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Discussion of a statement of KAM theorem

KAM theorem (stated according to Kolmogorov's version)

Consider a general problem of dynamics described by a Hamiltonian

H(p.q) = w-p+ h(p) +f(p,q) .

If H is analytic in B,(0) x T" (with B,(0) C R") and
@ w is Diophantine, this means there are v > 0 and 7 > n — 1 such
that |k - w| > v/|k|” V k € Z" \ {0},

o h(p) = O(||p||?) is non-degenerate, i.e. det (ap ap,) #0,

@ ¢ is small enough, i.e |e| < &*, being £* > 0 a threshold value,

then there exists a canonical transformation (p,q) = V(P, Q) leading the
system to the Kolmogorov's normal form Hamiltonian, i.e.

where K = Ho W and R = O(||P||?) . Moreover, W is close to the
identity I, i.e. W —1=0(e).
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Discussion of a statement of KAM theorem

KAM theorem: some of the main consequences

@ The Cauchy’s problem for the Hamilton equations of Kolmogorov's
normal form XC can be solved for initial conditions with P(0) = 0:

. oK . oK .
Pj_ 8QJ(0’Q)_O’ QJ_aPJ(qu)_wjv V.f_]-a'”vn'
@ Since V is canonical, a solution of the Cauchy’s problem can be
provided also in (p,q) coordinates, according to the scheme
(v
(p(0),4q(0)) — (P(0) =10, Q(0))
[ ot
v
(p(t),a(t)) — (P(t) =0, Q(t) = Q(0) + wt)

e The (KAM) nD torus {(p,q): (p,q) =V¥(0,Q) VQ e T"} is
invariant with respect to the flow ®}, induced by H. That torus is a
“sligth” distorsion of the unperturbed one, i.e. {0} x T".
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KAM theorem: from local to global

@ Almost all the angular velocities w are Diophantine!
More formally, let us introduce the set of diophantine frequencies
Qyr={w: |k-w|>7/kl"VkeZ"\{0}}; it is easy to prove
that the Lebesgue measure of Br(0) \ 2, , shrinks to zero when
~ — 07, for all fixed valuesof R >0and 7 >n—1.

@ The volume of the phase space that is not occupied by KAM
invariant tori shrinks to zero when ¢ — 0.
Actually, it has been proved that the Lebesgue measure of the
complementary set of the KAM tori is O(+/¢) (see Neishtadt, 1982).

@ Purely analytical estimates of the threshold value ¢* = &*(y, 7, h, f)
are often complicate and ridicolously small.
Nevertheless, in some cases, computer—assisted rigorous proofs can
ensure the existence of KAM tori for values of € very close to
the real (numerical) breakdown threshold of a fixed invariant
torus (see Calleja, Celletti & de la Llave, 2013).
Moreover, in concrete applications we are often interested in using
the constructive method that is the basis of a proof.



KAM in Celestial Mechanics: study of the secular part of the SJS problem
@000
Hamiltonian settings of the three—body problem

The Hamiltonian of the Sun—Jupiter-Saturn system

The Hamiltonian of a three—body planetary system writes as
F(r,#) = TO®®) + UO(r) + TO®F) + UD(r),

where r are the heliocentric coordinates and ¥ the conjugated momenta,
while the functional terms appearing above are such that

TO(f) = ZW( ) |

U(O)(r) -G Z mom;j

el
T @@ = PP
(7= "2,
UD ()= _g_Mm2_
=9 el

being G, mg, m; and my the gravitational constant, the mass of the
“star” and the masses of the two “planets”, respectively,
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Hamiltonian settings of the three—body problem

Orbital elements (a brief sketch)

reference
direction

X

Figure: Schematic representation of the orbital angles /', € and w. The elliptic
osculating Keplerian orbit lies in the xy plane, while XYZ is a fixed reference.

In Celestial Mechanics position—velocity coordinates are represented in
terms of the osculating Keplerian orbit. The classical orbital elements
locating a Keplerian ellipse (and a point on it) are (a, e, |, M, w, Q),
where inclination /, perihelion argument w and longitude of node Q
are represented in figure above. a and e are the semimajor-axis and the
eccentricity of the ellipse, respectively. The position on the Keplerian
ellipse is given by the true anomaly v, i.e. an angle starting form the
perihelion. M is related to v as it will be recalled in the.next slide.
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Hamiltonian settings of the three—body problem

Reduction of the angular momentum (a brief sketch)

Starting from the true anomaly v, one can determine the eccentric
anomaly E and the mean anomaly M, by the well known equations:
1+e E

tang: 17etan§7 M=E —esinE .

o Remark: starting from the heliocentric coordinates, we
automatically reduced the linear momentum; thus, the original
three-body problem (having 9 degrees of freedom) can be
represented by 6 pairs of canonical coordinates.

@ Remark: for both the planets, we can use the three pairs of
Delaunay's action—angle coordinates, where the angles are just
Mjﬂdj, Qj with j=1,2.

@ Remark: if a XYZ reference frame with the axis Z parallel to the
total angular momentum J is chosen, it is easy to prove that the
Hamiltonian does not depend on Q; + 5 and Q; — Q) = 7.

This allows one to perform the Jacobi's reduction of the nodes: the
three—body problem is represented by a 4 d.o.f. Hamiltonian, where
Q1, €5 and the related actions do not appear.
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The Poincaré canonical variables for the reduced
three-body Hamiltonian (having 4 d.o.f.)

mom;
A = V5. N = M )
- m; G(mo + mj)a; j lj + wj

mm cos(w;) 1 = MW sin(«)

&

where a;, e;, M; and w; are the semi-major axis, the eccentricity, the

mean anomaly and perihelion argument of the j—th planet, respectively.
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The Poincaré canonical variables for the reduced
three-body Hamiltonian (having 4 d.o.f.)

mom;
A = V5. N = M )
- m; G(mo + mj)a; j lj + wj

fast variables

mm cos(w;) 1 = MW sin(«)

secular variables

&

where a;, e;, M; and w; are the semi-major axis, the eccentricity, the

mean anomaly and perihelion argument of the j—th planet, respectively.
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Introduction of the secular Hamiltonian

e Remark: it is well known that the main (Keplerian) part of the
Hamiltonian is integrable, because it depends only on the actions:

7'(0)Jru(0):,g2m8 m; kS migi )
2 mo+mi A?  mo + mp A3
@ Remark: in order to have information about the “final fate” of the
orbits, it is natural to average the model over the fast angles:

1
<F>AzwA2FdAldA2

e Remark: since A; and A, are integrals of motion for (F)y , they can
be evaluated (with respect to a numerical average value of the
semi-major axes) and the dependence of the Hamiltonian on them
can be disregarded. Thus, we “dropped” two d.o.f.

o Remark: since (TM)) =0, we are lead to study the 2 d.o.f.
Hamiltonian H(?) = H(e) (&, €5, 11, 12) , such that

dAid)\
H(sec) — U(l) _ _gm1m2/ 10A2 -
W5 =007 J T —ral
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About the secular Hamiltonian

@ From the D’Alembert rules, it follows that

H6e) = ) 4 ) | o) 4

(sec)

where H, ™ is a hom. pol. of degree (2j+2) in £ andn, V j € N.
e £ =n =0is an elliptic equilibrium point (for a general proof, one

could adapt that reported in Biasco, Chierchia & Valdinoci, 2006).
o The complete expansion of H{*) + H{*) is in Robutel, 1995,

o Lagrange and Laplace produced H{**) with all the known planets to
explain the oscillations of eccentricities and inclinations.

o The quadratic term H{**?) can be made diagonal by a linear
canonical transformation D . The new Hamiltonian is then given by
H®) = H() o D | being HP) = HP) + HP) + HP) 1 its
decomposition in even homogeneous polynomials and

P = 2 (&) + 2 (G +8) -

o H(P) has the same structure as the Hénon—Heiles Hamiltonian
(except the parity property).
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Secular Hamiltonian dynamics of the three—body problem

SJS problem: secular part up to order 2 in the masses

HE) (€1, 62,11, 12) = —T.981T9R00767606 64142 x 10756, &5
—1.0268297004552840 x 10 ‘{5 T243404322033866 > 10 ° o}
707608458413656 x 1077 s %1072 2
5.6436223750712493 x 10~ ¢ 1.6416392742006527 x 1073 €3¢,
—6.2973632765649690 x 10~ £2¢3 —2,2809781160560516 x 10~ £2n2

%1073 &l —4.2185659067704027 x 10~ £3nF
x 107266 —1.3039354499285056 x 10~ &1}
%1073 Ey6qm — 1825574944021 x 1072 €16an3

9 x 10 ¢ 500271580; 5 x 10 22}

x 1072 3 1072 {2’12

x 1073 i x 1073 i,

—6.6349860468623900 x 1073 p3n3 —6.8332272847022573 x 1073 nud

7074709303473 x 1073 n} —6.0701804574696823 x 1072 £§
—3.2119532714927534 x 1072 £}¢&; 549740027179186 x 107! &f€2
—TATTTT92652719661 x 10 2 &fy? —2.0878989193600397 x 10 * &l
556116819663772 x 10 1 &2 —1.2799874137338532 x 10° 3¢5
2.1957803068778765 x 10~* €3¢y? 1.0754609127577874 x 10° &3eammn,
556241 %100 €3em3  3.0996153271501390 x 10° €3¢4
374599 5 x 1071 ¢8¢3n? .9977642968441485 x 10° ¢3¢Zmn,
—4.7878280093164562 x 10° €7¢3n3  —1.3017334854810814 x 107" &
443027855889856 x 10 ' &fnine  —1.6091206979341728 x 10" &fning
. 524089656 x 100 &nynd  —1.6707157626607120 x 10° &34
—3.2771819750467199 x 10° £€5 —6.5831703615139023 x 107! &1&373
6.1109646323834843 x 10° &&3mmz  7.3380945672001685 x 10° &&3n3
—1.8774424112239909 x 107 & &  —1.0570482388082987 x 10° & &
2703950516264 x 10° & &fn3 —6.1600785219363594 x 10° &1&aml
7 x10° E&ni  —1.2062091387801093 x 109 €5
x 10 tedn? —4.3130729937971006 x 10° &3mny
. 2 x 10° &3 —3.7694653469144916 x 10~ &3}
L&T36854171250113 x 10° 2tn:  5.8658678066225395 x 10° E3nin3
9.4014451177163672 x 10° &2pund  6.2640076184402940 x 10° 5}7,;
—6.1464575048410168 x 1072 7§ x 1071 ym,z
—1.3743527471116275 x 10° nind 5872837233516 x 10° i}
949133058695930 x 10° 7253 mns
—2.4875190197883796 x 10° 7§
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Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

Basics of Lie series in action—angle coordinates

o Let A be the can. transf. introducing action—angle variables (I, )
so that & = /2ljcos p;, nj = \/2[;sinp;, ¥V j =1, 2. Let us define
HO = H®) o A. Thus, HD = HO(1,¢).

@ Let x and f be a Hamiltonian and a dynamical function, resp. Let
us recall that f = L, f, where the Lie derivative operator L, - is
given by the Poisson bracket, so that £, f = {f, x}, being

{foxt =2 (a%% - %%) (for a generic number n of d.o.f.).

@ Since f = [ZX{" = [,f(f and the same can be done for each derivative,
formally we can write the effect of the flow along x as

1 .
OLF =Y L f = expLyf
j>0-"
where the operator exp L, - is known as the Lie series.

@ We can apply the Lie series to each canonical coordinate, then
OL(Lp) =(expLyh, ..., expLyln, expLypr, ..., expLypn).
Since the flow d>§< along a Hamiltonian y is known to be symplectic,
the Lie series induce a canonical transformation, if (some
suitable norm of) x is small enough.
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Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

Basics of normal form theory in action—angle coordinates

@ Because of the “exchange” theorem for Lie series (see Grébner,
1960), after having performed a canonical transformation related to
the flow induced by the generating function Y, a Hamiltonian in
the new coordinates can be calculated as:

H(expLyh, ..., expLyly, expLypi, ..., expLypn) =expLyH .

In words, it means: “just compute the Lie series of the Hamiltonian
and, eventually, change the symbols of the coordinates”.

@ Liouville-Arnold-Jost theorem suggests us to determine a generating
function related to a canonical transformation removing the angular
dependence. Let us write the Fourier expansion of a “perturbing”
function so that f(l, ) = >\ 7. c(l) exp(ik - ) ; close to a system
of harmonic oscillators v - | we often solve a “homological”
equation of type £, v -1+ f(l,¢) = Z(l), where the generating
function x and the normal form part Z are determined so that

Ck I
x(ho)= > lk(zexp(lk v),  Z=(fle,
kezZ\{0}
if k-v #0V k #0 (small divisors problem?).
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Partial Birkhoff normalization of the secular Hamiltonian

Let us focus on the Hamiltonian in action—angle coordinates:
[ee]
HOML @) =v-14+ > PR(e),
s=2

where 732(? is an hom. pol. of degree 2s in the square roots of actions |
and a trigonometric pol. of degree 2s in angles ¢ .

The following way to expand the Hamiltonian highlights both the size of
the perturbation (horizontally) and the degree in action (vertically):

+PM (1)
+P (1, )
+P (1, ¢)

|
N

HO(1, )



KAM in Celestial Mechanics: study of the secular part of the SJS problem
000@00000000000000000000
Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

Partial Birkhoff normalization of the secular Hamiltonian

Let us solve the equation for the generating function B(D:
(B, w1} + P00, ¢) = Z201)

where {-,-} is a Poisson bracket, Z, is the angular average of Pil). That
equation can be solved if |k - | # 0V k € Z? such that 0 < |k| < 4.
Therefore, we calculate the new Hamiltonian H(D = exp £z HD, the

expansion of which can be written as follows (with new terms Pgl)
sharing the same properties with Pé? Vs>2):

+Pi (1, )
+P(1, )
+2Z4(1)
H(H)(L‘p) = v-l|
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Partial Birkhoff normalization of the secular Hamiltonian

Let us solve the equation for the generating function BI™:
{BI v} +P{(1e) = Z:(0) ,

where {-,-} is a Poisson bracket, Zs is the angular average of Pén). That
equation can be solved if |k - | # 0V k € Z? such that 0 < |k| < 6.
Therefore, we calculate the new Hamiltonian HI™D = exp £ 50 HD | the

expansion of which can be written as follows (with new terms P(HI
sharing the same properties with 7?25 Vs>3):

+P5 (1. )
+Z(1)
+Z(1)
HID(, o) = v
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Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

Intermezzo: why Frequency Analysis is necessary?

e Remark: if the Birkhoff normalization procedure would be infinitely
iterated, the Taylor—Fourier series of the final Hamiltonian
would not be convergent on any open set.

@ Remark: KAM theorem requires that, in the integrable
approximation, on the torus p = 0 the frequency vector is equal

to w, that is fixed “a priori”. In our previous case, | =0
corresponds to an equilibrium point and the limit frequency vector
VEw.

@ Problem: how can we determine the frequencies corresponding to
some initial conditions? Answer: using Frequency Analysis.
Some detail about the procedure (see Laskar, 1995, 1999). First,
make a numerical integration of the equations of motion for t € [0, T]
and store the signals t — &;(t) + in;(t) at regular intervals of time.
Frequency analysis numerically determines the Fourier decomposition:

&) +ini () quexp[<()>} withcj, €CVYj=1,2, seN.

On a KAM torus (usmg the Hanning filter) the convergence to the

true result is very fast: |u}p —kjs-w|=0(1/T*) for some k; s € Z2.
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Initial translation of the actions

We shift the origin of the actions so to center the expansions about the
torus related to a chosen frequency w in the integrable approximation.



KAM in Celestial Mechanics: study of the secular part of the SJS problem
0000008000000 00000000000
Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

Initial translation of the actions

We shift the origin of the actions so to center the expansions about the
torus related to a chosen frequency w in the integrable approximation.

@ Let us solve the following equations in the unknown vector I*:

aZ4 * azﬁ *Y P .
VJ—"_TIJ(I)J’_TIJ(I)_WJ VJ—1,2,3,
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o Let the canonical transformation 7 be so that 7(l,¢) = (p+1%,q),
introduce the new Hamiltonian H(® = HID o T and expand it:
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Initial translation of the actions

We shift the origin of the actions so to center the expansions about the
torus related to a chosen frequency w in the integrable approximation.

@ Let us solve the following equations in the unknown vector I*:
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o Let the canonical transformation 7 be so that 7(l,¢) = (p+1%,q),
introduce the new Hamiltonian H(® = HID o T and expand it:

2%0) &) o £(pa)
HO(pa) =Y w-p FYpa) ... £(p.a)

o %) .. £%)
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Some remarks about the algorithm constructing the
Kolmogorov's normal form

@ Since the set of Diophantine numbers has full Lebesgue measure, it
is always possible to produce a completion of the numerical
approximation of the frequency vector w so that it is Diophantine.

e The terms 75-(0’5) appearing in the formula giving H® are defined so
to have particular functional properties:

)j.(o’s) is a hom. pol. of degree j in actions p and a trigonometric
pol. of degree 2s in q. Thus, the expansion of each 75-(0’5) is
representable on a computer because it is finite.

@ The Kolmogorov's normalization algorithm requires to eliminate all
the terms having degree equal to 0 or 1 in the actions, except w - p.

@ Where is the small parameter? The size of the perturbation is
ruled by the translation vector I”. Moreover, going to the right in
the expansion of H(®), the terms get smaller and smaller. In our
problem, from a physical point of view, ||I*|| is of the same order
of magnitude as either the square of the eccentricities or the

square of the inclinations.
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Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

A half of the first Kolmogorov's normalization step

We define a new Hamiltonian (1) = exp [,X<1) H®©) where the generating
1

function Xgl)(q) = XM(q) + 5(1) - q is such that
{X(l) w- p} + OV =0, {5(1) q, ,5(0,0)} i <f1(o,1)> —0,

being (-) the average over q, X(U) a trig. pol. of deg. 2 and ¢ ¢ R2.
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A half of the first Kolmogorov's normalization step
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{X(l) w- p} + OV =0, {5(1) q, ,5(0,0)} i <f1(o,1)> —0,

being (-) the average over q, X(V) a trig. pol. of deg. 2 and W e R2,
The expansion of the new Hamiltonian H() is calculated by studying the
functional properties of all the terms of exp ﬁme(O);

1
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A half of the first Kolmogorov's normalization step

We define a new Hamiltonian (1) = exp [,X<1) H®©) where the generating
function Xgl)(q) = XM(q) + 5(1) - q is such that
{X(l) w- p} + OV =0, {5(1) q, ,5(0,0)} i <f1(o,1)> —0,

being (-) the average over q, X(V) a trig. pol. of deg. 2 and W e R2,
The expansion of the new Hamiltonian H() is calculated by studying the

functional properties of all the terms of exp ﬁme(O); e.g., {Xgl),w -p}
1

shares the same properties with fo(o’l), then 1?0(1’1) = fo(o’l) + CX(l)w ‘p-
1
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A half of the first Kolmogorov's normalization step

We define a new Hamiltonian (1) = exp [,X<1) H®©) where the generating
function Xgl)(q) = XM(q) + 5(1) - q is such that
{X(l) w- p} + OV =0, {5(1) q, ,5(0,0)} i <f1(o,1)> —0,

being (-) the average over q, X(V) a trig. pol. of deg. 2 and W e R2,
The expansion of the new Hamiltonian H() is calculated by studying the

functional properties of all the terms of exp ﬁme(O); e.g., {Xgl),w -p}
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A half of the first Kolmogorov's normalization step

We define a new Hamiltonian (1) = exp [,X<1) H®©) where the generating
1

function Xgl)(q) = XM(q) + 5(1) - q is such that
{X(l) w- p} + OV =0, {5(1) q, ,5(0,0)} i <f1(o,1)> —0,

being (-) the average over q, X(V) a trig. pol. of deg. 2 and W e R2,
The expansion of the new Hamiltonian H() is calculated by studying the
functional properties of all the terms of exp ﬁme(O);
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Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

A half of the first Kolmogorov's normalization step

We define a new Hamiltonian (1) = exp [,X<1) H®©) where the generating
function Xgl)(q) = XM(q) + 5(1) - q is such that
{X(l) w- p} + OV =0, {5(1) q, ,5(0,0)} i <f1(o,1)> —0,

being (-) the average over q, X(V) a trig. pol. of deg. 2 and W e R2,

The expansion of the new Hamiltonian H() is calculated by studylng the

functional properties of all the terms of expﬁ wH®: eg., {Xl , f(o 0 }
X1

is really like £, then 7 = (0 1 £ o £0 with (™) = 0.

£700) £V (pa) £0(pa) o £ (pa)
Y wop %Y%pa) %) ... £p,q)

0 0 %@ ... £%a)



KAM in Celestial Mechanics: study of the secular part of the SJS problem
0000000000000 0000000000

Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

A half of the first Kolmogorov's normalization step

We define a new Hamiltonian (1) = exp [,X<1) H®©) where the generating
function Xgl)(q) = XM(q) + 5(1) - q is such that
{X(l) w- p} + OV =0, {5(1) q, ,5(0,0)} i <f1(o,1)> —0,

being (-) the average over q, X(V) a trig. pol. of deg. 2 and W e R2,

The expansion of the new Hamiltonian H() is calculated by studylng the

functional properties of all the terms of expﬁ wH®: eg., {Xl , f(o 0 }
X1

is really like £, then 7 = (0 1 £ o £7 with (™) = 0.

£29%p) £%Yp.a) £ (p.a) ... £%7(p,q)
> wop Hpa) £%p.a) ... £%(p.q)

0 0 %@ ... £)



KAM in Celestial Mechanics: study of the secular part of the SJS problem
000000000000 e00000000000

Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

A half of the first Kolmogorov's normalization step

We define a new Hamiltonian (1) = exp [,X<1) H®©) where the generating
function Xgl)(q) = XM(q) + 5(1) - q is such that
{x<1> W p} + 0D — o, {gu) q, f2<o,0)} I <f1(o71>> —0,

being (-) the average over q, X(!) a trig. pol. of deg. 2 and W e r2,
The expansion of the new Hamiltonian H() is calculated by studying the
functional properties of all the terms of expﬁ (1>H(°). Therefore, we can

get the recursive expressions of all f F19) i the following expansion:
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Completing the first Kolmogorov's normalization step

We define a new Hamiltonian H() = exp [,X<1) H® where the generating
2

function Xgl)(p,q) is such that

P& wopf i =0,

since (?1(1’1)) =0, Xgl) is linear in p and a trig. pol. of deg. 2 in q.



KAM in Celestial Mechanics: study of the secular part of the SJS problem
0000000000000 e0000000000
Explicit construction of a KAM torus for the secular part of a planetary Hamiltonian

Completing the first Kolmogorov's normalization step

We define a new Hamiltonian H() = exp [,X<1) H® where the generating
2

function Xgl)(p,q) is such that

P& wopf i =0,

since (?1(1’1)) =0, Xgl) is linear in p and a trig. pol. of deg. 2 in q.
The expansion of the new Hamiltonian H() is calculated by studying the
functional properties of all the terms of exp ﬁme(l);
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Completing the first Kolmogorov's normalization step

We define a new Hamiltonian H() = exp [,X<1) H® where the generating
2

function Xgl)(p,q) is such that

P& wopf i =0,

since (?1(1’1)) =0, Xgl) is linear in p and a trig. pol. of deg. 2 in q.
The expansion of the new Hamiltonian H() is calculated by studying the
functional properties of all the terms of exp ﬁme(l);
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Completing the first Kolmogorov's normalization step

We define a new Hamiltonian H() = exp [,X<1) H® where the generating
2

function Xgl)(p,q) is such that

P& wopf i =0,

since (?1(1’1)) =0, Xgl) is linear in p and a trig. pol. of deg. 2 in q.
The expansion of the new Hamiltonian H() is calculated by studying the
functional properties of all the terms of exp ﬁme(l); e.g., {Xgl),w -p}
2
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Completing the first Kolmogorov's normalization step

We define a new Hamiltonian H() = exp [,X<1) H® where the generating
2

function Xgl)(p,q) is such that

P& wopf i =0,

since (?1(1’1)) =0, Xgl) is linear in p and a trig. pol. of deg. 2 in q.
The expansion of the new Hamiltonian H() is calculated by studying the
functional properties of all the terms of exp ﬁme(l); e.g., {Xgl),w -p}
2
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Completing the first Kolmogorov's normalization step

We define a new Hamiltonian H() = exp [,X<1) H® where the generating
2

function Xgl)(p,q) is such that

P& wopf i =0,

since (?1(1’1)) =0, Xgl) is linear in p and a trig. pol. of deg. 2 in q.
The expansion of the new Hamiltonian H() is calculated by studying the
functional properties of all the terms of exp ﬁme(l);
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Completing the first Kolmogorov's normalization step

We define a new Hamiltonian H() = exp [,X<1) H® where the generating
2

function Xgl)(p,q) is such that

P& wopf i =0,

since (?1(1’1)) =0, Xgl) is linear in p and a trig. pol. of deg. 2 in q.

The expansion of the new Hamiltonian H() is calculated by studying the

functional properties of all the terms of exp ﬁme ;eg., {X2 , f(l 0 }
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Completing the first Kolmogorov's normalization step

We define a new Hamiltonian H() = exp [,X<1) H® where the generating
2

function Xgl)(p,q) is such that

P& wopf i =0,

since (?1(1’1)) =0, Xgl) is linear in p and a trig. pol. of deg. 2 in q.

The expansion of the new Hamiltonian H() is calculated by studying the

functional properties of all the terms of exp ﬁme ;eg., {X2 , f(l 0 }
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Completing the first Kolmogorov's normalization step

We define a new Hamiltonian H() = exp [,X<1) H® where the generating
2

function Xgl)(p,q) is such that

P& wopf i =0,

since (?1(1’1)) =0, Xgl) is linear in p and a trig. pol. of deg. 2 in q.

The expansion of the new Hamiltonian H() is calculated by studying the

functional properties of all the terms of exp LX(1>H(1). Therefore, we can
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Completing all the Kolmogorov's normalization algorithm

The Kolmogorov's normalization step can be “infinitely” iterated, if
e the frequency vector w is non-resonant enough (e.g., diophantine,
i.e. [k-w|>~/|k|” with some fixed v >0 and 7 > n—1);
o the hessian of )‘2(0’0)(p) is non-degenerate;
e the perturbation (or, equivalently, ||I*||) is small enough.

Therefore, the sequence of H(") is convergent to a Hamiltonian H(>) in
Kolmogorov's normal form, the expansions of which is written as
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Some remarks about the Kolmogorov's normal form

e The (KAM) torus corresponding to p = 0 is obviously invariant with
respect to the flow @}, induced by the Hamiltonian in
Kolmogorov's normal form. In fact, if p = 0 then

6H(oo) aH(oo)
Pj aqj ( ,CI) , a;

@ This approach, based on the construction of the Kolmogorov's
normal form by a sequence of Lie series can be translated in a proof
(see Benettin & al., 1984, Giorgilli & Locatelli, 1997). Moreover, by
implementing interval arithmetics and estimating all the truncated
terms, this approach can be used to produce a computer—assisted
proof (as in Locatelli & Giorgilli, 2000).
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Testing the construction of the Kolmogorov's normal form
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Figure: Decrease of the generating functions defined by the Kolmogorov's

normalization algorithm. The plotted values are the uniform upper bounds of
the norms of ng . Box a has been enlarged in box b, where we can appreciate
the change of the slope occurring when the calculation of the norms is no more

made starting by the coefficients of the expansions, but only iterating the
estimates (i.e., for r = 33).

200

While the generating functions are explicitly calculated according to the

Kolmogorov normalization algorithm (i.e. when 1 < r < 33), their
geometrical decrease is very evident.
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Some remarks about the Kolmogorov's normal form

Let (") be the canonical transformation inducing the Kolmogorov's
normalization up to the step r, i.e.,

K"(p,q) = exp Exg’) o exp L‘X(lr) o...0exp Lxgl) o exp Lxgl) (p,q) -

Let us now introduce K(°) = lim,_, - K(7) and

C(>®) = Do Aocexp L oexp Lgan o exp Lgm o T o ()| that is the
composition of all the can. transf. of the algorithm. The equations of
motion can be integrated in a semi-analytic way as follows:

)

(£(0),m(0)) — (p(0) = 0, q(0))
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Some remarks about the Kolmogorov's normal form

Let (") be the canonical transformation inducing the Kolmogorov's
normalization up to the step r, i.e.,

K"(p,q) = exp Exg’) o exp L‘X(lr) o...0exp Lxgl) o exp Lxgl) (p,q) -

Let us introduce C() = Do Aoexp L oexp Lgan oexp Lgm oT o K,
that is the composition of all the can. transf. of the algorithm up to the
step r. The solution of the eqgs. of motion can be approximated in a
semi-analytic way as follows:

)"
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Testing the construction of the Kolmogorov's normal form

a
© . . L
o b
8]
C
5]
-
v
o] c
© o T T T :
g
O e d
. . . .
@ ! T T
<] ]
, e
o
. .
0 1x10° 2x108 3x108 4x10° 5x10°

time (years)
Figure: Study of the secular part up to order 2 in the masses of the SJS
system. The distance d = d(t) is between a semi-analytic solution and a
numerical one. The curves a—e refer to the step r of Kolmogorov's algorithm
with r =1, 5,9, 11, 13, resp. The convergence may be appreciated by looking
at the vertical scale. The drift effect in box e is due to the numerical error on
the frequency vector w.
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Rigorous proof of the topological confinement
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Figure: Scheme of the topological confinement of the orbit in a 4D phase
space. The continuous curves I’ and " represent two families of 2D invariant
tori intersecting transversally the energy surface ¥ . An orbit with initial datum
in the gap between two tori will stay eternally trapped in that same region.

For the secular part up to order 2 in the masses of the SJS problem, a
computer—assisted proof of stability has been produced.

In general, there is no topological confinement for problems with
more than two degrees of freedom.
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