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Thermal equilibrium states

A primary role in thermodynamics is played by the equilibrium
distribution.

Gibbs states

Finite quantum system: A matrix algebra with Hamiltonian H and
evolution τt = Ade itH . Equilibrium state ϕ at inverse temperature
β is given by the Gibbs property

ϕ(X ) =
Tr(e−βHX )

Tr(e−βH)

What are the equilibrium states at infinite volume where there is
no trace, no inner Hamiltonian?



von Neumann algebras

H a Hilbert space. B(H) algebra of all bdd linear operators on H.

M⊂ B(H) is a von Neumann algebra if it is a ∗-algebra and is
weakly closed. Equivalently (von Neumann density theorem)

M =M′′

with M′ = {T ∈ B(H) : TX = XT ∀X ∈M} the commutant.

A C ∗-algebra is only closed in norm.

Observables are selfadjoint elements X of M, states are
normalised positive linear functionals ϕ,

ϕ(X ) = expected value of the observable X in the state ϕ

M abelian ⇔ M = L∞(X , µ).

A factor M is in general not of type I, i.e. not isomorphic to B(H)



KMS states (HHW, Baton Rouge conference 1967)

Infinite volume. A a C ∗-algebra, τ a one-par. automorphism group
of A. A state ϕ of A is KMS at inverse temperature β > 0 if for
X ,Y ∈ A ∃ function FXY s.t.

(a) FXY (t) = ϕ
(
X τt(Y )

)
(b) FXY (t + iβ) = ϕ

(
τt(Y )X

)
FXY bounded analytic on Sβ = {0 < =z < β}

ϕ
(
τt (Y )X

)∣∣β
ϕ
(
Xτt (Y )

)

KMS states generalises Gibbs states, equilibrium condition for
infinite systems



Tomita-Takesaki modular theory

M be a von Neumann algebra on H, ϕ = (Ω, ·Ω) normal faithful
state on M. Embed M into H

M X 7→X∗−−−−−→
isometric

M

X→XΩ

y yX→XΩ

H S0:XΩ7→X∗Ω−−−−−−−−→
non isometric

H

S = S̄0, ∆ = S∗S > 0 positive selfadjoint

t ∈ R 7→ σϕt ∈ Aut(M)

σϕt (X ) = ∆itX∆−it

intrinisic dynamics associated with ϕ (modular automorphisms).



Tomita-Takesaki modular theory

By a remarkable historical accident, Tomita announced the
theorem at the 1967 Baton Rouge conference. Soon later Takesaki
completed the theory and charcterised the modular group by the
KMS condition.

• σϕ is a purely noncommutative object

• If ϕ(X ) = Tr(ρX ) (type I case) then σϕt (X ) = ρitXρ−it and
log ∆ = logρ− log ρ′

• σϕ is characterised by the KMS condition at inverse temperature
β = −1 with respect to the state ϕ.

• σϕ is intrinsic modulo scaling, the inverse temperature given by
β the rescaled group t 7→ σϕ−t/β is physical



Bekenstein’s bound

For decades, modular theory has played a central role in the
operator algebraic approach to QFT, very recently several physical
papers in other QFT settings are dealing with the modular group,
although often in a heuristic (yet powerful) way!

I will discuss the Bekenstein bound, a universal limit on the
entropy that can be contained in a physical system with given size
and given total energy

If R is the radius of a sphere that can enclose our system, while E
is its total energy including any rest masses, then its entropy S is
bounded by

S ≤ λRE

The constant λ is often proposed λ = 2π (natural units).



Casini’s argument
Subtract to the bare entropy of the local state the entropy
corresponding to the vacuum fluctuations. V bounded region.

The restriction ρV of a global state ρ to von Neumann algebra
A(V ) has formally entropy given by

S(ρV ) = −Tr(ρV log ρV ) ,

known to be infinite. So subtract the vacuum state entropy

SV = S(ρV )− S(ρ0
V )

with ρ0
V the density matrix of the restriction of the vacuum state.

Similarly, K Hamiltonian for V , consider

KV = Tr(ρVK )− Tr(ρ0
VK )

Bekenstein bound is now SV ≤ KV which is equivalent to the
positivity of the relative entropy

S(ρV |ρ0
V ) ≡ Tr

(
ρV (log ρV − log ρ0

V )
)
≥ 0 ,



Araki’s relative entropy

An infinite quantum system is described by a von Neumann
algebra M typically not of type I so Tr does not exists; however
Araki’s relative entropy between two faithful normal states ϕ and
ψ on M is defined in general by

S(ϕ|ψ) ≡ −(η, log ∆ξ,η η)

where ξ, η are cyclic vector representatives of ϕ,ψ and ∆ξ,η is the
relative modular operator associated with ξ, η.

S(ϕ|ψ) ≥ 0

positivity of the relative entropy

Relative entropy is one of the key concepts. We take the view that
relative entropy is a primary concept and all entropy notions are
derived concepts



Analog of the Kac-Wakimoto formula (L. ‘97)

The root of our work relies in this formula for the incremental free
energy of a black hole (cf. the Kac-Wakimoto formula,
Kawahigashi, Xu, L.)

Hρ be the Hamiltonian for a uniformly accelerated observer in the
Minkowski spacetime with acceleration a > 0 in representation ρ
(localised in the wedge for Hρ)

(Ω, e−tHρΩ)
∣∣
t=β

= d(ρ)

with Ω the vacuum vector and β = 2π
a the inverse Hawking-Unruh

temperature. d(ρ)2 is Jones’ index.

The left hand side is a generalised partition formula, so log d(ρ)
has an entropy meaning in accordance with Pimsner-Popa work.

Here we generalise this formula



CP maps, quantum channels and entropy
N ,M vN algebras. A linear map α : N →M is completely
positive if

α⊗ idn : N ⊗Matn(C)→M⊗Matn(C)

is positive ∀n (quantum operation)
ω faithful normal state of M and α : N →M CP map as above.
Set

Hω(α) ≡ sup
(ωi )

∑
i

S(ω|ωi )− S(ω · α|ωi · α)

supremum over all ωi with
∑

i ωi = ω.
The conditional entropy H(α) of α is defined by

H(α) = inf
ω
Hω(α)

infimum over all “full” states ω for α. Clearly H(α) ≥ 0 because
Hω(α) ≥ 0 by the monotonicity of the relative entropy .
α is a quantum channel if its conditional entropy H(α) is finite.



Bimodules and CP maps

Let α : N →M be a completely positive, normal, unital map and
ω a faithful normal state of M

∃! N −M bimodule Hα, with a cyclic vector ξα ∈ H and left and
right actions `α and rα, such that

(ξα, `α(n)ξα) = ωout(n) , (ξα, rα(m)ξα) = ωin(m) ,

with ωin ≡ ω, ωout ≡ ωin · α. Converse is true.

CP map α←→ cyclic bimodule Hα
We have

H(α) = log Ind(Hα) (Jones’ index)



Promoting modular theory to the bimodule setting

H an N −M-bimodule with finite Jones’ index Ind(H)

Given faithful, normal, states ϕ,ψ on N and M, I define the
modular operator ∆H(ϕ|ψ) of H with respect to ϕ,ψ as

∆H(ϕ|ψ) ≡ d(ϕ · `−1)
/
d(ψ · r−1 · ε) ,

Connes’ spatial derivative, ε : `(N )′ → r(M) is the minimal
conditional expectation

log ∆H(ϕ|ψ) is called the modular Hamiltonian of the bimodule H,
or of the quantum channel α if H is associated with α.



Properties of the modular Hamiltonian

If N , M factors

∆it
H(ϕ|ψ)`(n)∆−itH (ϕ|ψ) = `

(
σϕt (n)

)
∆it
H(ϕ|ψ)r(m)∆−itH (ϕ|ψ) = r

(
σψt (m)

)
(implements the dynamics)

∆it
H(ϕ1|ϕ2)⊗∆it

K(ϕ2|ϕ3) = ∆it
H⊗K(ϕ1|ϕ3)

(additivity of the energy)

∆it
H̄(ϕ2|ϕ1) = d−i2tH ∆it

H(ϕ1|ϕ2)

If T : H → H′ is a bimodule intertwiner, then

T∆it
H(ϕ1|ϕ2) = (dH′/dH)it∆it

H′(ϕ1|ϕ2)T

Connes’s bimodule tensor product w.r.t. ϕ2; dH =
√
Ind(H)



Physical Hamiltonian

We may modify the modular Hamiltonian in order to fulfil the right
physical requirements (additivity of energy, invariance under charge
conjugation,...)

K (ϕ1|ϕ2) = − log ∆H(ϕ1|ϕ2)− log d

is the physical Hamiltonian (at inverse temperature 1).

The physical Hamiltonian at inverse temperature β > 0 is given by

−β−1 log ∆− β−1 log d

From the modular Hamiltonian to the physical Hamiltonian:

− log ∆
shifting−−−−→ − log ∆− log d

scaling−−−−→ β−1
(
− log ∆− log d

)
The shifting is intrinsic, the scaling is to be determined by the
context!



Modular and Physical Hamiltonians for a quantum channel

We now are going to compare two states of a physical system, ωin

is a suitable reference state, e.g. the vacuum in QFT, and ωout is a
state that can be reached from ωin by some physically realisable
process (quantum channel).

α : N →M be a quantum channel (normal, unital CP map with
finite entropy) and ωin a faithful normal state ofM. ωout = ωin ·α

log ∆α ≡ log ∆Hα

Kα = β−1KHα = β−1
(
− log ∆Hα − log dHα

)
(physical Hamiltonian at inverse temperature β)

Kα may be considered as a local Hamiltonian associated with α
and the state transfer with input state ωin.



Thermodynamical quantities

The entropy S ≡ Sα,ωin of α is

S = −(ξ̂, log ∆αξ̂)

where ξ̂ is a vector representative of the state ωin · r−1 · ε in Hα.

The quantity
E = (ξ̂,K ξ̂)

is the relative energy w.r.t. the states ωin and ωout.

The free energy F is now defined by the relative partition function

F = −β−1 log(ξ̂, e−βK ξ̂)

F satisfies the thermodynamical relation

F = E − TS



A form of Bekenstein bound

As F = 1
2β
−1H(α), we have

F ≥ 0 (positivity of the free energy)

because
H(α) ≥ 0 (monotonicity of the entropy)

So the above thermodynamical relation

F = E − β−1S

entails the following general, rigorous version of the Bekenstein
bound

S ≤ βE

To determine β we have to plug this general formula in a physical
context



Fixing the temperature in QFT

O a spacetime region s.t. the modular group σωt of the local von
Neumann algebra A(O) associated with vacuum ω has a geometric
meaning. So there is a geometric flow θs : O → O and a
re-parametrisation of σωt that acts covariantly w.r.t θ.

Well known illustration concerns a Rindler wedge region O of the
Minkowski spacetime. The vacuum modular group ∆−it of A(O)
w.r.t. the vacuum state is here equal to U(βt), with U the boost
unitary one-parameter group acceleration a and β the Unruh
inverse temperature. Re-parametrisation of the geometric flow is
the rescaling by inverse temperature β = 2π/a.

Connes and Rovelli suggested to define locally the inverse
temperature by

βs =

∥∥∥∥dθsds

∥∥∥∥
the Minkowskian length of the tangent vector to the modular

orbit. Namely dτ = βsds with τ proper time



Schwarzschild black hole

Schwarzschild-Kruskal spacetime of mass M > 0, namely the
region inside the event horizon, and N ≡ A(O) the local von
Neumann algebra associated with O on the underlying Hilbert
space H, O Schwarzschild black hole region, ω vacuum state

H is a N −N bimodule, indeed the identity N −N bimodule
L2(N ) associated with ω.

The modular group of A(O) associated with ω is geometric and
corresponds to the geodesic flow. KMS Hawking temperature is

T = 1/8πM = 1/4πR

with R = 2M the Schwarzschild radius, then

S ≤ 4πRE

with S the entropy associated with the state transfer of ω by a
quantum channel, and E the corresponding relative energy.



Conformal QFT

Conformal Quantum Field Theory on the Minkowski spacetime,
any spacetime dimension. OR double cone with basis a radius
R > 0 sphere centered at the origin and A(OR) associated local
vN algebra.

The modular group of A(OR) w.r.t. the vacuum state ω has a
geometrical meaning (Hislop, L. 1982):

∆−isOR
= U

(
ΛOR

(2πs)
)

with U is the representation of the conformal group and ΛOR
is a

one-parameter group of conformal transformation leaving OR

globally invariant and conjugate to the boost one-parameter group
of pure Lorentz transformations.



The inverse temperature βR =
∣∣∣∣ d

ds ΛOR
(s)x

∣∣∣∣
s=0

in OR is maximal
on the time-zero basis of OR , in fact at the origin x = 0 with value

βR = πR

So
S ≤ πRE

with S and E the entropy and energy associated with any
quantum channel by the vacuum state.



Boundary CFT

The analysis is less complete. Yet it shows up new aspects as the
temperature depends on the distance from the boundary.

1+1 dimensional Boundary CFT on the right Minkowski half-plane
x > 0. The net A+ of von Neumann algebras on the half-plane is
associated with a local conformal net A of von Neumann algebras
on the real line (time axes) by

A+(O) = A(I ) ∨ A(J) ;

Here I , J are intervals of the real line at positive distance with
I > J. We fix O = I × J.



A double−cone

O = I x J

I

J

O

Figure: BCFT

(More generally a finite-index extension of A is needed).

There is a natural state with geometric modular action (Martinetti,
Rehren, L.), that corresponds to the chiral “2-interval state” and
geometric action of the double covering of the Möbius group.



With R > 0, let OR be the dilated double cone associated with the
intervals RI , RJ

The maximal inverse temperatures are related by

βOR = R βO .

By choosing the KMS inverse temperatures equal to the maximal
temperature, with S and E the entropy and energy in OR with
respect to the geometric state and a quantum channel, we have

S ≤ λORE

where the constant λO is equal to βO .



Summary

von Neumann algebra ←→ quantum system

CP map with finite entropy between q. systems ←→ quantum channel

quantum channel ←→ finite index bimodule

finite index bimodule and state −→ modular Hamiltonian

modular Hamiltonian & physical functoriality −→ phys. Hamiltonian

modular and physical Hamiltonians −→ F = E − TS

F = E − TS & autom. positivity of the free energy F −→ S ≤ βE

S ≤ βE & geometrical modular flow −→ Bekenstein’s bound


