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Prologue

To become a mathematician
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A simple relation

squares odds

12 = 1 1− 0 = 1

22 = 4 4− 1 = 3

32 = 9 9− 4 = 5

42 = 16 16− 9 = 7

52 = 25 25− 16 = 9

· · · · · ·

difference of consecutive squares = sequence of odd numbers

(n + 1)2 − n2︸ ︷︷ ︸
general formula

= n2 + 2n + 1− n2︸ ︷︷ ︸
proof

= 2n + 1︸ ︷︷ ︸
result
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Pythagorean Theorem

Euclid’s proof (reconsidered by Polya)
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Pythagorean Theorem

: =
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The cycle Phys-Math-Math-Phys

“Nessuna humana investigazione si può dimandara vera scienzia
s’essa non passa per le matematiche dimonstrazioni”.
Leonardo da Vinci, Trattato della Pittura, 1500 circa

Physics
experiment−−−−−−→

theory
Physicsx y

Mathematics
art←−−−−−−

formalism
Mathematics

“The Unreasonable Effectiveness of Mathematics in the Natural
Sciences.”
Eugene Wigner, Comm. Pure Appl. Math. 1960
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Part I

General introduction

Noncommutativity and modular time
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Time as derived quantity

classical static space→ no time

quantum space→ quantum fluctuations

no static quantum space may exist

noncommutativity generates time
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The arrow of time

The arrow of time is viewed both classically and in quantum
physics (Copenhagen interpretation)

thermodynamics→ positive entropy

quantum mechanics→ collapse of the wave function

Known question: is there a general frame to encompass both?

Of course, we keep in mind that time is a relative concept as we
learnt from Einstein.
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Quantum Mechanics and Noncommutativity

Planck

↙ ↘
Schrödinger Heisenberg

↘ ↙
von Neumann uniqueness

• Schrödinger:

i~
∂

∂t
ψ(x , t) = Hψ(x , t)

Differential equations

• Heisenberg:
PQ − QP = i~I

Linear operators on Hilbert space, noncommutativity is
essential!
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Operator Algebras

H = Hilbert space,

B(H) = algebra of all bounded linear operators on H.

Algebraic structure: linear structure, multiplication: B(H) is a
∗algebra

Derived structures:

Order structure: A ≥ 0⇔ A = B∗B: algebraic structure
determines order structure

Metric structure:
||A||2 = inf{λ > 0 : A∗A ≤ λI}: algebraic structure determines
metric structure

C ∗ property of the norm:
||A∗A|| = ||A||2. B(H) is a C ∗−algebra
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C ∗-algebras = noncommutative topology

Gelfand-Naimark thm. ∃ contravariant functor F between
category of commutative C ∗-algebras and category of locally
compact topological spaces:

A
F−→ spec(A)

|| ||
C (X )

F−1

←−− X

C ∗-algebra = dual of a topological space

Every C ∗-algebra is isomorphic to a norm closed ∗-subalgebras of
B(H).

Noncommutative geometry = ∗-subalgebras of C ∗-algebras
+ structure (spectral triple), Connes NC geometry.
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von Neumann algebras = noncommutative measure theory

M⊂ B(H) is a von Neumann algebra if M is a ∗-algebra on H
and is weakly closed. Equivalently (von Neumann density theorem)

M =M′′

with M′ = {T ∈ B(H) : TX = XT ∀X ∈M} the commutant.

M abelian ⇔ M = L∞(X , µ):

(M = {Mf : g ∈ L2 7→ fg ∈ L2})

von Neumann algebra = dual of a measure space

Physics: Observables are selfadjoint elements X of M, states are
normalised positive linear functionals ϕ,

ϕ(X ) = expected value of the observable X in the state ϕ
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Operator Algebras

Classical
Commutative

Quantum
Noncommutative

Manifold X
C∞(X )

∗-algebra
A

Topological space X
C (X )

C ∗-algebra
A

Measure space X
L∞(X , µ)

von Neumann algebra
A
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Quantum calculus with infinitely many degrees of freedom

CLASSICAL
Classical variables
Differential forms

Chern classes

Variational calculus
Infinite dimensional manifolds

Functions spaces
Wiener measure

QUANTUM

Quantum geometry
Fredholm operators

Index
Cyclic cohomology

Subfactors
Bimodules, Endomorphisms

Multiplicative index
Supersymmetric QFT, (A,H,Q)
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Thermal equilibrium states

A primary role in thermodynamics is played by the equilibrium
distribution.

Gibbs states

Finite quantum system: A matrix algebra with Hamiltonian H and
evolution τt = Ade itH . Equilibrium state ϕ at inverse temperature
β is given by the Gibbs property

ϕ(X ) =
Tr(e−βHX )

Tr(e−βH)

What are the equilibrium states at infinite volume where there is
no trace, no inner Hamiltonian?
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KMS states (HHW, Baton Rouge conference 1967)

Infinite volume. A a C ∗-algebra, τ a one-par. automorphism group
of A. A state ϕ of A is KMS at inverse temperature β > 0 if for
X ,Y ∈ A ∃ function FXY s.t.

(a) FXY (t) = ϕ
(
X τt(Y )

)
(b) FXY (t + iβ) = ϕ

(
τt(Y )X

)
FXY bounded analytic on Sβ = {0 < =z < β}

ϕ
(
τt (Y )X

)∣∣β
ϕ
(
Xτt (Y )

)

KMS states generalise Gibbs states, equilibrium condition for
infinite systems
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Tomita-Takesaki modular theory

M be a von Neumann algebra on H, ϕ = (Ω, ·Ω) normal faithful
state on M. Embed M into H

M X 7→X∗−−−−−→
isometric

M

X→XΩ

y yX→XΩ

H S0:XΩ7→X∗Ω−−−−−−−−→
non isometric

H

S = S̄0, ∆ = S∗S > 0 positive selfadjoint

t ∈ R 7→ σϕt ∈ Aut(M)

σϕt (X ) = ∆itX∆−it

intrinisic dynamics associated with ϕ (modular automorphisms).
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Modular theory and temperature

By a remarkable historical accident, Tomita announced the
theorem at the 1967 Baton Rouge conference. Soon later Takesaki
completed the theory and charcterised the modular group by the
KMS condition.

• σϕ is a purely noncommutative object (trivial in the
commutative case)

• it is a thermal equilibrium evolution If ϕ(X ) = Tr(ρX ) (type I
case) then σϕt (X ) = ρitXρ−it

• arrow of modular time is thermodynamical KMS condition at
inverse temperature β = −1

• modular time is intrinsic modulo scaling the rescaled group
t 7→ σϕ−t/β is physical, β−1 KMS temperature
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Time as thermodynamical effect

quantum physics
l

KMS with positive temperature
l

modular time arrow
l

positive entropy
l

thermodynamical arrow

If time is the modular time, then the time arrow is associated both
with positive entropy and with quantum structure!
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Jones index

Factors (von Neumann algebras with trivial center) are “very
infinite-dimensional” objects. For an inclusion of factors N ⊂M
the Jones index [M : N ] measure the relative size of N in M.
Surprisingly, the index values are quantised:

[M : N ] = 4 cos2
(π
n

)
, n = 3, 4, . . . or [M : N ] ≥ 4

Jones index appears in many places in math and in physics.

	

		2cos(π/10)	
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Quantum Field Theory

In QFT we have a quantum system with infinitely many degrees of
freedom. The system is relativistic and there is particle creation
and annihilation.

No mathematically rigorous QFT model with interaction still exists
in 3+1 dimensions!

Haag local QFT:

O spacetime regions 7→ von Neumann algebras A(O)

to each region one associates the “noncommutative functions”
with support in O.
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Local QFT nets

Local net A on spacetime M: map O ⊂ M 7→ A(O) ⊂ B(H) s.t.

• Isotony, O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2)

• Locality, O1, O2 spacelike =⇒ [A(O1),A(O2)] = {0}

• Poincaré covariance (conformal, diffeomorphism) .

• Positive energy and vacuum vector.

O 7→ A(O): “Noncommutative chart” in QFT
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Bisognano-Wichmann theorem ‘75, Sewell’s comment ‘80

Rindler spacetime (wedge x1 > 0), vacuum modular group

•

t

1/a x1

t = a−1 sinh 2πs, x1 = a−1 cosh 2πs

trajectory unif. accelerated observer O

a uniform acceleration of O
s/a proper time of O
β = 2π/a inverse KMS temperature of O

Hawking-Unruh effect!
Time is geodesic, quantum gravitational effect!
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Representations

A (DHR) representation ρ of local net A maps A(O) on a different
Hilbert space H s.t. but ρ|A(O′) is equivalent to the vacuum rep.

Index-statistics theorem (R.L. 1988):

d(ρ) =
[
A(O) : ρ

(
A(O)

)] 1
2

DHR dimension =
√

Jones index

↗ ↖

Physical index Anal . index

(basis for a QFT index theorem).
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Part II

Applications

Intrinsic bounds on entropy
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Bekenstein’s bound

For decades, modular theory has played a central role in the
operator algebraic approach to QFT, very recently several physical
papers in other QFT settings are dealing with the modular group,
although often in a heuristic (yet powerful) way!

I will discuss the Bekenstein bound, a universal limit on the
entropy that can be contained in a physical system with given size
and given total energy

If R is the radius of a sphere that can enclose our system, while E
is its total energy including any rest masses, then its entropy S is
bounded by

S ≤ λRE

The constant λ is often proposed λ = 2π (natural units).
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Araki’s relative entropy

An infinite quantum system is described by a von Neumann
algebra M typically not of type I so Tr does not exists; however
Araki’s relative entropy between two faithful normal states ϕ and
ψ on M is defined in general by

S(ϕ|ψ) ≡ −(η, log ∆ξ,η η)

where ξ, η are cyclic vector representatives of ϕ,ψ and ∆ξ,η is the
relative modular operator associated with ξ, η.

S(ϕ|ψ) ≥ 0

positivity of the relative entropy

Relative entropy is one of the key concepts. We take the view that
relative entropy is a primary concept and all entropy notions are
derived concepts
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CP maps, quantum channels and entropy

N ,M vN algebras. A linear map α : N →M is completely
positive if

α⊗ idn : N ⊗Matn(C)→M⊗Matn(C)

is positive ∀n (quantum operation)
ω faithful normal state of M and α : N →M CP map as above.
Set

Hω(α) ≡ sup
(ωi )

∑
i

S(ω|ωi )− S(ω · α|ωi · α)

supremum over all ωi with
∑

i ωi = ω.
The conditional entropy H(α) of α is defined by

H(α) = inf
ω
Hω(α)

infimum over all “full” states ω for α. Clearly H(α) ≥ 0 because
Hω(α) ≥ 0 by the monotonicity of the relative entropy .
α is a quantum channel if its conditional entropy H(α) is finite.
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Generalisation of Stinespring dilation

Let α : N →M be a normal, completely positive unital map
between the vN algebras N , M. A pair (ρ, v) ρ : N →M a
homomorphism, v ∈M an isometry s.t.

α(n) = v∗ρ(n)v , n ∈ N .

(ρ, v) is minimal if the left support of ρ(N )vH is equal to 1.

Thm Let α : N →M be a normal, CP unital map with N , M
properly infinite. There exists a minimal dilation pair (ρ, v) for α.
If (ρ1, v1) is another minimal pair, ∃! unitary u ∈M such that

uρ(n) = ρ1(n)u , v1 = uv , n ∈ N

We have
H(α) = log Ind(α) (minimal index)
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Bimodules and CP maps

Let α : N →M be a completely positive, normal, unital map and
ω a faithful normal state of M

∃! N −M bimodule Hα, with a cyclic vector ξα ∈ H and left and
right actions `α and rα, such that

(ξα, `α(n)ξα) = ωout(n) , (ξα, rα(m)ξα) = ωin(m) ,

with ωin ≡ ω, ωout ≡ ωin · α. Converse is true.

CP map α←→ cyclic bimodule Hα
We have

H(α) = log Ind(Hα) (Jones’ index)
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Promoting modular theory to the bimodule setting

H an N −M-bimodule with finite Jones’ index Ind(H)

Given faithful, normal, states ϕ,ψ on N and M, I define the
modular operator ∆H(ϕ|ψ) of H with respect to ϕ,ψ as

∆H(ϕ|ψ) ≡ d(ϕ · `−1)
/
d(ψ · r−1 · ε) ,

Connes’ spatial derivative, ε : `(N )′ → r(M) is the minimal
conditional expectation

log ∆H(ϕ|ψ) is called the modular Hamiltonian of the bimodule H,
or of the quantum channel α if H is associated with α.
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Properties of the modular Hamiltonian

If N , M factors

∆it
H(ϕ|ψ)`(n)∆−itH (ϕ|ψ) = `

(
σϕt (n)

)
∆it
H(ϕ|ψ)r(m)∆−itH (ϕ|ψ) = r

(
σψt (m)

)
(implements the dynamics)

∆it
H(ϕ1|ϕ2)⊗∆it

K(ϕ2|ϕ3) = ∆it
H⊗K(ϕ1|ϕ3)

(additivity of the energy)

∆it
H̄(ϕ2|ϕ1) = d−i2tH ∆it

H(ϕ1|ϕ2)

If T : H → H′ is a bimodule intertwiner, then

T∆it
H(ϕ1|ϕ2) = (dH′/dH)it∆it

H′(ϕ1|ϕ2)T

Connes’s bimodule tensor product w.r.t. ϕ2; dH =
√
Ind(H)
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Physical Hamiltonian

We may modify the modular Hamiltonian in order to fulfil the right
physical requirements (additivity of energy, invariance under charge
conjugation,...)

K (ϕ1|ϕ2) = − log ∆H(ϕ1|ϕ2)− log d

is the physical Hamiltonian (at inverse temperature 1).

The physical Hamiltonian at inverse temperature β > 0 is given by

−β−1 log ∆− β−1 log d

From the modular Hamiltonian to the physical Hamiltonian:

− log ∆
shifting−−−−→ − log ∆− log d

scaling−−−−→ β−1
(
− log ∆− log d

)
The shifting is intrinsic, the scaling is to be determined by the
context!
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Thermodynamical quantities

The entropy S ≡ Sα,ωin of α is

S = −(ξ̂, log ∆αξ̂)

where ξ̂ is a vector representative of the state ωin · r−1 · ε in Hα.

The quantity
E = (ξ̂,K ξ̂)

is the relative energy w.r.t. the states ωin and ωout.

The free energy F is now defined by the relative partition function

F = −β−1 log(ξ̂, e−βK ξ̂)

F satisfies the thermodynamical relation

F = E − TS
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A form of Bekenstein bound

As F = 1
2β
−1H(α), we have

F ≥ 0 (positivity of the free energy)

because
H(α) ≥ 0 (monotonicity of the entropy)

So the above thermodynamical relation

F = E − β−1S

entails the following general, rigorous version of the Bekenstein
bound

S ≤ βE

To determine β we have to plug this general formula in a physical
context
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Schwarzschild black hole

Schwarzschild-Kruskal spacetime of mass M > 0, namely the
region inside the event horizon, and N ≡ A(O) the local von
Neumann algebra associated with O on the underlying Hilbert
space H, O Schwarzschild black hole region, ω vacuum state

H is a N −N bimodule, indeed the identity N −N bimodule
L2(N ) associated with ω.

The modular group of A(O) associated with ω is geometric and
corresponds to the geodesic flow. KMS Hawking temperature is

T = 1/8πM = 1/4πR

with R = 2M the Schwarzschild radius, then

S ≤ 4πRE

with S the entropy associated with the state transfer of ω by a
quantum channel, and E the corresponding relative energy.
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Landauer’s bound for infinite systems

Let α : N →M be a quantum channel between quantum systems
N , M. If α is irreversible, then

Fα ≥
1

2
kT log 2

The original lower bound for the incremental free energy is
Fα ≥ kT log 2, it remains true for finite-dimensional systems N ,
M.
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Energy conditions in QFT

Energy conditions play classically an important role in general
relativity.

In QFT, energy may locally have negative density states (Epstein,
Glaser, Jaffe), although certain energy lower bounds may occur.
E.g., in conformal QFT, there are local lower bounds (Fewster,
Hollands; Wiener)

Bousso, Fisher, Liechenauer, and Wall proposed the QNEC: For
null direction deformation

〈Tuu〉 ≥
1

2π
S ′′A(λ) ,

T stress-energy tensor, SA is the entropy relative to the region A
on one side of the deformation and S ′′A is the second derivative of
SA w.r.t. the deformation parameter λ.
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Entropy of localised states: U(1)-current model

Case of U(1)-current j : ` real function in S(R) and t ∈ R. We
have

S(t) = π

∫ +∞

t
(x − t)`2(x)dx ,

S(t) vacuum relative entropy of excited state by j 7→ j + `, so

S ′(t) = −π
∫ +∞

t
`2(x)dx ≤ 0 ,

S ′′(t) = π`2(t) ≥ 0

positivity of S ′′

R. Longo The emergence of time



Quantum Null Energy Condition

The vacuum energy density is E (t) = 1
2`

2(t) so we have here the
QNEC:

E (t) =
1

2π
S ′′(t) ≥ 0

QNEC is not saturated in every point of positive energy density.

` `

Figure: Two distributions, blue and red, for the same charge q =
∫
`. The

dashed lines plot the corresponding entropy density rate S ′′(t): blue high
entropy, red low entropy.
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QNEC for coherent states (L., Ciolli, Ruzzi & L.)

Let Φ be a real Klein-Gordon wave, namely (� + m2)Φ = 0. The
relative entropy of Φ w.r.t. the vacuum is

SΦ(λ) = 2π

∫
x0=λ,x1≥λ

(x1 − λ)T00(x)dx ,

where Tµν is the stress-energy tensor in the wave Φ w.r.t. the
wedge region x1 − λ > |x0 − λ|.
In particular, the QNEC inequality

d2

dλ2
SΦ(λ) ≥ 0

holds true for the coherent state associated with Φ.
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