
Introduction KAM in Celestial Mechanics: study of the secular part of the SJS problem

KAM Theory and Applications in Celestial
Mechanics – Second and Third Lectures:

from the Original KAM Theorem to Explicit
Constructive Computational Algorithms

Ugo Locatelli [?]
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Discussion of a statement of KAM theorem

KAM theorem (stated according to Kolmogorov’s version)

Theorem

Consider a general problem of dynamics described by a Hamiltonian

H(p,q) = ω · p + h(p) + εf (p,q) .

If H is analytic in B%(0)× Tn (with B%(0) ⊂ Rn) and

ω is Diophantine, this means there are γ > 0 and τ ≥ n − 1 such
that |k · ω| > γ/|k|τ ∀ k ∈ Zn \ {0} ,

h(p) = O(‖p‖2) is non-degenerate, i.e. det
(

∂2h
∂pi∂pj

)
i,j
6= 0 ,

ε is small enough, i.e |ε| < ε∗, being ε∗ > 0 a threshold value,

then there exists a canonical transformation (p,q) = Ψ(P,Q) leading the
system to the Kolmogorov’s normal form Hamiltonian, i.e.

K(P,Q) = ω · P +R(P,Q) ,

where K = H ◦Ψ and R = O(‖P‖2) . Moreover, Ψ is close to the
identity I, i.e. Ψ− I = O(ε) .
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Discussion of a statement of KAM theorem

KAM theorem: some of the main consequences

The Cauchy’s problem for the Hamilton equations of Kolmogorov’s
normal form K can be solved for initial conditions with P(0) = 0 :

Ṗj = − ∂K
∂Qj

(0,Q) = 0 , Q̇j =
∂K
∂Pj

(0,Q) = ωj , ∀ j = 1 , . . . , n .

Since Ψ is canonical, a solution of the Cauchy’s problem can be
provided also in (p,q) coordinates, according to the scheme

(
p(0),q(0)

) (Ψ)−1

−→ (P(0) = 0 , Q(0))y Φt
ω·P

(
p(t),q(t)

) Ψ
←− (P(t) = 0 , Q(t) = Q(0) + ωt)

.

The (KAM) nD torus {(p,q) : (p,q) = Ψ(0,Q) ∀ Q ∈ Tn} is
invariant with respect to the flow Φt

H induced by H . That torus is a
“sligth” distorsion of the unperturbed one, i.e. {0} × Tn.
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Discussion of a statement of KAM theorem

KAM theorem: from local to global

Almost all the angular velocities ω are Diophantine!
More formally, let us introduce the set of diophantine frequencies
Ωγ , τ =

{
ω : |k · ω| > γ/|k|τ ∀ k ∈ Zn \ {0}

}
; it is easy to prove

that the Lebesgue measure of BR(0) \ Ωγ , τ shrinks to zero when
γ → 0+ , for all fixed values of R > 0 and τ > n − 1 .

The volume of the phase space that is not occupied by KAM
invariant tori shrinks to zero when ε→ 0 .
Actually, it has been proved that the Lebesgue measure of the
complementary set of the KAM tori is O(

√
ε) (see Neishtadt, 1982).

Purely analytical estimates of the threshold value ε∗ = ε∗(γ, τ, h, f )
are often complicate and ridicolously small.
Nevertheless, in some cases, computer–assisted rigorous proofs can
ensure the existence of KAM tori for values of ε very close to
the real (numerical) breakdown threshold of a fixed invariant
torus (see Calleja, Celletti & de la Llave, 2013).
Moreover, in concrete applications we are often interested in using
the constructive method that is the basis of a proof.
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Hamiltonian settings of the three–body problem

The Hamiltonian of the Sun–Jupiter–Saturn system

The Hamiltonian of a three–body planetary system writes as

F (r, r̃) = T (0)(r̃) + U(0)(r) + T (1)(r̃) + U(1)(r) ,

where r are the heliocentric coordinates and r̃ the conjugated momenta,
while the functional terms appearing above are such that

T (0)(r̃) =
1

2

2∑
j=1

‖r̃j‖2

(
1

m0
+

1

mj

)
,

U(0)(r) = −G
2∑

j=1

m0mj

‖rj‖
,

T (1)(r̃) =
r̃1 · r̃2

m0
,

U(1)(r) = −G m1m2

‖r1 − r2‖
,

being G , m0 , m1 and m2 the gravitational constant, the mass of the
“star” and the masses of the two “planets”, respectively.
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Hamiltonian settings of the three–body problem

Orbital elements (a brief sketch)

Figure: Schematic representation of the orbital angles I , Ω and ω . The elliptic
osculating Keplerian orbit lies in the xy plane, while XYZ is a fixed reference.

In Celestial Mechanics position–velocity coordinates are represented in
terms of the osculating Keplerian orbit. The classical orbital elements
locating a Keplerian ellipse (and a point on it) are (a , e , I , M , ω , Ω) ,
where inclination I , perihelion argument ω and longitude of node Ω
are represented in figure above. a and e are the semimajor-axis and the
eccentricity of the ellipse, respectively. The position on the Keplerian
ellipse is given by the true anomaly v , i.e. an angle starting form the
perihelion. M is related to v as it will be recalled in the next slide.
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Hamiltonian settings of the three–body problem

Reduction of the angular momentum (a brief sketch)

Starting from the true anomaly v , one can determine the eccentric
anomaly E and the mean anomaly M , by the well known equations:

tan
v

2
=

√
1 + e

1− e
tan

E

2
, M = E − e sin E .

Remark: starting from the heliocentric coordinates, we
automatically reduced the linear momentum; thus, the original
three–body problem (having 9 degrees of freedom) can be
represented by 6 pairs of canonical coordinates.

Remark: for both the planets, we can use the three pairs of
Delaunay’s action–angle coordinates, where the angles are just
Mj , ωj , Ωj with j = 1 , 2 .

Remark: if a XYZ reference frame with the axis Z parallel to the
total angular momentum J is chosen, it is easy to prove that the
Hamiltonian does not depend on Ω1 + Ω2 and Ω1 − Ω2 = π .
This allows one to perform the Jacobi’s reduction of the nodes: the
three–body problem is represented by a 4 d.o.f. Hamiltonian, where
Ω1 , Ω2 and the related actions do not appear.
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Hamiltonian settings of the three–body problem

The Poincaré canonical variables for the reduced
three–body Hamiltonian (having 4 d.o.f.)

Λj =
m0mj

m0 + mj

√
G(m0 + mj)aj λj = Mj + ωj

︸                                                                  ︷︷                                                                  ︸
fast variables

ξj =
√

2Λj

√
1−

√
1− e2

j cos(ωj) ηj = −
√

2Λj

√
1−

√
1− e2

j sin(ωj)

︸                                                                                                  ︷︷                                                                                                  ︸
secular variables

where aj , ej , Mj and ωj are the semi-major axis, the eccentricity, the

mean anomaly and perihelion argument of the j–th planet, respectively.
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Secular Hamiltonian dynamics of the three–body problem

Introduction of the secular Hamiltonian

Remark: it is well known that the main (Keplerian) part of the
Hamiltonian is integrable, because it depends only on the actions:

T (0) + U(0) = −G
2 m3

0

2

(
m3

1

m0 + m1

1

Λ2
1

+
m3

2

m0 + m2

1

Λ2
2

)
.

Remark: in order to have information about the “final fate” of the
orbits, it is natural to average the model over the fast angles:

〈F 〉λ =
1

(2π)2

∫
T2

F dλ1dλ2 .

Remark: since Λ1 and Λ2 are integrals of motion for 〈F 〉λ , they can
be evaluated (with respect to a numerical average value of the
semi-major axes) and the dependence of the Hamiltonian on them
can be disregarded. Thus, we “dropped” two d.o.f.
Remark: since 〈T (1)〉λ = 0 , we are lead to study the 2 d.o.f.
Hamiltonian H(sec) = H(sec)(ξ1, ξ2, η1, η2) , such that

H(sec) = 〈U(1)〉λ = −Gm1m2

(2π)2

∫
T2

dλ1dλ2

‖r1 − r2‖
.
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Secular Hamiltonian dynamics of the three–body problem

About the secular Hamiltonian

From the D’Alembert rules, it follows that

H(sec) = H
(sec)
0 + H

(sec)
2 + H

(sec)
4 + . . . ,

where H
(sec)
2j is a hom. pol. of degree (2j + 2) in ξ and η , ∀ j ∈ N .

ξ = η = 0 is an elliptic equilibrium point (for a general proof, one
could adapt that reported in Biasco, Chierchia & Valdinoci, 2006).

The complete expansion of H
(sec)
0 + H

(sec)
2 is in Robutel, 1995.

Lagrange and Laplace produced H
(sec)
0 with all the known planets to

explain the oscillations of eccentricities and inclinations.

The quadratic term H
(sec)
0 can be made diagonal by a linear

canonical transformation D . The new Hamiltonian is then given by

H(D) = H(sec) ◦ D , being H(D) = H
(D)
0 + H

(D)
2 + H

(D)
4 + . . . its

decomposition in even homogeneous polynomials and

H
(D)
0 =

ν1

2

(
ξ2

1 + η2
1

)
+
ν2

2

(
ξ2

2 + η2
2

)
.

H(D) has the same structure as the Hénon–Heiles Hamiltonian
(except the parity property).
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Secular Hamiltonian dynamics of the three–body problem

SJS problem: secular part up to order 2 in the masses

24 U. Locatelli and A. Giorgilli

A. Expansion of the secular Hamiltonian of the SJS system

up to order 2 in the masses and 6 in eccentricity

In the following expansion of formula (11), we neglected the additive constant because

it has no in
uence on the equations of motion:
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Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

Basics of Lie series in action–angle coordinates
Let A be the can. transf. introducing action–angle variables (I,ϕ)
so that ξj =

√
2Ij cosϕj , ηj =

√
2Ij sinϕj , ∀ j = 1, 2 . Let us define

H(I) = H(D) ◦ A . Thus, H(I) = H(I)(I,ϕ) .
Let χ and f be a Hamiltonian and a dynamical function, resp. Let
us recall that ḟ = Lχf , where the Lie derivative operator Lχ· is
given by the Poisson bracket, so that Lχf = {f , χ} , being

{f , χ} =
∑n

j=1

(
∂f
∂ϕj

∂χ
∂Ij
− ∂f

∂Ij

∂χ
∂ϕj

)
(for a generic number n of d.o.f.).

Since f̈ = Lχ ḟ = L2
χf and the same can be done for each derivative,

formally we can write the effect of the flow along χ as

Φt
χf =

∑
j≥0

1

j!
Lj
χf = expLχf ,

where the operator expLχ· is known as the Lie series.
We can apply the Lie series to each canonical coordinate, then
Φt
χ(I,ϕ) = (expLχI1 , . . . , expLχIn , expLχϕ1 , . . . , expLχϕn) .

Since the flow Φt
χ along a Hamiltonian χ is known to be symplectic,

the Lie series induce a canonical transformation, if (some
suitable norm of) χ is small enough.
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Basics of normal form theory in action–angle coordinates
Because of the “exchange” theorem for Lie series (see Gröbner,
1960), after having performed a canonical transformation related to
the flow induced by the generating function χ, a Hamiltonian in
the new coordinates can be calculated as:

H(expLχI1 , . . . , expLχIn , expLχϕ1 , . . . , expLχϕn) = expLχH .

In words, it means: “just compute the Lie series of the Hamiltonian
and, eventually, change the symbols of the coordinates”.
Liouville-Arnold-Jost theorem suggests us to determine a generating
function related to a canonical transformation removing the angular
dependence. Let us write the Fourier expansion of a “perturbing”
function so that f (I,ϕ) =

∑
k∈Zn ck(I) exp(ik ·ϕ) ; close to a system

of harmonic oscillators ν · I we often solve a “homological”
equation of type Lχν · I + f (I,ϕ) = Z (I), where the generating
function χ and the normal form part Z are determined so that

χ(I,ϕ) =
∑

k∈Zn\{0}

ck(I)

ik · ν exp(ik ·ϕ) , Z = 〈f 〉ϕ ,

if k · ν 6= 0 ∀ k 6= 0 (small divisors problem!).
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Partial Birkhoff normalization of the secular Hamiltonian

Let us focus on the Hamiltonian in action–angle coordinates:

H(I)(I,ϕ) = ν · I +
∞∑
s=2

P(I)
2s (I,ϕ) ,

where P(I)
2s is an hom. pol. of degree 2s in the square roots of actions I

and a trigonometric pol. of degree 2s in angles ϕ .
The following way to expand the Hamiltonian highlights both the size of
the perturbation (horizontally) and the degree in action (vertically):

·
· ·

+P(I)
8 (I,ϕ)

+P(I)
6 (I,ϕ)

+P(I)
4 (I,ϕ)

H(I)(I,ϕ) = ν · I
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Partial Birkhoff normalization of the secular Hamiltonian

Let us solve the equation for the generating function B(II):{
B(II) , ν · I

}
+ P(I)

4 (I,ϕ) = Z4(I) ,

where {·, ·} is a Poisson bracket, Z4 is the angular average of P(I)
4 . That

equation can be solved if |k · ν| 6= 0 ∀ k ∈ Z2 such that 0 < |k| ≤ 4 .
Therefore, we calculate the new Hamiltonian H(II) = expLB(II) H(I), the

expansion of which can be written as follows (with new terms P(II)
2s

sharing the same properties with P(I)
2s ∀ s ≥ 2 ):

·
· ·

+P(II)
8 (I,ϕ)

+P(II)
6 (I,ϕ)

+Z4(I)

H(II)(I,ϕ) = ν · I
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Partial Birkhoff normalization of the secular Hamiltonian

Let us solve the equation for the generating function B(III):{
B(III) , ν · I

}
+ P(II)

6 (I,ϕ) = Z6(I) ,

where {·, ·} is a Poisson bracket, Z6 is the angular average of P(II)
6 . That

equation can be solved if |k · ν| 6= 0 ∀ k ∈ Z2 such that 0 < |k| ≤ 6 .
Therefore, we calculate the new Hamiltonian H(III) = expLB(III) H(II), the

expansion of which can be written as follows (with new terms P(III)
2s

sharing the same properties with P(I)
2s ∀ s ≥ 3 ):

·
· ·

+P(III)
8 (I,ϕ)

+Z6(I)

+Z4(I)

H(III)(I,ϕ) = ν · I
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Intermezzo: why Frequency Analysis is necessary?

Remark: if the Birkhoff normalization procedure would be infinitely
iterated, the Taylor–Fourier series of the final Hamiltonian
would not be convergent on any open set.

Remark: KAM theorem requires that, in the integrable
approximation, on the torus p = 0 the frequency vector is equal
to ω , that is fixed “a priori”. In our previous case, I = 0
corresponds to an equilibrium point and the limit frequency vector
ν 6= ω .

Problem: how can we determine the frequencies corresponding to
some initial conditions? Answer: using Frequency Analysis.

Some detail about the procedure (see Laskar, 1995, 1999). First,
make a numerical integration of the equations of motion for t ∈ [0,T ]
and store the signals t → ξj(t) + iηj(t) at regular intervals of time.
Frequency analysis numerically determines the Fourier decomposition:

ξj(t)+iηj(t) =
∑
s∈N

cj,s exp
[
i
(
ν

(T )
j,s t

)]
with cj,s ∈ C ∀ j = 1 , 2 , s ∈ N .

On a KAM torus, (using the Hanning filter) the convergence to the

true result is very fast: |ν(T )
j,s − kj,s · ω| = O(1/T 4) for some kj,s ∈ Z2.
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Initial translation of the actions

We shift the origin of the actions so to center the expansions about the
torus related to a chosen frequency ω in the integrable approximation.

Let us solve the following equations in the unknown vector I∗:

νj +
∂ Z4

∂Ij
(I∗) +

∂ Z6

∂Ij
(I∗) = ωj ∀ j = 1, 2, 3 ;

Let the canonical transformation T be so that T (I,ϕ) = (p + I∗,q) ,
introduce the new Hamiltonian H(0) = H(III) ◦ T and expand it:

...
...

...
...

...

f
(0,0)

2 (p) f
(0,1)

2 (p,q) . . . f
(0,s)

2 (p,q) . . .

H(0)(p,q) =
∑

ω · p f
(0,1)

1 (p,q) . . . f
(0,s)

1 (p,q) . . .

0 f
(0,1)

0 (q) . . . f
(0,s)

0 (q) . . .
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Initial translation of the actions

We shift the origin of the actions so to center the expansions about the
torus related to a chosen frequency ω in the integrable approximation.

Let us solve the following equations in the unknown vector I∗:

νj +
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∂Ij
(I∗) +

∂ Z6

∂Ij
(I∗) = ωj ∀ j = 1, 2, 3 ;

Let the canonical transformation T be so that T (I,ϕ) = (p + I∗,q) ,
introduce the new Hamiltonian H(0) = H(III) ◦ T and expand it:
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(0,1)

2 (p,q) . . . f
(0,s)
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(0,1)

1 (p,q) . . . f
(0,s)

1 (p,q) . . .
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0 (q) . . . f
(0,s)

0 (q) . . .



Introduction KAM in Celestial Mechanics: study of the secular part of the SJS problem

Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

Initial translation of the actions

We shift the origin of the actions so to center the expansions about the
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Let us solve the following equations in the unknown vector I∗:

νj +
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∂Ij
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Initial translation of the actions

We shift the origin of the actions so to center the expansions about the
torus related to a chosen frequency ω in the integrable approximation.

Let us solve the following equations in the unknown vector I∗:

νj +
∂ Z4

∂Ij
(I∗) +

∂ Z6

∂Ij
(I∗) = ωj ∀ j = 1, 2, 3 ;

Let the canonical transformation T be so that T (I,ϕ) = (p + I∗,q) ,
introduce the new Hamiltonian H(0) = H(III) ◦ T and expand it:
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...

f
(0,0)

2 (p) f
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2 (p,q) . . . f
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H(0)(p,q) =
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Some remarks about the algorithm constructing the
Kolmogorov’s normal form

Since the set of Diophantine numbers has full Lebesgue measure, it
is always possible to produce a completion of the numerical
approximation of the frequency vector ω so that it is Diophantine.

The terms f
(0,s)
j appearing in the formula giving H(0) are defined so

to have particular functional properties:

f
(0,s)
j is a hom. pol. of degree j in actions p and a trigonometric

pol. of degree 2s in q . Thus, the expansion of each f
(0,s)
j is

representable on a computer because it is finite.

The Kolmogorov’s normalization algorithm requires to eliminate all
the terms having degree equal to 0 or 1 in the actions, except ω · p .

Where is the small parameter? The size of the perturbation is
ruled by the translation vector I∗. Moreover, going to the right in
the expansion of H(0), the terms get smaller and smaller. In our
problem, from a physical point of view, ‖I∗‖ is of the same order
of magnitude as either the square of the eccentricities or the
square of the inclinations.
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A half of the first Kolmogorov’s normalization step

We define a new Hamiltonian Ĥ(1) = expL
χ

(1)
1

H(0) where the generating

function χ
(1)
1 (q) = X (1)(q) + ξ(1) · q is such that{

X (1) , ω · p
}

+ f
(0,1)

0 = 0 ,
{
ξ(1) · q , f

(0,0)
2

}
+
〈

f
(0,1)

1

〉
= 0 ,

being 〈·〉 the average over q , X (1) a trig. pol. of deg. 2 and ξ(1) ∈ R2.

The expansion of the new Hamiltonian Ĥ(1) is calculated by studying the

functional properties of all the terms of expL
χ

(1)
1

H(0); e.g., {χ(1)
1 ,ω · p}

shares the same properties with f
(0,1)

0 , then f̂
(1,1)

0 = f
(0,1)

0 + L
χ

(1)
1
ω · p .

...
...

...
...

...
...

f
(0,0)

2 (p) f
(0,1)

2 (p,q) f
(0,2)

2 (p,q) . . . f
(0,s)

2 (p,q) . . .∑
ω · p f

(0,1)
1 (p,q) f

(0,2)
1 (p,q) . . . f

(0,s)
1 (p,q) . . .

0 f
(0,1)

0 (q) f
(0,2)

0 (q) . . . f
(0,s)

0 (q) . . .
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A half of the first Kolmogorov’s normalization step

We define a new Hamiltonian Ĥ(1) = expL
χ

(1)
1

H(0) where the generating

function χ
(1)
1 (q) = X (1)(q) + ξ(1) · q is such that{

X (1) , ω · p
}

+ f
(0,1)

0 = 0 ,
{
ξ(1) · q , f

(0,0)
2

}
+
〈

f
(0,1)

1

〉
= 0 ,

being 〈·〉 the average over q , X (1) a trig. pol. of deg. 2 and ξ(1) ∈ R2.
The expansion of the new Hamiltonian Ĥ(1) is calculated by studying the

functional properties of all the terms of expL
χ

(1)
1

H(0);

e.g., {χ(1)
1 ,ω · p}

shares the same properties with f
(0,1)

0 , then f̂
(1,1)

0 = f
(0,1)

0 + L
χ

(1)
1
ω · p .

...
...

...
...

...
...

f
(0,0)

2 (p) f
(0,1)

2 (p,q) f
(0,2)

2 (p,q) . . . f
(0,s)

2 (p,q) . . .∑
ω · p f

(0,1)
1 (p,q) f

(0,2)
1 (p,q) . . . f

(0,s)
1 (p,q) . . .

0 f
(0,1)

0 (q) f
(0,2)

0 (q) . . . f
(0,s)

0 (q) . . .
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A half of the first Kolmogorov’s normalization step

We define a new Hamiltonian Ĥ(1) = expL
χ

(1)
1

H(0) where the generating

function χ
(1)
1 (q) = X (1)(q) + ξ(1) · q is such that{

X (1) , ω · p
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+ f
(0,1)

0 = 0 ,
{
ξ(1) · q , f

(0,0)
2

}
+
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f
(0,1)

1

〉
= 0 ,

being 〈·〉 the average over q , X (1) a trig. pol. of deg. 2 and ξ(1) ∈ R2.
The expansion of the new Hamiltonian Ĥ(1) is calculated by studying the

functional properties of all the terms of expL
χ

(1)
1

H(0);

e.g., {χ(1)
1 ,ω · p}

shares the same properties with f
(0,1)

0 , then f̂
(1,1)

0 = f
(0,1)

0 + L
χ

(1)
1
ω · p .
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...

...
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f
(0,0)
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(0,1)

2 (p,q) f
(0,2)
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A half of the first Kolmogorov’s normalization step

We define a new Hamiltonian Ĥ(1) = expL
χ

(1)
1

H(0) where the generating

function χ
(1)
1 (q) = X (1)(q) + ξ(1) · q is such that{

X (1) , ω · p
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0 = 0 ,
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(0,0)
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+
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being 〈·〉 the average over q , X (1) a trig. pol. of deg. 2 and ξ(1) ∈ R2.
The expansion of the new Hamiltonian Ĥ(1) is calculated by studying the

functional properties of all the terms of expL
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A half of the first Kolmogorov’s normalization step

We define a new Hamiltonian Ĥ(1) = expL
χ
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= 0 ,
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A half of the first Kolmogorov’s normalization step

We define a new Hamiltonian Ĥ(1) = expL
χ

(1)
1

H(0) where the generating

function χ
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H(0);

e.g., {χ(1)
1 , f

(0,0)
2 }

is really like f
(0,1)

1 , then f̂
(1,1)

1 = f
(0,1)

1 + L
χ

(1)
1

f
(0,0)

2 with 〈f̂ (1,1)
1 〉 = 0 .
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A half of the first Kolmogorov’s normalization step

We define a new Hamiltonian Ĥ(1) = expL
χ

(1)
1

H(0) where the generating

function χ
(1)
1 (q) = X (1)(q) + ξ(1) · q is such that{

X (1) , ω · p
}

+ f
(0,1)

0 = 0 ,
{
ξ(1) · q , f
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2

}
+
〈

f
(0,1)

1

〉
= 0 ,

being 〈·〉 the average over q , X (1) a trig. pol. of deg. 2 and ξ(1) ∈ R2.
The expansion of the new Hamiltonian Ĥ(1) is calculated by studying the
functional properties of all the terms of expL
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Ĥ(1) where the generating

function χ
(1)
2 (p,q) is such that{

χ
(1)
2 , ω · p

}
+ f̂

(1,1)
1 = 0 ,

since 〈f̂ (1,1)
1 〉 = 0 , χ

(1)
2 is linear in p and a trig. pol. of deg. 2 in q .

The expansion of the new Hamiltonian H(1) is calculated by studying the

functional properties of all the terms of expL
χ

(1)
2
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Completing all the Kolmogorov’s normalization algorithm

The Kolmogorov’s normalization step can be “infinitely” iterated, if

the frequency vector ω is non-resonant enough (e.g., diophantine,
i.e. |k · ω| > γ

/
|k|τ with some fixed γ > 0 and τ ≥ n − 1);

the hessian of f
(0,0)

2 (p) is non-degenerate;

the perturbation (or, equivalently, ‖I∗‖) is small enough.

Therefore, the sequence of H(r) is convergent to a Hamiltonian H(∞) in
Kolmogorov’s normal form, the expansions of which is written as

...
...

...
...

...

f
(∞,0)

2 (p) f
(∞,1)

2 (p,q) . . . f
(∞,s)

2 (p,q) . . .

H(∞)(p,q) =
∑

ω · p 0 . . . 0 . . .

0 0 . . . 0 . . .
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Some remarks about the Kolmogorov’s normal form

The (KAM) torus corresponding to p = 0 is obviously invariant with
respect to the flow Φt

H(∞) induced by the Hamiltonian in
Kolmogorov’s normal form. In fact, if p = 0 then

ṗj = −∂ H(∞)

∂qj
(0,q) = 0 , q̇j =

∂ H(∞)

∂pj
(0,q) = ωj .

This approach, based on the construction of the Kolmogorov’s
normal form by a sequence of Lie series can be translated in a proof
(see Benettin & al., 1984, Giorgilli & Locatelli, 1997). Moreover, by
implementing interval arithmetics and estimating all the truncated
terms, this approach can be used to produce a computer–assisted
proof (as in Locatelli & Giorgilli, 2000).
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Figure 4. Decrease of the generating functions defined by the Kolmogorov’s normalization algorithm.
Figure 4(a) considers the construction of the invariant tori corresponding to the frequencies belonging

to the set �′′ defined in (51). The plotted values are the uniform upper bounds of the norms of χ(r)
2 on

the whole set �′′ . Figure 4(a) has been enlarged in Figure 4(b), where we can appreciate the change
of the slope occurring when the calculation of the norms is no more made starting by the coefficients
of the expansions, but only iterating the estimates (i.e., for r = 33).

The actual implementation goes as follows: at low orders, up to R′ = 33, we
explicitly calculate the functions required by Kolmogorov’s algorithm using an
algebraic manipulator and we evaluate the sequence of bounds G and F according
to (33). For higher orders, up to R′′ = 2048 we use the recursive estimates given
by the algorithm above. The worsening effect of the change of method is illustrated
in Figure 4 for the generating function χ

(r)

2 . We emphasize that the choice of R′
and R′′ may be delicate: the final result may critically depend on this choice. On
one hand, if R′ is too small then the recursive estimates will fail to work. On
the other hand choosing too high values may critically increase the computational
time.

4.1.2. Estimates on the Infinite Power Series Expansions
Although the computer implementation of the iterative estimates of the previous
section can provide the upper bounds for a very large number of terms appearing
in expansion (24), this is not sufficient to ensure the existence of the invariant
tori. Indeed, the version of the KAM theorem reported in Section 4.2 needs some
upper limits on all the terms appearing in the infinite power series expansion of
the Hamiltonian. Therefore, all the upper bounds calculated in the previous section

Figure: Decrease of the generating functions defined by the Kolmogorov’s
normalization algorithm. The plotted values are the uniform upper bounds of
the norms of χ

(r)
2 . Box a has been enlarged in box b, where we can appreciate

the change of the slope occurring when the calculation of the norms is no more
made starting by the coefficients of the expansions, but only iterating the
estimates (i.e., for r = 33).

While the generating functions are explicitly calculated according to the
Kolmogorov normalization algorithm (i.e. when 1 ≤ r ≤ 33), their
geometrical decrease is very evident.
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Some remarks about the Kolmogorov’s normal form

Let K(r) be the canonical transformation inducing the Kolmogorov’s
normalization up to the step r , i.e.,

K(r)(p,q) = expLχ(r)
2 ◦ expLχ(r)

1 ◦ . . . ◦ expLχ(1)
2 ◦ expLχ(1)

1 (p,q) .

Let us now introduce K(∞) = limr→∞K(r) and
C(∞) = D ◦ A ◦ expLB(III) ◦ expLB(II) ◦ expLB(I) ◦ T ◦ K(∞), that is the
composition of all the can. transf. of the algorithm. The equations of
motion can be integrated in a semi-analytic way as follows:

(
ξ(0),η(0)

) (
C(∞)

)−1

−→ (p(0) = 0 , q(0))y Φt
ω·p

(
ξ(t),η(t)

) C(∞)

←− (p(t) = 0 , q(t) = q(0) + ωt)

.
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Some remarks about the Kolmogorov’s normal form

Let K(r) be the canonical transformation inducing the Kolmogorov’s
normalization up to the step r , i.e.,

K(r)(p,q) = expLχ(r)
2 ◦ expLχ(r)

1 ◦ . . . ◦ expLχ(1)
2 ◦ expLχ(1)

1 (p,q) .

Let us introduce C(r) = D◦A◦ expLB(III) ◦ expLB(II) ◦ expLB(I) ◦T ◦K(r),
that is the composition of all the can. transf. of the algorithm up to the
step r . The solution of the eqs. of motion can be approximated in a
semi-analytic way as follows:

(
ξ(0),η(0)

) (
C(r)
)−1

−→ (p(0) ' 0 , q(0))y Φt
ω·p

(
ξ(t),η(t)

) C(r)

←− (p(t) ' p(0) , q(t) ' q(0) + ωt)

.
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Figure 3. The distance d(t) between the numerically integrated orbit and the approximated motion
(ξ̃r (t), η̃r (t)) calculated via the scheme (32). The curves a–e refer to the step r of Kolmogorov’s
algorithm with r = 1, 5, 9, 11, 13, respectively. The convergence may be appreciated by looking at
the vertical scale. The drift effect in figure e is due to the error in the determination of the frequencies.

Following the scheme in [6] we calculate R′ steps of Kolmogorov’s algorithm.∗
The result improves with increasing R′, of course. We found that setting R′ = 33
is sufficient for our purposes. In order to make the proof rigorous all coefficients in
the expansions of Section 3 have been calculated by using the interval arithmetics
(see, e.g., [13] and [32]).

4.1. ITERATION OF THE ESTIMATES

Let us first introduce some notations. For v ∈ Rn we denote |v| = ∑n
j=1 |vj | . Let

us write the expansion of a generic function g ∈ Pl,K , with multi-index notation,
as g(p, q) = ∑

|j |=l

∑
|k|�K cjkp

j sin
cos(k · q), where the expression sin

cos means that
both the contributions with the sines and the cosines may occur. Then we introduce
the norm

‖g‖ =
∑
|j |=l

∑
|k|�K

∣∣cjk

∣∣ . (33)

∗ This means that at the r-th step (with 1� r �R′) of the Kolmogorov’s algorithm we calculate at

least the explicit expansion of the generating functions χ
(r)
1 and χ

(r)
2 , of the functions h

(r)
l

such that

2� l�  (R′+1−r)/r!+2 and of the functions f̂
(r,s)
l and f

(r,s)
l such that 0� l�  (R′+1−s)/r!+2

and r < s �R′ + 1 .

Figure: Study of the secular part up to order 2 in the masses of the SJS
system. The distance d = d(t) is between a semi-analytic solution and a
numerical one. The curves a–e refer to the step r of Kolmogorov’s algorithm
with r = 1, 5, 9, 11, 13, resp. The convergence may be appreciated by looking
at the vertical scale. The drift effect in box e is due to the numerical error on
the frequency vector ω .
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Rigorous proof of the topological confinement
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Figure 1. Illustrating the topological confinement of the orbit in the 4D phase space. The continuous
curves �′ and �′′ represent two sets of 2D invariant tori that intersect transversally an energy surface.
An orbit with initial datum in the gap between two tori will be eternally trapped in the same region
(see text).

existence of all tori corresponding to the frequencies belonging to �′ and �′′, then
the images in the phase space of these two segments are two families of invariant
tori depending on a parameter. Let us remark that in Figure 1 we drew the images
of �′ and �′′ which correspond only to a fixed value of the angles. Moreover, let us
suppose to know two pairs of frequencies ω′− , ω′+ ∈ �′ and ω′′− , ω′′+ ∈ �′′, such
that E(ω′−), E(ω′′−) < Ē and E(ω′+), E(ω′′+) > Ē, where E(ω) is the energy re-
lated to the torus with frequency ω. Since KAM theory ensures us that the function
E(ω) is continuous on the sets �′ and �′′, then there are two frequencies ω′ ∈ �′
and ω′′ ∈ �′′ corresponding to two invariant tori, say T ′ and T ′′ respectively, such
that they belong to the energy surface � related to the level Ē . Thus, it is enough
to check that the initial data belong to the gap between T ′ and T ′′ on the surface �

in order to assure that the orbit will be trapped there forever.
Applying the procedure above to our model we prove the following.

THEOREM 1. The Hamiltonian of the approximated secular model for the SJS
system possesses two invariant tori bounding the orbit with the initial data of
Jupiter and Saturn.

The form of the Hamiltonian referred to in the statement is given by truncating
at order 70 the expression (19) in Section 3.1. The initial data in the appropriate
canonical coordinates are given in Table 4 . The frequencies related to the trapping
tori belong to the sets defined in formula (51).

2. Reduction of the Secular Hamiltonian

In this section we discuss some classical expansions of the Hamiltonian of the prob-
lem of three bodies in Poincaré variables. Then we introduce the secular Hamilto-
nian by eliminating the fast variables.

Figure: Scheme of the topological confinement of the orbit in a 4D phase
space. The continuous curves Γ′ and Γ′′ represent two families of 2D invariant
tori intersecting transversally the energy surface Σ . An orbit with initial datum
in the gap between two tori will stay eternally trapped in that same region.

For the secular part up to order 2 in the masses of the SJS problem, a
computer–assisted proof of stability has been produced.
In general, there is no topological confinement for problems with
more than two degrees of freedom.


	Introduction
	Discussion of a statement of KAM theorem

	KAM in Celestial Mechanics: study of the secular part of the SJS problem
	Hamiltonian settings of the three–body problem
	Secular Hamiltonian dynamics of the three–body problem
	Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian


