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Basic preliminary expansions of the Hamiltonian

The Hamiltonian of a planar “SJSU-like” system

The Hamiltonian of a planetary 4–body system writes as

F (r, r̃) = T (0)(r̃) + U(0)(r) + T (1)(r̃) + U(1)(r) ,

where r are the heliocentric coordinates, r̃ the conjugated momenta and

T (0)(r̃) =
1

2

3∑
j=1

‖r̃j‖2

(
1

m0
+

1

mj

)
,

U(0)(r) = −G
3∑

j=1

m0mj

‖rj‖
,

T (1)(r̃) =
r̃1 · r̃2

m0
+

r̃1 · r̃3

m0
+

r̃2 · r̃3

m0
,

U(1)(r) = −G
(

m1m2

‖r1 − r2‖
+

m1m3

‖r1 − r3‖
+

m2m3

‖r2 − r3‖

)
.

We fixed the masses and the average semi-major axes so to be equal to
those of the real Sun–Jupiter–Saturn–Uranus system.
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Basic preliminary expansions of the Hamiltonian

The Poincaré variables in the plane

Λj =
m0mj

m0 + mj

√
G(m0 + mj)aj λj = Mj + ωj

︸                                                                  ︷︷                                                                  ︸
fast variables

ξj =
√

2Λj

√
1−

√
1− e2

j cos(ωj) ηj = −
√

2Λj

√
1−

√
1− e2

j sin(ωj)

︸                                                                                                  ︷︷                                                                                                  ︸
secular variables

where aj , ej , Mj and ωj are the orbital elements of the j–th planet.

Let us introduce new actions L = Λ− Λ∗, where Λ∗j is calculated with
the average value a∗j of the semi-major axis of the j–th planet.
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Unformal description of the elliptic tori

Elliptic tori as “extensions” of equilibrium points

Question: what is the equilibrium point of the secular part (that is
a 3 d.o.f. system) with respect to the flow of the averaged
Hamiltonian 〈F 〉λ (6 d.o.f. system)?

Answer: an elliptic torus!

L’estensione del problema secolare: il toro ellittico

Domanda: A che cosa corrisponde il problema secolare nel modello
originale?

Risposta: Il toro ellittico.

λ2π

η

L

ξ

Problem: can we locate elliptic tori in the complete (i.e.
non-averaged) Hamiltonian F ?
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Unformal description of the elliptic tori

Elliptic tori in (already seen) “resonant regions”

Figure: Poincaré sections for the Hénon–Heiles model
H(p, q) = ω1

(
p2

1 + q2
1

)
/2 + ω2

(
p2

2 + q2
2

)
/2 + q2

1q2 − q3
2/3 with ω1 = 1 and

ω2 = (
√

5− 1)/2 . The energy level is fixed so that E = 0.030 . In this case the
escape energy value is Ee = 0.03934466 .

Remark: in Poincaré sections, elliptic tori, that are invariant with
respect to the flow of H , are seen as single points contoured by
closed 1D–curves. In figure above, they are visible in the so called
“chains of ordered islands”.
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Adapting the Kolmogorov’s normalization algorithm to elliptic tori

The wanted normal form

Let us imagine to have already performed an infinite sequence of can.
transf. so to bring the Hamiltonian in the wanted normal form

H(∞)(L,λ, ξ,η) = ω(∞) · L +
n2∑
j=1

Ω
(∞)
j

2

(
ξ2
j + η2

j

)
+R(∞)(L,λ, ξ,η) ,

where the frequency vectors ω(∞) ∈ Rn1 and Ω(∞) ∈ Rn2 , with
n1 + n2 = n , being n the number of d.o.f. (in our model n1 = n2 = 3).
Moreover, the remainder term is such that

R(∞)(L,λ, ξ,η) = O
(
‖L‖2

)
+O

(
‖L‖ ‖(ξ,η)‖

)
+O

(
‖(ξ,η)‖3

)
.

∀ (0,λ, 0, 0) ∈ (0,Tn1 , 0, 0) , the Hamilton eq.s can be easily solved

L̇ = 0 , λ̇ = ω(∞) , ξ̇ = 0 , η̇ = 0 .

Thus, the flow induced by H(∞) on the invariant lower-dimensional
torus (0,Tn1 , 0, 0) is quasi-periodic with frequency vector ω(∞),

while Ω(∞) is the limit frequency vector of the small oscillations
tranversal to the elliptic torus.
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Adapting the Kolmogorov’s normalization algorithm to elliptic tori

The normal form Hamiltonian up to order r − 1

Where it is convenient, we refer to the secular variables with action–angle
coordinates (I,ϕ) such that ξj =

√
2Ij cosϕj , ηj =

√
2Ij sinϕj ,

∀ j = 1, . . . , n2 . The Hamiltonian F representing our planar “SJSU-like”
model can be written in the following general form (with r = 1):

H(r−1) =ω(r−1) · L + Ω(r−1) · I +
∑
j1≥2

hj1,0(L) +
∑
s≥r

f
(r−1,s)

0,0 (λ)+

∑
s≥r

f
(r−1,s)

0,1 (λ, ξ,η) +
∑
s≥r

f
(r−1,s)

1,0 (L,λ) +
∑
s≥r

f
(r−1,s)

0,2 (λ, ξ,η)

+
∑

2j1+j2≥3

∑
s>0

f
(r−1,s)
j1,j2

(L,λ, ξ,η) ,

where r − 1 means the normalization step, hj1,0 are homogeneous

polynomials of degree j1 in L , f
(r−1,s)
j1,j2

are hom. pol. of degree j1 and j2
in L and in (ξ,η) , resp., while they are also trig. pol. of degree at most
2s in the angles λ . Thus, in the previous formula, each term has a
finite Taylor–Fourier expansion. The normalization procedure has to
eliminate the (red color) perturbing terms.



Elliptic tori in planetary systems The Arnold web as a global description of the dynamics

Adapting the Kolmogorov’s normalization algorithm to elliptic tori

Normalization procedure: the homological equations

{
χ

(r)
0 ,ω(r−1) · L

}
+

r∑
s=1

f
(r−1,s)

0,0 (λ) = 0 ,

{
χ

(r)
1 ,ω(r−1) · L + Ω(r−1) · I

}
+

r∑
s=0

f
(I;r ,s)

0,1 (λ, ξ,η) = 0 ,

{
X

(r)
2 ,ω(r−1) · L

}
+

r∑
s=1

f
(II;r ,s)

1,0 (L,λ) = 0 ,

{
Y

(r)
2 ,ω(r−1) · L + Ω(r−1) · I

}
+

r∑
s=1

f
(II;r ,s)

0,2 (λ, ξ,η) = 0 ,{
D(r)

2 ,Ω(r−1) · I
}

+ f
(II;r ,0)

0 , 2 (I,ϕ)−
〈
f

(II;r ,0)
0 , 2

〉
ϕ

= 0 .
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Adapting the Kolmogorov’s normalization algorithm to elliptic tori

Normalization procedure for elliptic tori: main ideas

Each r–th normalization step is performed by composing of three
canonical transformations expL

χ
(r)
0

, expL
χ

(r)
1

and expL
χ

(r)
2

, where

the generating functions χ
(r)
0 , χ

(r)
1 and χ

(r)
2 are determined so to

eliminate the perturbing terms
independent from both L and (ξ,η) ,
independent from L and of degree 1 in (ξ,η) ,
either of degree 1 in L and independent from (ξ,η) , or independent
from L and of degree 2 in (ξ,η) ,

respectively; moreover, each generating function “kills” perturbing
terms up to trigonometric degree 2r in λ .
at the end of each normalization step, there are some terms O

(
‖L‖
)

and O
(
‖(ξ,η)‖2

)
that cannot be eliminated (because they do not

depend on the angles); thus, they are included in the normal form
terms and they induce small corrections of the frequency vectors,
that are ω(r−1) → ω(r) and Ω(r−1) → Ω(r).
If the sequence

{(
ω(r),Ω(r)

)}
r≥0

stays away enough from the

resonances, the normalization procedure works! (see Sansottera,
Locatelli & Giorgilli 2011).
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Adapting the Kolmogorov’s normalization algorithm to elliptic tori

Testing the construction of the normal form for elliptic toriDecomposition of the signal related to Jupiter
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The red symbols (+) refers to the trivial approximation, while the blue
ones (×) to the approximated elliptic torus.

Figure: Fourier spectra with the first 30 main components of the signal
t → ξ1(t) + iη1(t) related to the secular motion of Jupiter, i.e.
ξ1(t) + iη1(t) '

∑30
s=1 c1,s exp [i (ν1,st)] . Frequencies ν1,s and amplitudes |c1,s |

are reported on the abscissas and the ordinates, resp. + symbols refer to a
motion starting from “real initial conditions” of the “planar SJSU”, while x
symbols are for an approximated elliptic torus after 9 normalization steps.

Frequency analysis shows that we are approaching an elliptic torus!
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Adapting the Kolmogorov’s normalization algorithm to elliptic tori

Testing the construction of the normal form for elliptic toriDecomposition of the signal related to Saturn
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The red symbols (+) refers to the trivial approximation, while the blue
ones (×) to the approximated elliptic torus.

Figure: Fourier spectra with the first 30 main components of the signal
t → ξ2(t) + iη2(t) related to the secular motion of Saturn, i.e.
ξ2(t) + iη2(t) '

∑30
s=1 c2,s exp [i (ν2,st)] . Frequencies ν2,s and amplitudes |c2,s |

are reported on the abscissas and the ordinates, resp. + symbols refer to a
motion starting from “real initial conditions” of the “planar SJSU”, while x
symbols are for an approximated elliptic torus after 9 normalization steps.

Frequency analysis shows that we are approaching an elliptic torus!
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Adapting the Kolmogorov’s normalization algorithm to elliptic tori

Testing the construction of the normal form for elliptic toriDecomposition of the signal related to Uranus
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The red symbols (+) refers to the trivial approximation, while the blue
ones (×) to the approximated elliptic torus.

Figure: Fourier spectra with the first 30 main components of the signal
t → ξ3(t) + iη3(t) related to the secular motion of Uranus, i.e.
ξ3(t) + iη3(t) '

∑30
s=1 c3,s exp [i (ν3,st)] . Frequencies ν3,s and amplitudes |c3,s |

are reported on the abscissas and the ordinates, resp. + symbols refer to a
motion starting from “real initial conditions” of the “planar SJSU”, while x
symbols are for an approximated elliptic torus after 9 normalization steps.

Frequency analysis shows that we are approaching an elliptic torus!
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Adapting the Kolmogorov’s normalization algorithm to elliptic tori

Main differences in the construction of the Kolmogorov’s
normal form: KAM tori vs. elliptic lower dimensional tori

The small parameter is the mass ratio maxj=1, 2, 3 mj/m0 .
At each normalization step for elliptic tori, we need a non-resonance
condition of type

min
0<|k|≤2r

∣∣∣k · ω(r−1)
∣∣∣ > 0 ,

that is similar to that needed by the usual KAM tori, but we need
also the so called Melnikov’s conditions:

min
|k|≤2r 1≤|`|≤2

∣∣∣k · ω(r−1) + ` ·Ω(r−1)
∣∣∣ > 0 .

In case of elliptic tori, the frequencies are not fixed “a priori”, and
the algorithm let them (very slightly) change at each step. Thus,
eventual resonances can show up after some normalization step.
The system is usually parameterized with respect to n1 independent
variables (e.g., the average semi-major axes where the initial
expansions are centered about). Thus, the final result must hold
true on a set having positive Lebesgue measure. This is really in
the spirit of the original Arnold’s proof scheme.
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Exporting ideas from the Arnold’s proof of KAM theorem

Arnold’s proof scheme of KAM theorem
Crossing the Resonant Regions

B1 is the set of “good” frequencies at the end of the first normalization
step.

At the first normalization step, you cut out a first group of main
resonances from the phase space and you perform a canonical
transformation so to eliminate those resonant perturbing terms from the
Hamiltonian, which is lead to the form:

H(1)(p,q) = h(1)(p) +R(1)(p,q) ,

where R(1) is a small remainder term.
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Exporting ideas from the Arnold’s proof of KAM theorem

Arnold’s proof scheme of KAM theoremCrossing the Resonant Regions

B2 is the set of “good” frequencies after the second normalization step.
At the second normalization step, you cut out a second group of main
resonances from the phase space and you perform another canonical
transformation so to write the Hamiltonian in the form:

H(2)(p,q) = h(2)(p) +R(2)(p,q) ,

where ‖R(2)‖ = O
(
‖R(1)‖2

)
is a remainder term much smaller than the

previous one. After having iterated infinitely many times this procedure
the Hamiltonian is convergent (if the initial perturbation is small enough)
on a Cantor set of invariant tori with positive Lebesgue measure.
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Exporting ideas from the Arnold’s proof of KAM theorem

Arnold web in numerics for a 4D–symplectic map

The Coupled Rational Shifted Standard Map (CRSSM) is defined so that

y ′1 = y1 + ε1 f1(x1) + γ+ f3(x1 + x2) + γ− f3(x1 − x2),

y ′2 = y2 + ε2 f2(x2) + γ+ f3(x1 + x2) − γ− f3(x1 − x2),

x ′1 = x1 + ε1 y ′1 mod 2π ,

x ′2 = x2 + ε2 y ′2 mod 2π ,

where angles xi ∈ [0, 2π) , actions yi ∈ [0, 2π/εi ) , ∀ i = 1, 2 , while the
perturbing functions are such that fi (x) = − sin x/(1− µi cos x) ,
∀ i = 1 , 2 , 3 , being ε1 , ε2 , γ± , µ1 , µ2 and µ3 fixed small parameters.

Consider a regular grid of initial values (y1;0 , y2;0) of the actions;

for each initial condition of type (y1;0 , y2;0 , 0 , 0) , iterate N times
the map, so to produce a finite sequence of points
(y1;j , y2;j , x1;j , x2;j) with j = 0, . . . , N ;

make the frequency analysis of the signals j →
√

2y1;j exp(ix1;j) and

j →
√

2y2;j exp(ix2;j) by separating two “windows”: j ∈ [0, N/2]
and j ∈ [N/2, N] . Draw the variations of the main frequencies as a
function of the initial actions (y1;0 , y2;0) .
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Exporting ideas from the Arnold’s proof of KAM theorem

Arnold web in numerics for a 4D–symplectic map

’./total_var_freq_calc2.out’ u ($1/2):2:3
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Figure: Color plot describing the Arnold web for the CRSSM with ε1 = 0.1 ,
ε2 = 0.2 , µ1 = µ2 = µ3 = 0.5 , γ+ = 0.1 , γ− = 0.05 . Initial values of actions
y1;0 and y2;0 are on abscissas and on ordinates, respectively. For each point the
corresponding variation of the frequencies is reported by the color scale on the
right.

Frequency analysis as a chaos indicator: lighter colors mean chaotic
motions, while darker ones are related to invariant tori.
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Exporting ideas from the Arnold’s proof of KAM theorem

Diffusion along the Arnold web

43 4 ESTUDIO DE DIFUSIÓN EN EL CRSSM

Figura 22: Evolución de la trayectoria con condición inicial ≺ 0,441500582 ;
2,168540878 �, en 108 y 109 iteraciones, en puntos rojos, sobre el espacio de
las acciones.

R. I. Paez

Figure: Evolution of a chaotic orbit (look at red points) along the Arnold web.

The diffusion is faster in larger resonant regions. When some resonant
regions cross each other, motions can pass from one to another.
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Superexponentially small lower bound about the diffusion time

Some more numerical experiments: the Sup–Map graph

The standard map is y ′ = y + ε sin x , x ′ = x + y ′ (mod 2π) .
Anno aademio 2001/2002 23

Figura 7. Studio del gra�o del Sup: esempi di situazioni aratterizzanti. Viene on-

siderata la standard map on valore del parametro perturbativo " = 0:9. In �gura 7a,

sono disegnate 20 diverse orbite della standard map orrispondenti a ondizioni in-

iziali poste sull'asse delle y nei pressi dell'orbita periodia iperbolia di frequenza 2=3;

orrispondentemente, in �gura 7d �e riportata la massima ordinata di iasuna orbita

in funzione dell'ordinata iniziale: si osservi he il passaggio attraverso una zona aot-

ia viene evidenziato da un improvviso salto nel gra�o del Sup. In �gura 7b, sono

disegnate 20 diverse orbite on ondizioni iniziali sull'asse delle y e viine a (0; �)

(si riordi he l'orbita usente da (0; �) �e periodia, ellittia e di frequenza 1=2); in

�gura 7e, �e riportato il orrispondente gra�o del Sup: la struttura della atena di

isole di librazione �e evidenziata da due rapidi ambi della pendenza he disegnano la

tipia \V" sul gra�o. In �gura 7, sono disegnate 20 diverse orbite nei pressi del toro

di frequenza (

p

5 � 1)=2 (la sala �e stata selta al �ne di visualizzare tutta la trai-

ettoria, purtroppo, i limiti di risoluzione del gra�o determinano lo shiaiamento

delle orbite l'una sopra l'altra); in �gura 7f, �e riportato il orrispondente gra�o del

Sup: l'attraversamento di una zona quasi eslusivamente ostituita da tori invarianti �e

evidenziato da una urva monot�ona estremamente regolare he, on la sala adottata

nel disegno, appare addirittura rettilinea.

evidenzier�a un netto salto quando si passa \dal di sotto" della zona aotia al suo interno

e sar�a poi ostante (a meno di un erto rumore dovuto al fatto he dal punto di vista delle

appliazioni numerihe si alola solo un numero �nito di iterazioni della mappa) nella

regione aotia. Si osservino le �gure 7a e 7d.

(ii) Attraversamento delle atene di isole

Figure: Archetypical situations occurring in a Sup–Map graph. Boxes a–c
contain plots of some orbits of the standard map with ε = 0.9 . In boxes d–f,
the values of the sup of an orbit as a function of the action y0 , being (0, y0)
the initial point starting from which the orbit is generated by iterations of the
standard map. The pair of boxes (a,d), (b,e) and (c,f) refer to the vertical
crossing of the chaotic zone close to an hyperbolic point, of the resonant
region close to an elliptic point and to a set of invariant tori, resp.



Elliptic tori in planetary systems The Arnold web as a global description of the dynamics

Superexponentially small lower bound about the diffusion time

Some more numerical experiments: the Sup–Map graph
24 Metodi numerii di studio dei sistemi dinamii Hamiltoniani

Figura 8. Gra�o del Sup relativo alla standard map on valore del parametro per-

turbativo " = 0:97 e on ondizioni iniziali poste sull'asse delle ordinate. La �gura 8a

onsidera delle ondizioni iniziali equidistanziate nell'intervallo [0; 2�℄. Ciasuna delle

�gure 8b, 8 e 8d rappresenta, rispetto alla �gura immediatamente preedente, un

ingrandimento attorno all'ordinata iniziale del toro invariante relativo alla frequenza

di rotazione (

p

5�1)=2. Le ordinate iniziali (l'asissa iniziale �e sempre posta = 0) or-

rispondenti ad alune orbite periodihe sono indiate nella parte superiore di iasuna

�gura. Il toro invariante di frequenza (

p

5 � 1)=2 �e tra le orbite periodihe 3=5 e 2=3

in �gura 8a e, rispettivamente, tra 21=34 e 34=55 in 8b, tra 144=233 e 89=144 in 8,

tra 377=610 e 610=987 in 8d. Da questa suessione di �gure �e evidente he quanto

pi�u i si avviina al toro invariante di frequenza (

p

5� 1)=2 e tanto meno sono estese

le atene di isole e le regioni aotihe.

Ciasuna delle isole ostituise una urva hiusa e invariante (per l'appliazione ostituita

da un numero opportuno di iterazioni della mappa in esame). Evidentemente, queste urve

non possono intersearsi l'una on l'altra, perh�e altrimenti la mappa non sarebbe ben

Figure: Sup–Map graph of the standard map with ε = 0.9 . Boxes a–d are
enlargements focused in a neighborhood smaller and smaller of the “golden
mean” torus, that is related to the frequency (

√
5− 1)/2 . On the top of each

box, the location of the main resonances of type Fk/Fk+1 is reported (being
{Fk}k≥0 the sequence of Fibonacci’s numbers).
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Dynamics in the neighborhood of an invariant torus

Let us focus on a neighborhood of a KAM torus characterized by a
Diophantine frequency vector ω , that is such that |k · ω| > γ

/
|k|τ with

some fixed γ > 0 and τ ≥ n − 1 . By constructing a Birkhoff’s normal
form starting from the Kolmogorov’s normal form and using
Nekhoroshev’s estimates, we can prove the following results.

Let V (%) be the measure of the complementary set with
respect to the invariant tori staying at a distance smaller than
% from the “ω–torus”, then

V (%) ' exp

(
−
(
%∗
%

)1/(τ+1)
)
.

Let T% be the diffusion time needed by a motion to double its
initial distance % from the “ω–torus”, then

T% ' exp

(
C exp

(
1

2n

(
%∗
%

)1/(τ+1)
))

,

being C and %∗ suitable positive constants (see Morbidelli &
Giorgilli 1995).
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