

+ D16 - (A, +2D1A,_1)0,

s—3
(Ps +> A;Ps_,) 0

=1

= (D20 + Dy8) - (—A7 ,6)

S
~DiA; — (Df — D2)A7  + ) dip1A7| 0
=3

+0-

— D10 - (—A, —2D1A7 )8,
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WhereA; (D]_, - ,Di) = Ai(—Dl, R —Di), Ai(Dl, - ,Di) = Ai(ZDl, R

2D;),A; (Da,...,D;) = Ay(—2Dy,...,—2D;).

REMARK 2.6 [AD3]. The restriction?,,,f| p,e does not depend ab,,,, dy,+1. In
fact

Pm(D]_, - ,Dm; d4, - ,dm+1)9
= Pm(Dl, vy Dy 1,0dg, ... dpy, 0)9 +2D,,D10 -0
—2D,0 - D10 + dpy 1602

This equality leads to a crucial point of Arbarello-De Concini’s argument: by
Remark 2.2, there exist B,,, and ad,,,,1 which makeP,,# equal to zero if and
only if P,,0 vanishes oD10.

From the formulas in 2.5 and the previous remark, assuming by induction that
P,0 = 0 fori < m, it follows that the only obstruction to find B,,, and ad,,, 11
which makeP,,,# equal to zero is given by those component®@® where neither
(D? 4 D)6 nor (D? — Dy)6 vanish. SincePs0 equals(D? + D7)6 - (D? — D3)6,
mod(#, D16), and since, by hypothesiBzf = 0, we have thatD? + D)0 - (D? —
D»)6 vanishes oiD10. Therefore a component éf; © where neithe(D% + D)0
nor (D? — D)@ vanish must be non-reduced.

In the next section we shall deal with such components. We show thatisf
a component oD, 0 then, assuming by induction th&f = --- = P,, 10 = 0,
only two cases may occur: eithét, 6 vanishes oV, or the reduced scheme
underlyingWV, denoted byWeq, is invariant under thé D4, D»)-flow. Moreover,
if © is singular alongVeq then the second case occur (Theorems 3.1 and 3.2).

3. The(Dj, D,)-invariance

To begin, we observe that we can always assudpe# 0, as well asD3 # 0.
Indeed, for all complex numbebswe have

P3(D1, Do, D3; d4) = P3(D1, Dy +bD1, D3 + 2bD; + szl; d4). (30)

Let W be a component ab;0. We assume first thad is smooth at a generic
point of Wieg. We prove the following.

THEOREM 3.1.Let (X, [0]) be an i.p.p.a.v. of dimensiom and assume that
P9 = --- = P, 10 = 0, wherem > 4. LetW be a component of the scheme
D,0 and assume thad is non-singular at a generic point d8,¢g. Then either
P,,0 vanishes oW, or Wieq s invariant under the D1, D;)-flow.

Proof. Let p be a generic point oW,eq. If W is reduced,P,,# vanishes on
W. Assume thatV is non-reduced. Singeis a smooth point 0®, there exist an
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irreducible element € Ox ,, an integer > 2, integersb, c, invertible elements
£2,e3 € Oxp and elementsy, g2, g3 € Ox , such that the ideal ofV in Ox , is
of the form(h“, 8), and moreover

D]ﬂ = h% + g1 - 0

Do) = e-hP+¢g-6

D3 = e3-h®+g3-0

D20 = a-h* 1 -Dih+g1-h* +[g2 + D1g1] - 0.

(3.1.1)

We haveb > 1, becausePsf, hence(D?6 + D,0) - (D%0 — D,#), vanishes on
Wieg- If h does not divideD1h, we prove as in [A] thatP,,,0 vanishes olV: by
substituting the formulas above in the expressioR48fand D1 P36, one sees that
a has to equal 2 and by substituting in the expressioR,f16 (which is zero by
inductive hypothesis), one sees that_16 belongs tqh, 0); henceP,,,0 € (h?,6),
thatisP,,0|,y = 0.

If h divides D;h, the varietyW,eq is invariant under theD,-flow. Under this
assumption, théD,, D»)-invariance ofWeqis a consequence of Lemma 3.5 and
Lemma 3.8 below. O

Let us now turn to the case
dimOsing=n — 2, O is singular along/Vyeg.

(During the revision of the manuscript the preprint by Ein and Lazrsfeld [EL]
appeared proving that the ca®gng = n — 2 does not actually occur. Therefore,
Theorem 3.2, Lemma 3.6 and Lemma 3.7 below are no longer strictly necessary
for the present proof). We want to prove the following.

THEOREM 3.2 Let (X, [0]) be ani.p.p.a.v. of dimension Suppose the divisor
© is singular along a reduced subvariefyof codimension 1, and assume that the
K.P. equationPs;6 = 0 holds. Ther¥ is invariant under thé Dy, D5)-flow.

This theorem is consequence of Lemma 3.5, Lemma 3.7 and Lemma 3.8 below; it
will be proved later.

REMARK 3.3. We will make a strong use of the fact ttiahas codimension 2 in
X. ltis clearly in general false that, if the K.P. equation hotélss D1-invariant in
its singular points.

In view of the following general fact proved by J. Katlin [Ko] the theta divisor
cannot be ‘too singular’ along.

THEOREM 3.4 (Kolfr). Let (X, [0]) be an i.p.p.a.v.. IB is singular along an
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irreducible hypersurface, it has a local normal crossing singularity at a generic
point of Z.

LEMMA 3.5. Let (X, [©]) be an i.p.p.a.v. of dimensiom, let Z be a reduced
subvariety o of dimensiom — 2, and letD be an invariant vector field oX. If
© is D-invariant alongZ, thenZ is D-invariant.

Proof. If Z were notD-invariant, theD-span ofZ would be contained ii®.
This span would have dimension— 1, therefore it would be @-invariant com-
ponent of®. This is impossible because of the ampleness and the irreducibility
of ©. O

LEMMA 3.6. Suppose the divisap is singular alongZ, and assume that the
K.P. equationPs6 = 0 holds. Letp be a smooth point of andT,(Z) the tangent
space toZ atp. ThenD1, D, T,(Z) are not in general position, i.e.

dim((Dy, D, T,(Z))) < n — 1.

Proof. Since® is singular alongZ, we have that)|; = D16|z = D.0|z; =
D3|z = 0. It follows that P30|; = (D?6)?|z, thereforeD?60|; = 0. By 2.0 we
getD2P30|Z = [%D]_ng . D%0]|Z andD%P30|Z = [%(D%H)Z + 4(D1D29)2]|Z.
SincePsf is zero,D, P30 and D? P36 are also zero, and therefore we obtain

D1D,8|; = D36|; = 0. (3.6.1)
We now proceed by contradiction. Suppose there epgsts ZsmoothSuch that
<D1vD27TPo(Z)> = TPO(X)7

then the same equality must hold for everin a neighborhood’ of pg in Z. Let
p € U. For everyE € T,(X), there exist\, . such thattl = S + AD1 + pDo,
where S € T,(Z). As Dif|z = 0 andS € T,(Z) we haveEDf(p) =
(S + AD1 + uD2)D16(p) = 0. ThereforeED16|z = O, for everyE € Tp(X).
The assumption thdiD1, D2, T;,(Z)) = T,,(X) implies thatD, ¢ T;,(Z). By The-
orem 3.4, the tangent cone@atp is a pair of distinct hyperplanes whose inter-
section isT},(Z). Therefore, for a generi&’ € T),(X ), we have thatD10|z # 0.
This is a contradiction. O

LEMMA 3.7. Suppose the divisa® is singular alongZ, and assume that the
K.P. equationPs¢# = 0 holds. The diviso® is Di-invariant at each point of.

Proof. From the previous lemma, there exist functionand . on Zsmeoth NOt
simultaneously vanishing and such that

A(p) - D1+ p(p) - D2 € Ty(Z),
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for all p in Zsmeotn If # = 0 thenZ is D1-invariant. Assume: # 0; by induction
ona + (3, we prove thalDszﬂmZ = 0, for all integersw, 6. Let us assume that
D¢DSO|, = 0, for all o+ B < vo. We need only to show tha?? 16 vanishes on
Z. In fact, since\(p) - D1 + p(p) - D2 is in T,(Z), and sinceu is not identically
zero, the vectoD; is a combination oD, and a vector iff,(Z), for p generic
in Z; asD{0 vanishes ot for all « < v9 + 1, we have thanD§0|Z =0, for
alla+ 8 <+ 1. By 3.6.1,D§’0|Z = 0; hence we are doneif < 2. Assume
vp > 3. We distinguish two cases:

(@) D3 € (D1, Dy, T,(Z)), for all pin Z;
(b) D3 ¢ (D1, D2,T,(Z)), for p generic inZ.

Let us start with (a). SincBs3 is a combination oD, D, and a vector iff,(Z),
it follows thatD‘szﬂngZ = 0, for a + 3 + v < vo. Therefore, the only nonzero
terms in the restriction t@ of a derivative ofP36 are products of derivatives 6fof
order atleasto+1; asPsf = —£D160-0+ D30 D10 —2D20- D26+ ‘lower order
terms’ we obtain that the only nonzero termiaf°~2Psf)| , is D?°™9 - D} 19,
with coefficient—2(%°7) + §(2°°2) — 3(%22) (which is easily seen to be
nonzero). Therefore, @320 2P30| ; = 0, we must haveD}** 14|, = 0.

Let us deal with case (b). SindEngmz =O0foralla+ g < 3 < vp, we have
0= D3}Ps0|, = (—2D30 - D19 — 6D160 - D1D30)|,
0 = D1D3P30|; = (2D360 - D1D30)| .

It follows that D}0|; = 0, and we may assume, > 4. We want to compute
Dll’°+1P39|Z. Since any term oPs6 is a product of derivatives @fof order; andy,

wherei + j < 4, any term ofDll’°+1P39|Z is a product of derivatives @fof orderi

and;j, wherei+;j < v9+5 < 2up+2. Thus, sincedD§ D56, = Oforall e+ < vo,
any contribution to the restriction toof DZ°+1P39 must involve aDs3; therefore, by
2.0,D¥M P3|, = DY 2D1D30-0—2D30- D16)]| 2 = [—2(vo+1)+2) D H-
D1D30|z, where the last equality follows becaubgf|, = 0, D{'0|, = 0 for all

a < v. Hence, ifD1D3f|z # O, thean°+19|Z = 0 and we are done. It only
remains to consider the case wheérgDsf| ; = 0. If D1isinT,(Z) for p genericin
7, the varietyZ is D1-invariant,© is Ds-invariant alongZ, and we are done; so we
assume that, fgrgeneric inZ, the vectotD1 is notinT,(Z). Then, for dimensional
reasons],(X) = (D1, D2, D3,T,(Z)). SinceDfH, D1D,0 andD1 D30 all vanish
onZ, we haveD1Ef|; = 0forall E € To(X). By Theorem 3.4, the tangent cone
to © atp is a pair of distinct hyperplanes. Therefore, for a gengrie T, (X), we
have thatF D10|; # 0. This is a contradiction. O



314 GIAMBATTISTA MARINI

LEMMA 3.8 (Shiota [S], Lemma A, p. 359)Let 7 be a solution of the equa-
tion P37 = 0 in a neighborhood of a poingg in C™. If D{r(po) = 0 for all

integersa, thenDi‘DgT(po) = O for all integersa and 3.

Proof. Let us denote by, the (local)D1-integral complex line througho. By
hypothesisD{'7(po) = O, for all o, thus|z, = 0. We proceed by contradiction,
i.e. we assume that there exists 0 such thatD47|;,, # 0. Let

B, = min{| D5 D3r|z, # O},
¢ = min{y|B, =0},

w = min{g, + 2y},

o = maxy|B, +2y = w},

(3.8.1)

whereg, andc are allowed to be infinite. Note that < o < b < 00, 0 < fw <
00, w = By + 20 andw < 3, + 2y for all v. As 7|, = 0 we hava@o > 0 and

c> 1 Moreoveer‘DngﬂL1 =0, forall a, 8 < 3,. It follows that

if 3+2y <w, thenD{DSDIr|s, =0, 382
ify>0 and B+2y<w, thenD$DEDIr|,, =0. -

First, we prove that = ¢ (in particularc < oo). It is clear thato < c. If
o < cthenf, > 1 thus 2, — 2 > 0. Let us setdg = d4f - 6, Ay =
—2D30 - 0 + §D30 - D10 — 2D20 - D20, A, = —2D30 - 0 + 2D50 - Dy,
Az = 2D1D30-0—2D30-D10; sothatPsr = Ag+ A1+ Ao+ Aa. By 3.8.2we have
D37 72D [ Ag)|1, = D" 2D37[A4]|, = D37 2D [A3)|1, = O. Therefore

0 = DZ* 2DZ Pyrly, = DF EDF(A, = (2) - [2(3 D) — 202 2)]

(Dﬁ"Dgr) |z,, Where the last equality follows by 3.8.2; this is a contradiction
becauseDﬁ"Df’ﬂL1 # 0. Note thato = c impliesw = 2cand3, > w — 2y =
2c—2y> 2 forally <c—1. Let

w o= min{f, +2y|y <c},

i (3.8.3)
Yo = max{y|y <c¢, By + 2y = w}.

Note that, ag > 1 we havew < o < oco. Thus,w = B, + 2y0. Moreover, as

Y0 < ¢, we haves,, > 2. We want to computé)ﬁ70 D§+7°P3¢| 1,- By 3.8.3we
have

if y<c and B+2y<®, thenD¢DSDIr|, =0, 384
if p<vy<c and B+2y <, thenD$DIDIr|,, =0. -
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By 3.8.2and 3.8.4 we gé}ﬂ”o D0+70[A0+A1]|L1 =0, Dﬂvo—2D§+vo[A2]|Ll _
—2(“4) (D5 DYPr) - (D§7)|1y; i 70 < ¢ 1, thenDﬂ”O D50 Ag)| 1, = O;
30— - 1 thenD2™ 2D5 Ay, = D 2(2(7) — 2(4%)DuDir
Dirl|r, + ng_z[xiﬂ:zc,i;éc(---)D1D§T - D47]|z, = 0O (in fact, the coeffi-
cient 2°7°) — 2(”7“070) is zero). Therefore, & Dg”oszgﬂo Par|p, = —2(°*0)

(Dy° D7) - (D57)|,. On the other hand, by 3.8.1 and 3.8(&5°DPr) -
(D7) |1, # O, thus a contradiction. ]

Proof. (of Theorem 3.2) By Lemma 3.8 is Dj-invariant alongZ; then, by
Lemma 3.5,7 is Dj-invariant. Hence, by Lemma 3.8) is (D1, D»)-invariant
alongZ; so, by Lemma 3.57 is (D1, D;)-invariant. O

We shall use the following algebraic computation about the possible series expan-
sion of a solution of the K.P. equation. The following lemma is Lemma B from
Shiota, restated in a way that is more convenient to our purpose.

LEMMA 3.9 (Shiota [S], Lemma B, p. 359).et (S, £) be a polarized abelian
variety, D1 # 0, Dy, D3 € Tp(S). Assume thab is generated by D1, D;). Let
Y be a2-dimensional disk with analytic coordinatesnd A. Let 7 be a nonzero
section 0f0y ® HO(S, £) and assume that

(i) P3(Dy,Dz, D3+ 8; d)T =0,

(i) 7(t, A\ x) Z 7i(x) '\,
i,j>0

wherez € S (observe that; ; € H°(S, £) for all i andj). Also assumey , = 0,
wherep := min{j |3 : 7; j(-) # 0}. Then there exist local sections at zeraf
andOy ® HO(S, L), f ands), such that

T(ta )\,.’L‘) =\ f(ta >‘) ’ 1/)(t, )\,fL‘),
where(0,0,) # 0, £(0,0) = Oand/ (-,0) 0.

Proof. Step | (Shiota)we look for formal power series ihand A, f and v
as in the lemmasSince P3()\* - [...]) = A% . P3(...), we can assumg = 0.
Letv = max{i|Tio(-) = O}, fo = t” and7o(t,z) = Zis,Tio(z) - 77, so that
T = fo-Tomod()\). Note thatPs(7p) = 0, infact 0= P3(7) = t?”- P3(7o) mod\).
Note also thaty(0, z) = 7,0(z) # 0. It suffices to find constants and sections

¢ 0<i<v—11<4  gij(z) € HYS,L),i>v,j>1,
such that

(A x) = (fo+2fj(t)->\j) : (To(t,x) +ij(t,x)-v> ., (3.9.1)

jzl jzl
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where, forj > 1, we define
v—1 )
t) = Z Cij - tl, ZQZ,J tl v, (392)
=0 [>37

We now proceed by induction létbe a positive integer, and assume that we
found constantsw, forall1 < j <!-1,7i <v—1, and sectiong; ;(z), for all
1<j<l-1,%>v,such that 3 9.1 holds modu(al) Definer'(t, z) by

-1 -1
Tt A z) = (fo+2fj(t)-v> : (To(t,fl?) +er(t,g:)-v>
j=1 j=1
AL () mod A, (3.9.3)

We need to prove that there exist constanis: < v — 1, and sectiong; ;,i > v,
such that

chl th 7ot z) + > giulx)

i>v

In fact, definingf;, 7, as 3.9.2 requires, it is clear that 3.9.1 holds moduld?).
We definePs(r, s) = 3[Ps(r + s) — P5(r) — Ps(s)]. By substitution in 2.0 we get

Ps(D1, D2, D3+ 0;;d)(r, 5)
= —%(D r-s+Dfs-r)+ g(D:fr - Dys + D3s - Dyr)
—2D%r . D3s — (D3s -1+ D3r - s) +2Dor - Das +d -1 s
+ (D11~)37‘ - s+ D1D3s - r)— (l~)37“ - D1s + Dss - Dyr)
+ (D10yr - s + D10ys - r) — (Oyr - D1s + Oys - D1r). (3.9.49)

Note thatPs is a symmetricC[\]-bilinear operator and tha®s(r) = P3(r,r). If
g = g(t, \) does not depend on by a straightforward computation we obtain

P3(g-r,g-s)=g? P3(r,s)

. . L y (3.9.5)
Py(tt - t) - s) =t . Py(r,s) + (i — j)t"H =1 (Dyr - s — D1s - )

We defineg = g(t,A) = Si24f;(t) - M andg(t, A, z) = S,_47(t,2) - M, so
thatt = g- ¢+ A -7/ mod(>\l+1). Thus, by 3.9.5 the foIIowmg equalities hold
modulo(\"1):0 = P3(1) = P3(g- ¢+ A -7') = Ps3(g-¢) +2P3(g- ¢, N - 7') =
g2 - Pa(p) + 2\ P3(g - ¢, 7') = g% - P3(¢) + 2\'P3(t” - 7o, 7'). In particular we
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getg? - P3(¢) = 0 mod(\)). Sinceg?(t,\) = t? mod ()\) is nonzero, we get
Ps3(¢) = 0 mod (). Sinceg? - P3(¢) + 2\ P3(¢” - 7o, 7') = 0 mod (A1) and
(again)g?(t, \) = t* mod(\) we get

P3(t” - 79,7') =0 mod(t%). (3.9.6)

We now proceed by induction anassume that’ (¢, z) = Eﬁ"z’olci,l St To(t, x) +
n(z) - t, modto*1), where 0< ig < v — 1. SincePs(7o, 7o) = P3(70) = 0, by
3.9. 5we gePs(t” -7, t*-70) = 0. Thus, by substitutionin 3.9.6 and (agaln) by 3.9.5
we get that the following equalities hold moduilﬁ“O) 0= P3(t" - 7o, 225 c”

o 4+ n(z) - 19) = Py(t” - 7o,n(x) - 19) = Pa(t” - 0(0,x),n(x) - t°) =

(v —io) - 1”0~ [D170(0, x) - n(x) — D1n(x) - 70(0, )] = —(v —ig) - t" Tt -
[70(0, z)]?- D1(n(x) /7o(0, z)). It follows thatn(z) /70(0, ) is Ds-invariant; on the
other hand, the zeroesf 0, -) do not contairD1-integral curves, otherwise, by 3.8
(applied torp), we would haver, o(z) = 70(0,z) = 0. Thusn(z) = ¢y - 70(0, ).

It follows thatr' (¢, z) = £% oc; - t - To(t, z) mod(to+1), and we are done.

Step I, we prove that botty and+) can be assumed to be regular functions.
As (0,0,-) # 0 we are allowed to fix amg such that)(0,0, zp) # 0 and con-
sider the formal power seriegt, A) such that)(t, A, zo) - ¢(t,A) = 1. Consider
F(t,A) = f(t,A) -9(t, A, m0) andep(t, A, z) := (L, A, x) - q(t, A). Itis clear that

T(t, A\, z) = M- f(t,A) -p(t, N\, z). AS (L, A, z0) = 1 andr(t, A\, zo) are both
convergentf(t A) is also convergent. Sln@e(t A, ) andf(t, A) are convergent,
1/;(15 >\ ,x) is also convergent. Note that d|V|desf(t 0) =0, f(t 0 #0and
1/;( 0,-) # 0, i.e. the properties of andy we need still hold forf andq. O

LEMMA 3.10. As usual, assume thdtf = O, for all i« < m — 1. Let W be
a component of the scherhig® and letp be a generic point oW,eq. Either P,,,0
vanishes onV, or there exist irreducible elementsk of Ox , such that

(i) the ideal oW eqatpis (b, k);
(i) the hypersurfacegh = 0}, {k = 0} are smooth ap;
(iii) there exists an integérsuch thatDs6 ¢ (k,h') and D¢ D56 € (k, hl), for all
>0

Proof. If © is not singular alongV,eq We takek = 0 and we definé: as in
3.1.1. We proved that eithd?,,0|,y = O, or h dividesD1h in Og . If h divides
D1hin Og ,, by substitution in the expression 686, we get 2 = a + ¢, where
the notations are the ones of the formulas 3.1.3. 3 a then(D? — D,)6, thus
P,,0, vanishes o. It follows that eitherP,,0|,,, = 0, or ¢ < b < a. Therefore
the lemma holds with = b. Let us turn to the case whegeis singular alongVeg.
By Theorem 3.4, we can write

0=h-k,
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whereh andk satisfy (i), (ii) and belong to the analytic completion©f ,. We
prove thath, k satisfy (iii). Then, taking: and % approximating: andk to the
orderj (5 > 0), one has that (i), (ii) and (iii) hold. Thus, we can assume that
h,k € Ox,. As there are nd;-invariant components @, the element. does
not divide D14 in Ox p, likewise k does not divideD1k in Ox;,, (and similarly

for D;) and we can write

Dih = e1-k*+g1-h,
Dik = &1-h%+ g1 - k,
Doh = 52-k”+gz-h,
Dok = &p-h 4+ G- k,

whereey, £1, 2, &2 are invertiblea, @, b, b > 1. Note that, by 3.0, we are allowed
to assume: > b,a > b. Note thathDgh,D‘ngk € (h,k), for all «, 3, since,
by Theorem 3.2WV,eqis (D1, D2)-invariant. It follows that

D$O = D (h-k) € (h -k, kT h3Y 0 VYo > 0;
DYDEO = DEDE(h - k) € (h-k, k"L, b0, Va, B> 0.

We now claim that eithePD30 & (h - k, k**1, hb*1), or P8,y = 0. Since(h -

k, kb1 pbHY) = (b, k1) N (k, h**1) we have that the previous claim (up to
interchanging the roles played byandk) implies the lemma. So, let us prove our
claim. First, observe that iD3f € (h, k*TY) N (k, A**1) then by substitution in

2.0 we get 0= P30 = 2- 52 - h®+2 mod(k, h%+0+2). Thus D +2 > a + b + 2.
Sincea > b we getb = a. Similarly, computingPs# modulo (h, k¢+**2) we

geta = b. It follows that(D? — D,)0 € (h - k, k%1, h3+1). Note that the ideal
Ipo is (h - k ekt + £1h%T1), whereey, £, are invertible. Thudp,e O (h -

k, k%2 hot+2) SincePsf = --- = P, 10 = 0 by inductive hypothesis, by the
first one of formulas 2.5 (with = m) we getP,,,0]yy = —(D? — D2)0 - A,,, 16,
where we keep the notation of the formulas 2.5. We claim that it suffices to prove
thatA,,,_10 € (h, k). Indeed, sincéD? — D,)0 isin (h -k, k21, h+1) if A,,_10

isin (h, k), thenP,0lyy = —(D? — D2)0 - A, 16 € (h -k, k*2 hot2) C Ip e,

and we are done. By inductive hypothesis, the left-hand side of the first formula
2.5 (withs = m — 1) is zero; it follows that the right hand side must be zero, in
particular we get

— (D2 — D)0 - Apy_20 — D10 - (A1 + 2D1A,,_2)0 =0 mod6). (3.10.1)

It follows thatA,,, 0 € (h, k), otherwise we would have(Df — D)0 € Ip,e
and we would be done. We now compute the left-hand side of 3.10.1 modulo the
ideal(h-k, k%2, h%2) (note that this ideal contairi8) = (h-k)). SinceA,, _»0 €



A GEOMETRICAL PROOF OF SHIOTAS THEOREM 319

(h,k) and(D? — D,)0 € (h - k, k**1 hat1) we have that D? — D,)0 - A,, 20
is in (k- k, k%72, h3%2). Since D10 is in (h - k, k%1, h3*+1) and A,,_»0, hence
D1A,,_20,isin (h,k), alsoD10 - D1A,,_20 is in (h - k, k*t2, h%*2). Therefore,
by 3.10.1

—D10 - Apy_16 € (h - k, k22 B3T3, (3.10.2)

SinceD10 = Dy(h-k) = e- k*T* + - K mod(h - k) it follows that D16 is not
in (h-k, k%2, h%2). Therefore, by 3.10.2),,,_10 is in (h, k) and we are donel

4. End of the proof

Let us go back to the K.P. hierarchy. We assume, by induction, that we found
invariant vector field9,, ..., D,,_1, and constantd,, ..., d,, such that

P(D1,...,D;;dgy...,dizx1)0 =0, Vi<m—1.

We need to find an invariant vector fielt,, and a constand,,,;1 such that
Pm(Dl, eeeyDpyida, ... ,dm+1)9 =0.

LetP,,0 = Pm(Dl, veeyDiy—1,05dag, . ..y dip, 0)9 Recallthat ifpm9|D1@ =0
we are done by Remark 2.6. We proved that then the only components of the scheme
D10 where P,,0 might not vanish are, set-theoreticallyp, D,)-invariant. In
order to conclude our proof of Shiota’s Theorem we proceed by contradiction. Let
W be acomponent dD;10 such tha,,0|yy # 0. Thus Wieqis (D1, D2)-invariant.

We denote byX’ the(D1, D,)-invariant minimal abelian subvariety &f. Since
D; # 0 we haveX’ # 0, on the other han®V contains a translate df’, therefore
X' # X. Note thatWeq is To(X')-invariant. LetX"” be the complement ok’ in
X, relative to the polarizatio®. This means thak” is the connected component
containing zero of the kernel of the composite miap— Pic’(X) — Picd(X").
Here the first map sendgo the class 00, — ©, and the second map is the natural
restriction.

Let R := (W N X")req- Note thatWieq is theTp(X')-span ofR, i.e. Wied =
R + X', and thatR has codimension 2 iX"”. In the sequel we shall work on
X" x X'. Observe tha@ is naturally a theta function also farOx (©) via the
sum mapr: X” x X' — X. Infact, asTp(X") x To(X') = To(X) (canonically),
there is a canonical identification of the universal covekdfx X' with the one
of X which commutes with the isogeny X" x X' — X, (¢",2') — 2" + 2’

In particular, this property allows us to writeinstead ofr*6 while working on
X" x X',

Letusfixgeneral points€ R, z' € X', sothap := (b, z’) is a general point of
T~ (Wired). Let us decomposBz asDs+ DY, whereD} € To(X'), Dy € To(X").
SinceX' is generated by théD1, D,)-flow, D% is nonzero by Lemma 3.10 (ii).
Let L be the (analytic) germ at zero of tH#&-integral line inX" through zero, let
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C be the germ at of a smooth curve X" meetingL + b transversally only a,
and letY” be the surfac€ + L in X”. LetQ be the subvariety’ x X’ of X" x X'.
Let A be a parameter o@ vanishing ath and let¢ be the coordinate o
(vanishing at zero) witlh, = D%. Thus\, ¢ are parameters dri likewise they are
naturally parameters on the prodétt Y x X'. Note that[DngDg(. e =

D¢DIDY(.. . |o). ONQ we write
0t A z) = mj(z)-t"- N, (4.1)

i,j>0
wherez is in X’. We recall that by the definition of the complementXf there

is an isomorphisn{t:O0(0))|x» = O(0)|x for all z € X", wheret, denotes

the translationy — vy + x. Thus thef(t, \,-)’'s are sections of the restriction
©|x'. Note thatr; ; depends on the poirit and the curveC chosen, and that

mi; = (1/i' - i1 ((67/0N)D§'0)(0,0,-) is in HO(X',0|x). Indeed, since the

(¢, A, -)'s are sections of the restricti@h| x+, So are its derivatives with respect to
tand\.

We use Lemmas 3.9 and 3.10 to reach a contradiction. Our analysis is divided
naturally in two cases which correspond to whether the varietis not D5-
invariant, or it isD5-invariant.

Let us first assume thak is not D3-invariant. Let us choos€ in such a
way that it meetsR transversally only ab, 9y ¢ (T,(R), D5). This is possible
becauseR has codimension 2 iX"”. We haveY N R = {\ = ¢t = 0}, thus
QN7 Weed) = {X =t = 0} x X'. It follows that ;o # 0 for some,
and, moreoverygo(z) = O (otherwise we would not havi, x» = 0). Because
of Lemma 3.9 we havé = f(t,\) - ¢(t, A, z), where f(0,0) = 0. We have
QnrW =Qn{f =0} n{D1H = 0} D Qn{f = 0}. Moreover, since
f(0,0) = 0, it follows thatQ N 7~ has codimension 1 iR. This contradicts
QNT I Wied) = {A =t =0} x X".

Let us now assume th& is D3-invariant. Choos€, depending on the point
#', in such a way that it mee® transversally only ai, andC x {z'} C {k = 0},
wherek is as in Lemma 3.10. Since the lodi = 0} and{k = O} are transverse
by 3.10 (i) , andC meetsR transversally ab, we may assume that is the
restriction ofh to C x {z'} = C. We have thaf) N 77 1(Wieq) = {A = 0}. Let
p = min{j|3 : 7; ;(-) # O}. Note that, a¥ depends on’, 7, ; depends on’. We
want to prove thato, = 0. For this it suffices to prove tthszﬂro,p(z’) =0,
for all & and g, since the flow generated h9; and D, is dense inX’. Since

C = {t = 0}, by 4.1 we have
D§DYlcwxr = DEDLO(0, N, ) = M- DFDFro,(), modA+l), 4.2)
D3f|cxx = D30(0, ), -) =0, mod(A?). -

By Lemma 3.10, in the local rin@y;_q, , we have thalDngo € (h)', D30 ¢
(h)', for some, whereh is asin 3.10. Sinca s the restriction oh toC x {z'} 2 C,
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in the local ringO¢ ,1,,, We have thatD$ D59 € (M), D3f & (M) We have
[ > p by the second formulas in 4.2. On the other hand, since p we must
haveD§ D3 o ,(2') = O for all « and 3, by the first formulas in 4.2. Sinc&' is

generated by théD1, D;)-flow andD%Dgro,p(x’) = 0 for all « and 3, we get

10,, = 0. Hence we can apply Lemma 3.9. It follows that the equality 4.1 takes the
form O(t, A, z) = N - f(¢, A) - (¢, A, z), so thatf divides bothd|q and D16|q.
Therefore,2 N 7 (Wreq) D 2 N {f = 0}. By Lemma 3.9,f(0,0) = 0 and
f(-,0) Z 0. AsQNT Y (Wied) D QN {f = 0}, the locus N 71 (Wieq) CONtains
(locally atp) a component which is not the componént= 0}. This contradicts

the fact that, locally ap, 2 N 7~1(Wieq) = {) = 0}. =

REMARK 4.3. If one could show thaty (not only its underlying reduced scheme
Wred) Were (D1, Do)-invariant it would easily follow by the very expression of
P,,0 thatP,,,0 vanishes omV. In fact, in this cas€(z + a) (wherea € X') would
vanish onW. Hence,DfG andD»6 would vanish oV as well.
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