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Integrable Hamiltonian systems

Integrability à la Liouville

Theorem (Liouville):

Let H = H(p,q) be the Hamiltonian of a system with n degrees of
freedom. If there are n constant of motions J1 , . . . , Jn such that

they are in involution, i.e. {Ji , Jj} = 0 ∀ i , j = 1 , . . . , n ;

they are independent, i.e.

rank

(
∂
(
J1 , . . . , Jn

)
∂
(
p1 , . . . , pn , q1 , . . . , qn

)) 6= 0 ;

then there is a canonical transformation (p,q) = Ψ(J,α) , such that in
the new coordinates H = H(J) .

Let us recall that the Poisson bracket {·, ·} with respect to the canonical
coordinates (p,q) is defined so that {f , g} =

∑n
j=1

(
∂f
∂qj

∂g
∂pj
− ∂f

∂pj

∂g
∂qj

)
.

The proof of Liouville’s theorem is constructive and Hamilton’s
equations are integrable in the new coordinates, i.e. Ji (t) = Ji (0)
and αi (t) = αi (0) + ∂H

∂Ji
t , ∀ i = 1 , . . . , n .
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Integrable Hamiltonian systems

Integrability à la Arnold–Jost

Theorem (Arnold–Jost):

Let H = H(p,q) be a Hamiltonian satisfying the hypotheses of Liouville’s
theorem. Moreover, if

there are n constant values c1 , . . . , cn such that each equation
J1(p,q) = c1 , . . . , Jn(p,q) = cn implicitly defines a regular and
compact manifold in the phase–space,

then there is a local canonical transformation (p,q) = Ψ(I,ϑ) defined on
action–angle coordinates (i.e. Ψ is defined on G × Tn, with G open
subset of Rn), such that in the new coordinates H = H(I) .

Remark:

The proof of Arnold–Jost theorem is constructive and Hamilton’s
equations are integrable in the new coordinates, i.e. Ii (t) = Ii (0) and
ϑi (t) = ϑi (0) + ωi t , with angular velocities ωi = ∂H

∂Ii
, ∀ i = 1 , . . . , n .

Thus, some regions of the phase space are filled by invariant tori and the
motion over them is related to the frequencies ωi/(2π) ∀ i = 1 , . . . , n .
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Integrable Hamiltonian systems

Integrability à la Arnold–Jost (an example with 1 d.o.f.)

Figure: Eight orbits of the Poincaré map for the simple pendulum equation, i.e.
ẍ = − sin x . All the initial conditions are marked with the symbol 0 (in a “©”).
For each orbit, 400 points are plotted at regular interval of time equal to
2π/
√

2 in the phase space with (q, p) = (x , ẋ) coordinates, being q ∈ [−π, π].

the orbits lie on the energy level H(p, q) = p2

2 − cos q = E .
Two sepatrices (meeting in the hyperbolic point (p, q) = (0,±π))
are between the “librational tori” (with E ∈ (−1, 1)) and the
“rotational tori” (E > 1).
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Non-integrable Hamiltonian systems

A first example of chaotic motion in a Poincaré map

Figure: Eight orbits of the Poincaré map for the forced pendulum equation
ẍ = − sin x − ε cos(Ωt) with ε = 0.05 and Ω =

√
2 . All the initial conditions

(marked with the symbol 0 (in a “©”) are the same as in the previous figure.
For each orbit, the points are plotted at regular interval of time equal to 2π/Ω .

Remark:

After having added a small perturbation depending on time, orbits
starting close to an hyperbolic point do not lie on a regular 1D–curve.
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Non-integrable Hamiltonian systems

A first example of chaotic motion in a Poincaré map

Figure: Same Poincaré map as before. Behavior of the distance between two
chaotic orbits as a function of the number of iterations of the map.

Definition: a region of the phase space is said to be chaotic, when
it is very sensitive to the initial conditions; i.e. d(t) ' eλtd(0) ,
where d is the distance between two motions and λ > 0 .
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Homoclinic orbits

Basics for symplectic maps

Definition: a differentiable change of coordinates (P,Q) = C(p,q)
is said to be symplectic if it preserves the Poisson brackets, i.e.
{Pi ,Pj} = {Qi ,Qj} = 0 and {Pi ,Qj} = −δi,j , ∀ i , j = 1 , . . . , n ,
being δi,i = 1 and δi,j = 0 when i 6= j .
Theorem: let Φt

H be the flow induced by a Hamiltonian H after the
time t , i.e. Φt

H(p(0),q(0)) = (p(t),q(t)) with ṗj = − ∂H
∂qj

and

q̇j = ∂H
∂pj

. Therefore, Φt
H is symplectic ∀ t .

Corollary: the Poincaré map ΦT
H is symplectic (with a fixed

time-step T ) also when Hamiltonian H explicitly depends on time.
Theorem: a 2D map is symplectic if and only if is area-preserving.
Definition: a point (p̄, q̄) is said to be an hyperbolic point for a
2D symplectic map M , when

(p̄, q̄) is a fixed point for the map, i.e. M(p̄, q̄) = (p̄, q̄) ;
the map M can be linearly approximated near the fixed point by the
operator dM(p̄,q̄) , that admits two eigenspaces E+ and E−, such that

dM(p̄,q̄) ξ = λξ ∀ ξ ∈ E+ , dM(p̄,q̄) ξ =
ξ

λ
∀ ξ ∈ E− ,

where the eigenvalue λ ∈ (0, 1) .
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Homoclinic orbits

Stable and unstable manifolds

Definition: the sets W+
(p̄,q̄) and W−(p̄,q̄) , such that

W±(p̄,q̄) =
{

(p, q) : lim
k→∞

M±k(p, q) = (p̄, q̄) } ,

are said to be the stable and unstable manifold, respectively, for the
hyperbolic point (p̄, q̄) of the map M .

Theorem:

The stable and unstable manifolds W±(p̄,q̄) are tangent to the eigenspaces

E±, respectively. Moreover, locally, W±(p̄,q̄) are regular graphs of E±, resp.

Corollary:

The stable manifold W+
(p̄,q̄) cannot intersect itself; the same holds true for

the unstable manifold W−(p̄,q̄).
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Geometry of the stable and unstable manifolds

Stable and unstable manifolds: the integrable case (ε = 0)

x

y

Figure: Stable and unstable manifolds for the Poincaré map Φ2π
H related to the

Hamiltonian H(x , y , t) = (y 2 − x2)/2 + (1 + ε cos t)x3/3 when ε = 0 .

Both the stable manifold and the unstable one lie on the separatrix given
by the implicit equation H = (y2 − x2)/2 + x3/3 = 0 .

Definition: an orbit (point) is said to be homoclinic if it is included
in the intersection of the stable manifold with the unstable one.
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Geometry of the stable and unstable manifolds

Splitting of the stable and unstable manifolds (case ε 6= 0)

M

L

W
+
ε

_
Wε

γ−

γ+

δ+

=ΦP’ (P)

δ−O

P

Q

Figure: Schematic representation of the intersections between the stable and
unstable manifolds for the Poincaré map Φ = Φ2π

H related to the Hamiltonian
H(x , y , t) = (y 2 − x2)/2 + (1 + ε cos t)x3/3 in the perturbed case, i.e. with
ε 6= 0 . The consecutive lobes L and M have the same area.

Remark: if ε 6= 0 the stable manifold W+
ε do not superpose to the

unstable one W−ε ; they cross each other in the homoclinic points.
Proposition: two consecutive lobes (including the regions between
the stable and the unstable manifolds) have the same area.
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Geometry of the stable and unstable manifolds

Splitting of the stable and unstable manifolds (case ε 6= 0)

L

L
n

P"
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PnO
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Q

Figure: Schematic representation of the intersections between the stable and
unstable manifolds for the same Poincaré map Φ of the previous slide. The
lobes L , L′, L′′, . . . , Ln include the same area.

Remark: the hyperbolic point is an accumulation point for the
homoclinic orbits. Since all the lobes have the same area and their
“bases” are shorter and shorter, they are stretched in the direction
of the stable (unstable) manifold, which cannot be crossed.
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Geometry of the stable and unstable manifolds

Stable and unstable manifolds for the standard map

Definition: the change of coordinates Mε : R× T 7→ R× T is
called standard map, when (p′, q′) =Mε(p, q) with

p′ = p + ε sin q , q′ = q + p′ mod 2π .

Remark: one can easily check that the (standard) map Mε is
symplectic and, then, it is area-preserving.

Remark: for all ε 6= 0 the origin is an hyperbolic point for Mε .

Remark: Mε is 2π–periodic also with respect to the action p .

Stable [unstable] manifold W+
ε

[
W−ε

]
; drawing “N iterations”:

for the initial iteration with n = 1 , draw a short segment connecting
the hyperbolic point to another point belonging to the eigenspace
tangent to W+

ε

[
W−ε

]
;

for each segment of the n − 1 iteration, if its length is > L (being L
suitably fixed) split it in a grid of sub-segments shorter than L; for
each (sub)segment, consider both the vertexes, compute the pair of
transformed points along the map M−1

ε

[
Mε

]
and connect them;

repeat the previous operation while n ≤ N .
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Geometry of the stable and unstable manifolds

Stable and unstable manifolds for the standard map

Figure: Stable and unstable manifolds for the standard map Mε with
ε = 2.36 . Each box represents the phase space [0, 2π]× [−π, π] ; the
shaded parts are reported to make clearer the 2π–periodicity in the angle.
Top–left, top–right, bottom–left and bottom–right boxes contain the
drawing of the manifolds with 1 , 2 , 3 and 4 iterations, respectively.
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Geometry of the stable and unstable manifolds

Stable and unstable manifolds for the standard map

Figure: Stable and unstable manifolds (for the previous standard map
Mε) are compared to some orbits. Top–left, top–right and bottom–left
boxes contain the drawing of the manifolds with 5 , 8 and “as many as
possible” iterations, resp. In the bottom–right box, some orbits of Mε

are plotted to highlight that the manifolds fills the chaotic region.
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Some more numerical experiments with Hamiltonian flows

Poincaré sections

Figure: Schematic representation of a Poincaré section. The flow define a map
Π such that P0 is related to P1 , because P1 is the outgoing intersection
(between the orbit and the surface Σ) next to P0 (ingoing intersections are
discarded). For the same reason, Π(P1) = P2 , . . . , Π(P4) = P5 .

Remark: consider a n degrees of freedom Hamiltonian H and a
(2n − 1)D surface Σ , such that for all points P ∈ Σ the flow Φt

H is
transversal to Σ in P . It is possible to define a Poincaré section, i.e.
a map Π : Σ 7→ Σ as in figure above.
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Some more numerical experiments with Hamiltonian flows

The Hénon–Heiles model

The Hénon–Heiles model is described by the following Hamiltonian:

H(p,q) =
ω1

2

(
p2

1 + q2
1

)
+
ω2

2

(
p2

2 + q2
2

)
+ q2

1q2 −
1

3
q3

2 .

Remarks

For small values of the canonical coordinates (q1, q2) , the system is
well approximated by a pair of harmonic oscillators, i.e.
H(p,q) ' ω1

(
p2

1 + q2
1

)
/2 + ω2

(
p2

2 + q2
2

)
/2 , with ω1 > 0 e ω2 > 0 .

The section surface Σ is defined so that q1 = 0 . When the energy
level H = E > 0 , Σ is obviously transversal to the Hamiltonian flow.

The Poincaré sections are usually represented for a fixed energy level
H = E > 0 and on the plane (p2, q2) , where each point locates an
initial condition (and, so, an orbit), because q1 = 0 and p1 is given
by the equation H(p1, p2, 0, q2) = E .

When the energy level E < Ee , where the escape energy value
Ee = min

{
ω3

1/24 + ω2
1ω2/8 , ω3

2/6
}

, then the points (p2, q2) of the
Poincaré sections are bounded so that ω2(p2

2 + q2
2)/2− q3

2/3 ≤ E .
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Some more numerical experiments with Hamiltonian flows

Poincaré sections for the Hénon–Heiles model

Figure: Poincaré sections for the Hénon–Heiles model in a so called
“non-resonant” case (ω1 = 1 and ω2 = (

√
5− 1)/2). The energy level is fixed

so that E = 0.030 . In this case the escape energy value is Ee = 0.03934466 .
The most external curve is the “border” orbit, i.e. ω2(p2

2 + q2
2)/2− q3

2/3 = Ee .

Remark: small chaotic regions are visible close to hyperbolic points,
but most of the orbits lie on regular 1D–curves.
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Some more numerical experiments with Hamiltonian flows

Poincaré sections for the Hénon–Heiles model

Figure: Poincaré sections for the Hénon–Heiles model with the same values of
the angular velocities ω1 and ω2 as in the previous slide. The energy level is
fixed so that E = 0.039344 , that is very close to the escape energy value.

Remark: by increasing the energy (and so the perturbation) the
chaotic regions gets larger, but (according to the Hénon words)
islands of ordered motion still persist, although they are in a
chaotic sea.
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Conclusion

Chaos is everywhere! Does this mean everything is
chaotic?

Poincaré claimed that the general problem of dynamics is given by
a Hamiltonian system of the type H(p,q) = h(p) + εf (p,q) where ε
is a small parameter and (p,q) are action–angle coordinates
(that are defined on G × Tn, with G open subset of Rn).
Poincaré proved that a Hamiltonian of the type
H(p,q) = h(p) + εf (p,q) is generically non-integrable.
His proof is based on the fact that resonances are everywhere

dense when
(

∂2h
∂pi∂pj

)
i,j

is non-degenerate.

Each resonance shows hyperbolic points, homoclinic orbits,
stable/unstable manifolds, chaotic regions.

Why ordered regions can still be detected in the Hénon–Heiles
model? They cannot be integrable (according to Poincaré theorem
of non-existence of the first integrals for generic Hamiltonians).

=⇒ KAM THEORY!
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