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Elliptic tori in planetary systems
e0
Basic preliminary expansions of the Hamiltonian

The Hamiltonian of a planar “SJSU-like” system

The Hamiltonian of a planetary 4-body system writes as
F(r,#¥) = TO®®) + UO(r) + TO®F) + UD(r),

where r are the heliocentric coordinates, ¥ the conjugated momenta and
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We fixed the masses and the average semi-major axes so to be equal to
those of the real Sun—Jupiter-Saturn—Uranus system.



Elliptic tori in planetary systems
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Basic preliminary expansions of the Hamiltonian

The Poincaré variables in the plane

mom;
N=—"— Na; i = M; ;
T m; G(mo + mj)a; j lj + wj

& = V201 - MCOS(%‘) nj = \/2/\1\/17 Y1 € sin(w)

where a;, ¢;, M; and w; are the orbital elements of the j-th planet.
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Basic preliminary expansions of the Hamiltonian

The Poincaré variables in the plane

mom;
N=—"— Na; i = M; ;
T m; G(mo + mj)a; j lj + wj

fast variables

& = V201 - MCOS(%‘) nj = \/2/\1\/17 Y1 € sin(w)

secular variables

where a;, ¢;, M; and w; are the orbital elements of the j—th planet.

Let us introduce new actions L = A — A*, where /\f is calculated with
the average value a; of the semi-major axis of the j-th planet.



Elliptic tori in planetary systems
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Unformal description of the elliptic tori

Elliptic tori as “extensions” of equilibrium points

e Question: what is the equilibrium point of the secular part (that is
a 3 d.o.f. system) with respect to the flow of the averaged
Hamiltonian (F)x (6 d.o.f. system)?

@ Answer: an elliptic torus!
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e Problem: can we locate elliptic tori in the complete (i.e.
non-averaged) Hamiltonian F?
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Unformal description of the elliptic tori

Elliptic tori in (already seen) “resonant regions”

Figure: Poincaré sections for the Hénon—Heiles model

H(p,q) = wl(pf + qf)/2 +w2(p§ + qg)/2 +qgo — q3/3 with w; = 1 and

ws = (v/5 —1)/2. The energy level is fixed so that £ = 0.030. In this case the
escape energy value is E. = 0.03934466 .

@ Remark: in Poincaré sections, elliptic tori, that are invariant with
respect to the flow of H, are seen as single points contoured by
closed 1D—curves. In figure above, they are visible in the so called
“chains of ordered islands”.
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®0000000
Adapting the Kolmogorov's normalization algorithm to elliptic tori

The wanted normal form

Let us imagine to have already performed an infinite sequence of can.
transf. so to bring the Hamiltonian in the wanted normal form

HEL A &, m) = W™ L+Z 7) + REL A €m)

where the frequency vectors w(‘”) € R™ and Q) € R™, with
n1 + ny = n, being n the number of d.o.f. (in our model n; = ny = 3).
Moreover, the remainder term is such that

REIL, X, €,m) = O(|ILIP) + O(ILl 1€, ) + o (lI€ ) -
v (0,X,0,0) € (0,T™,0,0), the Hamilton eq.s can be easily solved
L=0, A=w™, ¢=0, 9=0.
Thus, the flow induced by H(>) on the invariant lower-dimensional
torus (0, T™,0,0) is quasi-periodic with frequency vector w(>),

while Q%) s the limit frequency vector of the small oscillations
tranversal to the elliptic torus.
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Adapting the Kolmogorov's normalization algorithm to elliptic tori

The normal form Hamiltonian up to order r — 1

Where it is convenient, we refer to the secular variables with action—angle

coordinates (I, ¢) such that & = \/2/jcos pj, nj = /2l sing;,
Vj=1, ..., ny. The Hamiltonian F representing our planar “SJSU-like"
model can be written in the following general form (with r = 1):

H=1 — =1 | 4 (=1 . 4 Z hj o(L Z oo 7

122 s>r
Do e+ YA LN RS (g
s>r s>r s>r

2 AL AL,

2j14j2>3 s>0
where r — 1 means the normalization step, hj, o are homogeneous

polynomials of degree j; in L, fjfrjz %) are hom. pol. of degree j; and j»
in L and in (&,m), resp., while they are also trig. pol. of degree at most
2s in the angles A. Thus, in the previous formula, each term has a
finite Taylor—Fourier expansion. The normalization procedure has to

eliminate the (red color) perturbing terms.
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Adapting the Kolmogorov's normalization algorithm to elliptic tori

Normalization procedure: the homological equations

r

{Xgr)7w(r71),|_}+2fog (A =0,

r

{X({>, WD L+ QD). '} +3 e m) =0
s=0

s o,
[V ot L@t ) S AEI(Am) — 0.

{Dgr)’ Q1) . |} +15700,0) = (F15), =0,



Elliptic tori in planetary systems
[e]e]e] le]elele)
Adapting the Kolmogorov's normalization algorithm to elliptic tori

Normalization procedure for elliptic tori: main ideas

@ Each r—th normalization step is performed by composing of three
canonical transformations exp ﬁx(') , exp [lxm and exp Exm ., Where
) (1 (2

the generating functions ng), Xg’) and Xér) are determined so to
eliminate the perturbing terms

e independent from both L and (&,7),

e independent from L and of degree 1 in (€,m),

o either of degree 1 in L and independent from (£,m), or independent

from L and of degree 2 in (&,m),

respectively; moreover, each generating function “kills” perturbing
terms up to trigonometric degree 2r in A .

@ at the end of each normalization step, there are some terms O(||L||)
and O(|(&,m)][?) that cannot be eliminated (because they do not
depend on the angles); thus, they are included in the normal form
terms and they induce small corrections of the frequency vectors,
that are w1 — w() and QY — Q).

@ If the sequence {(w(r), Q(')) }r>0 stays away enough from the
resonances, the normalization procedure works! (see Sansottera,
Locatelli & Giorgilli 2011).
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Adapting the Kolmogorov's normalization algorithm to elliptic tori

Testing the construction of the normal form for elliptic tori

Jupiter frequencies
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Figure: Fourier spectra with the first 30 main components of the signal

t — &1(t) + in1(t) related to the secular motion of Jupiter, i.e.

&(t) +im(t) =~ 32, csexpli(vi,st)]. Frequencies vi,s and amplitudes |cy s
are reported on the abscissas and the ordinates, resp. + symbols refer to a
motion starting from “real initial conditions” of the “planar SJSU", while x
symbols are for an approximated elliptic torus after 9 normalization steps.

Frequency analysis shows that we are approaching an elliptic torus!
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Testing the construction of the normal form for elliptic tori
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Figure: Fourier spectra with the first 30 main components of the signal
t — &(t) + ina(t) related to the secular motion of Saturn, i.e.
&(t) +in(t) =~ 32, o sexpli(v2,st)] . Frequencies va,s and amplitudes |c,s|
are reported on the abscissas and the ordinates, resp. + symbols refer to a
motion starting from “real initial conditions” of the “planar SJSU", while x
symbols are for an approximated elliptic torus after 9 normalization steps.

Frequency analysis shows that we are approaching an elliptic torus!
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Adapting the Kolmogorov's normalization algorithm to elliptic tori

Testing the construction of the normal form for elliptic tori

Uranus frequencies
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Figure: Fourier spectra with the first 30 main components of the signal
t — &3(t) + inz(t) related to the secular motion of Uranus, i.e.
&(t) +ims(t) =~ 32, c3sexpi(v3,st)] . Frequencies vs,s and amplitudes |cs s
are reported on the abscissas and the ordinates, resp. + symbols refer to a
motion starting from “real initial conditions” of the “planar SJSU", while x
symbols are for an approximated elliptic torus after 9 normalization steps.

Frequency analysis shows that we are approaching an elliptic torus!
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Adapting the Kolmogorov's normalization algorithm to elliptic tori

Main differences in the construction of the Kolmogorov's
normal form: KAM tori vs. elliptic lower dimensional tori

@ The small parameter is the mass ratio maxj=1, 2,3 m;j/mo.
@ At each normalization step for elliptic tori, we need a non-resonance
condition of type
min
0<|k|<2r
that is similar to that needed by the usual KAM tori, but we need
also the so called Melnikov’s conditions:

min ‘k~w(’_1) s Q"*l)) >0,
K|<2r 1<) <2

k-w('_l)‘ >0,

@ In case of elliptic tori, the frequencies are not fixed “a priori”, and
the algorithm let them (very slightly) change at each step. Thus,
eventual resonances can show up after some normalization step.

@ The system is usually parameterized with respect to n; independent
variables (e.g., the average semi-major axes where the initial
expansions are centered about). Thus, the final result must hold
true on a set having positive Lebesgue measure. This is really in
the spirit of the original Arnold’s proof scheme:



The Arnold web as a global description of the dynamics
@0000

Exporting ideas from the Arnold’s proof of KAM theorem

Arnold'’s proof scheme of KAM theorem

At the first normalization step, you cut out a first group of main
resonances from the phase space and you perform a canonical
transformation so to eliminate those resonant perturbing terms from the
Hamiltonian, which is lead to the form:

H®(p,q) = K (p) + RM(p,q) ,

where R() is a small remainder term.
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Exporting ideas from the Arnold’s proof of KAM theorem

Arnold'’s proof scheme of KAM theorem

At the second normalization step, you cut out a second group of main
resonances from the phase space and you perform another canonical
transformation so to write the Hamiltonian in the form:

H®(p,q) = K (p) + R (p,q) ,

where [R®| = O(||RM||?) is a remainder term much smaller than the
previous one. After having iterated infinitely many times this procedure
the Hamiltonian is convergent (if the initial perturbation is small enough)
on a Cantor set of invariant tori with positive Lebesgue .measure.



The Arnold web as a global description of the dynamics
[e]e] le]e}
Exporting ideas from the Arnold’s proof of KAM theorem

Arnold web in numerics for a 4D—symplectic map

The Coupled Rational Shifted Standard Map (CRSSM) is defined so that

yi =y +e1fi(x) + 74 Bl +x) + - Blxa — x2),
¥s =y2 + e2h(x) + 14+ B+ x) — - (x1 — x),
X1 =x1 + ey mod 27 ,

Xy =X + €2 mod 27 ,

where angles x; € [0,2n), actions y; € [0,27/e;), ¥V i =1, 2, while the
perturbing functions are such that f;(x) = —sinx/(1 — p; cos x),
Vi=1,2,3, being ey, €2, v+, i1, i and uz fixed small parameters.
o Consider a regular grid of initial values (y1.0, y2.0) of the actions;
e for each initial condition of type (y1.0, 2.0, 0, 0), iterate N times
the map, so to produce a finite sequence of points
()/1;1'7 Y2iiy X1y, Xz;j) withj=0,..., N;
e make the frequency analysis of the signals j — |/2y1.j exp(ix;j) and
J — \/2y2;j exp(ixa,j) by separating two “windows”: j € [0, N/2]
and j € [N/2, N]. Draw the variations of the main frequencies as a
function of the initial actions (y1.0, y2.0) -
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[e]e]e] lo}

Exporting ideas from the Arnold’s proof of KAM theorem

Arnold web in numerics for a 4D—symplectic map

Figure: Color plot describing the Arnold web for the CRSSM with £; = 0.1,
€2 =02, p1 =p2=pu3 =05, yvx =0.1, v~ = 0.05. Initial values of actions
y1.0 and y»,0 are on abscissas and on ordinates, respectively. For each point the
corresponding variation of the frequencies is reported by the color scale on the
right.

Frequency analysis as a chaos indicator: lighter colors mean chaotic
motions, while darker ones are related to invariant tori.



The Arnold web as a global description of the dynamics
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Exporting ideas from the Arnold’s proof of KAM theorem

Diffusion along the Arnold web

Figure: Evolution of a chaotic orbit (look at red points) along the Arnold web.
The diffusion is faster in larger resonant regions. When some resonant
regions cross each other, motions can pass from one to another.
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Superexponentially small lower bound about the diffusion time

Some more numerical experiments: the Sup—Map graph

The standard map is y' = y + esinx; x'=x+y' (mod 27).

Figure: Archetyplcal situations occurrlng in a Sup—Map graph Boxes a—c
contain plots of some orbits of the standard map with ¢ = 0.9. In boxes d—f,
the values of the sup of an orbit as a function of the action yy, being (0, yo)
the initial point starting from which the orbit is generated by iterations of the
standard map. The pair of boxes (a,d), (b,e) and (c,f) refer to the vertical
crossing of the chaotic zone close to an hyperbolic point, of the resonant
region close to an elliptic point and to a set of invariant .tori, resp.
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Superexponentially small lower bound about the diffusion time

Some more numerical experiments: the Sup—Map graph
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Figure: Sup—Map graph of the standard map with ¢ = 0.9. Boxes a—d are
enlargements focused in a neighborhood smaller and smaller of the “golden
mean” torus, that is related to the frequency (v/5 — 1)/2. On the top of each
box, the location of the main resonances of type Fi/Fii1 is reported (being
{F}k>0 the sequence of Fibonacci's numbers).
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Superexponentially small lower bound about the diffusion time

Dynamics in the neighborhood of an invariant torus

Let us focus on a neighborhood of a KAM torus characterized by a

Diophantine frequency vector w, that is such that |k - w| > ~/|k|™ with

some fixed v > 0 and 7 > n— 1. By constructing a Birkhoff's normal

form starting from the Kolmogorov's normal form and using

Nekhoroshev's estimates, we can prove the following results.

o Let V(o) be the measure of the complementary set with

respect to the invariant tori staying at a distance smaller than
o from the “w-torus”, then

V(o) ~ exp (_ (i) 1/(T+1)>

o Let 7, be the diffusion time needed by a motion to double its
initial distance p from the “w-torus”, then

1 5 1/(r+1)
T, > exp (Cexp <2n (i) ,

being C and o, suitable positive constants (see Morbidelli &
Giorgilli 1995).



	Elliptic tori in planetary systems
	Basic preliminary expansions of the Hamiltonian
	Unformal description of the elliptic tori
	Adapting the Kolmogorov's normalization algorithm to elliptic tori

	The Arnold web as a global description of the dynamics
	Exporting ideas from the Arnold's proof of KAM theorem
	Superexponentially small lower bound about the diffusion time


