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The Structure and Classification
of Conformal Nets

Mobius covariants nets on S!. A (local)
Mobius covariant net A on St is a map

e — A(I) C B(H)

7 = family of proper intervals of S1, that sat-
isfies:

A. Isotony. I C I, =— A(I1) C A(Ip)
B. Locality. 1Nl =@ — [A(l1),A(l>)] = {0}

C. Mobbius covariance. 3 unitary rep. U of the
MoObius group Mob on ‘H such that

U(g)A(I)U(g)* = A(gl), g€ Mbb, I €T.

D. Positivity of the energy. Generator Lg of
rotation subgroup of U (conformal Hamilto-
nian) is positive.



E. Existence of the vacuum. d! U-invariant
vector 2 € H (vacuum vector), and 2 is cyclic
for \V;e7z A(I) and unique U-invariant.

First consequences
e Irreducibility: \/;c1 A(I) = B(H).

e Reeh-Schlieder theorem: 2 is cyclic and sep-
arating for each A(I).

Proof. H > 0 Hamiltonian. ¢ L A()Q —
(&, eH X Q) =0, X localized in Ig CcC I, |t| < e.

(£, e#H X Q) analyticin Sz > 0 = (£, eHXQ)
O Vt...

e Bisognano-Wichmann property. Tomita-Ta-
kesaki modular operator Aj; and conjugation
Jr of (A(I),2), are

UA(27t)) = AY, t e R, dilations
U(ry) = Jg reflection




(Guido-L., Frolich-Gabbiani)

Ar(t) : z — etz on Rt ~ St (stereograph.
map)

Proof based on the following:

Borchers thm. M vN algebra, €2 cyclic separat-
ing vector, T'(t) one-parameter unitary group,
Tt)Q2 = Q

TA)MT(—t)Cc M, t>0

T(t) =exp(tHt), H>O0
then

ABTHATS =T(e 2™, JT()J = T(—t)

e Haag duality:

A(D = AT
Proof. A(I) = J;A(I)J; = A(I").

e Factoriality: A(I) isIII;-factor (or A(I) = C).



Proof. Modular group is ergodic.

e Additivity: I C U;I; =— A({) C V;A;)
(Fredenhagen, Jorss).

Wiesbrock characterization (variant)

Thm. (Guido, Wiesbrock, L.)

A local Mob covariant net < (Mg, M1, M5, Q)

M, commuting v'N algebras, €2 cycl.sep. vec-
tor, A;’;S./\/lk_klA;w C ./\/lk_|_1, s >0, ke Zs.

Split property and Buchholz nuclearity. A
satisfies the split property if the von Neumann
algebra

A(l1) vV A(lz) ~ A(l1) ® A(I2)

(natural isomorphism) if Iy NI, = @.

Tr(e_tLO) < oo, Vi >0 = split

(nuclearity)



Representations. A representation = of A on
a Hilbert space Hisa map I € Z — my, with my
a normal representation of A(I) on B(H) such
that

ri/lA(I) ==n;, ICI, I,ICT.

7 IS MODbius covariant if there is a projective
unitary representation U; of MOb on ‘H such
that

mar(U(g)zU(9)") = Ur(g)m(z)Ur(g)"
forall I €Z, x € A(I) and g € M0&b.

Version of DHR argument:. given I and « rep.
of A, 3 an endomorphism p ~ 7w of A localized

in I; i.e. pr = id r.A(I’)'

Proof. A(I) is a type III factor, thus only one
normal rep.

— Fix I: choose p~m, mp = id.

— By Haag duality p;(A(I)) C A().



Fredenhagen universal algebra.

A(D L Cc*(A)

“l lw

B(H) — B(H)

Reps of A «<» Endom. of C*(A)
J

Fusion of representations

|
End(C*(A)) is braided tensor category

canonical intertwiners (p,0) : po — op

(Fredenhagen, Rehren, Schroer)

Example. Let A be the local conformal net on
S1 associated with the U(1)-current algebra.
In the real line picture A is given by

A ={W(f): f € C(R), suppf C I}’



where W is the representation of the Weyl
commutation relations

W(NHW(g) =e I 19w (f + g)
associated with the vacuum state w
wW ()= e WP a2 = [ 717G Ppap

where f is the Fourier transform of f.

Buchholz-Mack-Todorov sectors There is a one
parameter family {aq,q € R} of irreducible sec-
tors and all have index 1.

aq(W() = 2 IFIw (), Feo™, /F —q.

Index-statistics thm.

DHR dim. d(p) = /Jones index Ind(p)

tensor category full functor tensor category
End. local. in I restriction End. of A(I)

Hom(p, o) = Hom(py,01)



Local intertwiners = global intertwiners (Guido,L.)

Conformal spin-statistics thm. (Guido, L.)
m rep. of A, A\, DHR statistics parameter

hp = = spin, i.e. lowest eigenvalue of L,.

Proof. (some argument) I; = upper half-circle,
I> = right half-circle p automorphism localized
in 11 N Io.

p|A(Ii) — Araki-Connes-Haagerup unitary stan-
dard implementation V;

V1 and Vo, commute up to a phase

ViVo = pVoVi.

1 algebraic invariant & geometric invariant:
compare the two aspects. ..



Diff(S1) and the Virasoro algebra. Diff(S1) =
smooth oriented diffeomorphisms of S1. The
(complexification of) Lie algebra of Diff(S1) is
Vect(S1) (De Witt algebra)

1 d
[Lm, Ln] = (m — n)Lm—Fn, Lp = iemt&

The Virasoro algebra is the unique, non-trivial
one-dim. central extension of De Witt alg.

C
[Lm, Ln] = (m — n)Lm—|—n + E(m?) - m)5m,—n

and [Ln,c] = 0. ¢ is called central charge.

Unitary irreducible representation
of Virasoro alg. on Hilbert space 'H

l

Irr. family of operators L, on 'H and c€ R

with Virasoro relations and L), = L_,.

Lq,L_q1, Lo = generators of s¢(2,R) (Lie alge-
bra of Mobius group):

[L17LO] — L17 [L—17LO] — _L—17 [L]_)L—].] — 2LO



Lg def conformal Hamiltonian (= generator of
rotations).

Positive energy unitary rep. U of Diff(S1):
Lo>0. ThusspU C {h,h+1,h+2,---}, h > 0.
h is called lowest weight.

For every possible value of ¢ and A 3! irr. pos.
energy rep. V., of Diff(S!). Possible values
(Friedan, Qui, Shenker ‘86):

§)
— or c>1
n(n+ 1)

c=1

, o _((ntp—ng)®—1
P, — )
4dn(n+ 1)
1<p<n-1,1<qg<n pqgeN, (pg ~
(n—p,n+1—q). All values are taken (Goddard,
Kent, Olive ‘86).

Reps. with the same ¢ have fusion (internal
tensor product).



Popa-Ocneanu clssification of subfactors
(discrete series). M a finite amenable (in-
ductive limit of finite-dim. *-algebras) factor.
Subfactors N' C M with index < 4 are in Jones
discrete series, i.e. [M : N] = 4c052%, n > 3.
Let ¢« : N — M embedding

Hom(e,t) — Hom(er, tv) — Hom (e, eer) < - - -

IS a tower of multi-matrix algebras described
by a Bratteli embedding graph. Moreover w
(canonical endomorphism) shifts by 2 the tower.
The remaining principal graph gives a complete

A — Deven — Eg g classification

A — D case unique, E case two subfactors.

Long standing problem: is there a relation

between Jones index discrete series and Virasoro

central charge discrete series? We shall pro-
vide a connection below.




Conformal nets. A local conformal net A is a
local MoObius covariant net s.t. 3 proj. unitary
rep. U of Diff(S1), extendending the M&bius
rep., s.t.

U(9) AU (g)* = A(gI), g€ Diff(S1),
U(g)zU(g)* =z, xe€ A(l), g€ Diﬂ’([’),

Diff(1) & {4 € DIff(S1) : g(t) = ¢ Vt € I'}.

U is unique (Weiner), hence canonical.

Virasoro nets Vir..
Vire(I) = V.(Diff(1))"”

Ve = Ve p=0 (vacuum representation).

A (local) conformal net, Haag duality implies

U(Diff(I)) c A(I),



U is direct sum of reps V. ; with the same cen-
tral charge c¢: the central charge of A

A D Vire
every local conformal net
iIs an extension of a Virasoro net

On the other hand Vir. is minimal, no nontriv-
ial subnet (Carpi):

universal role of Vire

A (irred.) representation = of A on H is diffeo-
morphism covariant if 3 projective unitary rep.
U, of Diff(S1) extending the rep. U, of Mob
S.t.

mar(U(9)zU(9)*) = Ur(g)m(x)Un(g)”

Automatic diff. covariance: D'Antoni, Freden-
hagen, Koester, Weiner.

Complete rationality. Problem: characterize
intrinsically a ‘“rational” net (= finitely many
irr. sectors, all with d(p) < oo0)




Def. A is completely rational if
o A is split, i.e. A(I7)V A(l») ~ A(I71) ® A(I>)

e The p-index p 4 is finite, i.e.

ua = LAE) : A(E)] < oo

E=1Ul, I1Nnl, =, A(E) = A(E") (failure
of Haag duality for disconneted regions).

p g < oo for SU(N) loop group models (F. Xu).
General theory (Kawahigashi, Miiger, L.)

A completely rational =

HA= D d(p;)?

sum of the indeces of all irreducible sectors



e A is rational and the representation tensor
category is modular has non-degenerate braiding

e A(E) C A(E) is the quantum double inclusion
of Rehren, L. (see below)

e All irreducible extensions of A have finite Jones
index (by Izumi, Popa, L.)

e A is strongly additive (Xu, L.)

A(I ~ {point}) = A(I)

Loop group and coset models. G compact
Lie group,

LG loop group, i.e. LG ={g:te Sl - G}
(smooth maps with pointwise multiplication),

U : LG — B(H) pos. energy unitary rep. of
LG, i.e. the action of Diff(S!) on Aut(LG) is
implementes by a pos. energy rep.



Vacuum irr. reps. (pos. energy) U of LG ( O
eigenvalue of Lp) are labaled by a parameter,
the level of U. Fix a level ¢ rep. U:

A ={U(9),g € LG: g(t) =t te I}
is a conformal net.
H C G closed subgroup

B(I)={U(g9),ge LH: g(t) =1, teI}

conformal subnet.

C(I) = B(I)' n A(I) coset model of H C G.

Vire = coset SU(2),,—1 C SU(2)p—1 X SU(2)1

c=1-—
L.).

m(nf+1) (GKO, Xu, Carpi, Kawahigashi,

= Vir. is completely rational ¢ < 1
= All extensions of Vir. have finite Jones index

= Sectors of Vir. have finite index (Loke)



T he classification problem for the discrete
series.

Classify conformal nets with ¢ < 1

)

Classify all irreducible extensions of Vir,

Verlinde-Rehren matrices. A rational, i.e.
finitely many irr. sectors po, = id, p1,...pn

Yi;j = did;j @ (e(pj, pi)“e(pi, pi)™)
e non degenerate & [0|° = Y d? with o
kg

o]

A\ 1/3
S = |o| 71y, T = <—> Diag(k;)

SST =771 = id,
STS =717 15171
$2 =C,
TC = CT,
where C;; = §;7. In our case (Vire) C = id.

= T and S generate unitary rep. of SL(2,7Z).




Modular invariants. Given a unitary, finite-
dim. rep. of SL(2,7Z), a modular invariant is a
matrix Z € Mat(Z4.), Zgo =1, s.t.

22U =UZ

e Rational net with non-degenerate braiding —
unitary rep. of SL(2,7Z) — modular invariants

e Thus (KLM): complete rational nets — mod-
ular invariants

e Capelli, Itzykson, Zuber ‘87: ADE classifica-
tion of modular invariants for Vire, ¢ < 1

e Bockenhaur, Evans, Kawahigashi 2000: A C
B conformal nets, [B: A] < oo, then

o — induction — modular invariants
oz/jf — extension of DHR sector u of A to right/left
solitonic sector of B (Roberts, Rehren-L., Xu)



Q-systems. Recall: M factor, p € End(M)
then

Yo = PP
Converse problem: given v € End(M), when is
~ canonical?

The problem is finding a ‘'square root"” p.
The conjugate equations give conditions:

~ canonical with finite index

U

3 isometry T' € Hom(,~v), and a co-isometry
S € Hom(~2,7)

SS = S~(S)
Syv(T) € C\{0} , ST € C\{0}

Def. A Q-system is a triple (v,T,S) where
~ € End(M), T € Hom(s,v) is an isometry,




S € Hom(~2,~) is a co-isometry satisfying the
above relations.

Thm. Q-system (~,T,S) — finite-index sub-
factor N C M with v : M — N canonical en-

domorphism.

3 bijection

subfactors «— Q-systems

Proof. e =S5 -S5* is a positive map M — M.
g2 =¢ (use SS = S~(9))

N =e(M) is a von Neumann subalgebra (again
the relation) and ¢ is an expectation

Any p € End(M), p(M) = N is a “square root”
with p = p_lfy (last relations give the conjugate
equations)



Application 1: Quantum double (Rehren, L.),
see below.

Application 2: Duality for finite-dimensional
complex semisimple Hopf algebras (L.).

An (irreducible) abstract Q-system is (7,\,S)
where A an object of 7:

a): (¢, \) is one—dimensional; namely there ex-
ists a unique element T' € Hom(¢, A\), up to a
phase; T' is proportional to an isometry.

b): there exists an arrow S € HOm(A ® A\, \)
proportional to an coisometry (S5* = 1) such
that

bl)SO]_)\@S:SOS@l)\

SO].)\(X)T:]_)\
b2)
SOT(X)]_)\:]_)\




Thm. A finite-dimensional Hopf algebra is a
Q-system s.t.

AR N>~ d\
distiguished propery of regular representation.

Compare with Doplicher-Roberts duality for com-
pact groups.

Two @-systems (p,717,57) and (p,15,S») are
equivalent if 3u € Hom(p, p) satisfying

T> = uTy, uS1 = Soup(u).

Equivalence of @-systems < inner conjugacy
of subfactors.
Jones construction

NCM — M>M
can. endomorphism

Problem: classify QQ-systems up to equivalence
when a system of endomorphisms is given and
p is a direct sum of endomorphisms in the sys-
tem.

Izumi-Kosaki cohomology for Q-systems: finite
groups.



Classification of local extensions of the Vi-
rasoro nets (Kawahigashi, L.)

e Consider the Cappelli-Itzykson-Zuber classi-
fication of the modular invariants for the Vira-
soro nets with central charge c=1—-6/m(m +
1)<1, m=2,3,4,....

e Show that each ‘type I modular invariant
IS realized with a-induction for an extension
Vir. C M as in Bockenhauer-Evans-Kawahigashi

o Use ()-system to detect the local extension
Of Virc, C < ].

U

Classification of local conformal nets, c=1 — 6

m(m-1)



m Labels for Z

n (An—17 An)
An+ 1| (Agn, Dopyo)
4n + 2 | (Dop42,Aant2)

11 (A10, Eg)
12 (Eg, A12)
29 (Aozg, Eg)
30 (Eg, A3p)

Thm. (Kawahigashi,L.) Local conformal nets
with ¢ < 1 are classified by pair of Dynkin di-
agrams A — Dy, — Egg s.t. the difference of
Coxeter numbers is 1.

Simple current extensions. The simple current
extensions of index 2

T he four exceptional cases.

(Eg, A12), (Eg, A3g) coset constructions (con-
jectuered by Bockenhauer-Evans

(A10, Eg) coset construction (Koster)



One new example (Asg, Eg), most probably
not constructable as coset.

Case ¢ = 1 classified by Xu, Carpi (with a
spectral condition, probably always true)

Subnet structure. Alternative labels for the
classification.

Let A be an irreducible local conformal net
with central charge ¢ < 1. Let s be the number
of finite-index conformal subnets, up to conju-
gacy (including A itself). Then s e {1,2,3}. A
is completely classified by the pair (m, s) where
c=1-6/m(m-+1). For any m € N the possible
values of s are:

e s=1 for all me N;
es=2ifm=1,2mod 4, and if m=11,12;

e s =3 if m = 29, 30.



Classification of 2-dimensional CFT.

Quantum double inclusion (Rehren, L., related
to Popa and Ocneanu)

7 a rational tensor subcategory of End(M),
objects {p;}

A=Dri®p PP
)

A € End(M @ MPOPP)
Vy basis in Hom(py, pip;)

— canonical element

PV ® VPP € Hom(p,, ® pp°, pip; @ pg PP p; PP
i
— canonical isometry S € Hom(\, A\2)

— canonical Q-system (A, T, S*)



— canonical inclusion

M@ MCPP c M
[M 2 M ® MPPP] =3, d(p;)?

viM— M®MOPP can. endomrphism

Tensor category generated by ~ is braided, the
quantum double of 7 in the sense of Drinfeld.

Sector structure studied by Izumi.
Canonical tensor product inclusions (Rehren)

T he above generalizes to inclusion of the form
M @ MOPP C M with

AN=2Z;;Pp® P?pp
i

where p € S, and Z;; 1S nonnegative integer
matrix related to modular invariants.



Two-dimensional conformal nets. A4 net vN
algebras on Minkowski space.

A is conformal if r : x — x/||x||2 is a symmetry
(x = 22 — t2)

Free field: LJW = 0 is preserved by r.
dm=2 —=— WV(x) = \U+(a: + )+ V¥V _(x—1t)

In general:

A conformal net on R2
restriction | to x+t=0

two conf. net A- on R

Thm (Rehren)

Ap(D) @ A_(J) C A @ AT*(J) C A
Ar(I)® A_(J) C Ac. t. p. subfactor



AX(I) ® AT¥X(J) C A quantum double can.
endom.

)\_@pz ODD

T he classification problem for two-dim CFT.
c <1 We have

A1) ® A_(J) D Vire ® Vire

and Vir. C AT3 is classified.

c < 1, maximal nets.

Classify irr. extensions of A% ® AT
with canonical endomorphism

@pz Opp

Classification problem

l

cohomological problem for Q-systems

Vanishing of Izumi-Kosaki 2-cohomology for
the tensor categories that appear.



Canoninal endom. A : A — Vir:. ® Vir. is

A= @ 0 & aopp
and Z is a modular invariant (I\/Iijger).

Modular invariants for the Virasoro tensor cat-
egory Vire:

m Labels for modular invariants | Type
n (A,,_1,An) I
4n (Don+t1,As4n) II
4n + 1 (Agpn, Dop42)
A + 2 (Dop+t2, Aan42)
4n + 3 (Aap4-2, Doyp43) I
11 (A10, E6)
12 (Eg, A12)
17 (A167 E7) IT
18 (E7, Alg) IT
29 (Aog, Eg)
30 (Eg, A3p)

A — Z is bijection two-dimensional max local
conformal nets <« modular invariants ~2:




Thm. (Kawahigashi,L.) Two-dimensional max-
imal local conformal nets with ¢ < 1 are classi-
fied by pair of Dynkin diagrams A —-— D — FE s.t.
the difference of Coxeter numbers is 1.

Note: One-dimensional case Dyqq and E7 do
not appaear.

Note: Non-maximal are also classified.



