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1. Noise

The traditional reductionist approach to study nature consists in identify the
phenomenon one is interested in and then consider it as an isolated system. A clas-
sical example is provided by Hamiltonian mechanics that describes with remarkable
success an incredibly wide array of systems. However, as we look deeper into the
phenomena, we realise that, on the one hand, the distance between the fundamen-
tal laws that describe a system and the phenomena that we observe keep widening
and, on the other hand, at a more attentive scrutiny the very concept of isolated
system risks to crumble.

As a trivial instance of these problems consider friction. Friction is not naively
part of Hamiltonian mechanics and it is not obvious how to describe it other than
by some phenomenological rule. In order to start to have an understanding of
how friction might arise (even in the context of Hamiltonian mechanics) one has
to realise that the description of the system was incomplete and other degrees of
freedom (often a huge number of them) have to be taken into consideration. This
has become apparent only with the advent of statistical mechanics which posits
that the the macroscopic behaviour that we witness is the result of the cumulative
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effect of an enormous number of degrees of freedom. This counterintuitive fact
(that an enormous number of degrees of freedom on a certain scale can give rise to
fairly simple cumulative behaviour on a larger scale) is often called renormalization.
Renormalization is a very vague word that nevertheless inspires a powerful set of
technical ideas and tools both in physics and in mathematics.

To better understand the problems with the concept of isolated systems, think
of a pendulum. To consider it really isolated one has to worry about the suspension
point, that could vibrate if, for example, a car passes near by. Since such vibrations
go thru the earth, they will have most likely a frequency of a few hertz. Then
one needs to worry about interactions with the air. Even if the air seems still,
just talking will produce vibrations that might interfere with the pendulum, such
vibrations might be in the order of 1000 Hz. Taking the air out will not help: if you
use a cell phone, then you produce electromagnetic oscillations that might interfere
with the pendulum, this time of a frequency around 1010 Hz; then there is light,
this time oscillating around 1014 Hz, and so on. Of course, you might argue that
all these contributions are small, but what it is worrisome is that they seem to be
present at all frequencies, so the cumulative exchange of energy might be large.

What is even more worrisome is that even a very small exchange in energy
might create a disaster in the perception that the pendulum is isolated. To get
acquainted with this problem consider the very concrete example of a pendulum
with a vibrating suspension point when the initial condition is close to the unstable
fixed point.

The standard way of taking into account all the above issues is to add to the
system a small random perturbation. Namely, if you have a system of the type

ẋ = F (x),

where F ∈ C1(Rd,Rd), you might add to it a noise of the form

(1.1) dx = F (x)dt+ εΣ(x)dB

where B is a d dimensional Brownian motion and Σ(x) is a positive symmetric
matrix. We have thus turned a differential equation into a stochastic differential
equation, where the noise is supposed to model the (hopefully small) effect of all
the degree of freedom that have been ignored.

Yet, note that, in some cases, (1.1) could be a bad model. Consider, for example,
the the Hamiltonian system

dq = pdt

dp = −V ′(q)dt+ εσdB

where we put the noise only on the second equation because we think of it as a
random force acting on the system. Note that, setting H(q, p) = 1

2p
2 + V (q), by

Ito’s formula,

dH =
ε2σ2

2
dt+ εσpdB.

Hence,

E(H) =
ε2σ2

2
t.

In other words, the systems heats up indefinitely. If this were a good model for the
influence of the degrees of freedom that we ignore, then every system should keep
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getting hotter and hotter, this is not what we see. The usual fix for this problem
is to consider the equations

dq = pdt

dp = −V ′(q)dt− γpdt+ εσdB,
(1.2)

where we have added a friction to the system. The above is called a Langevin
equation or an Ornstein-Uhlenbeck process. Such a process does now have an
invariant measure. Indeed,1

d

dt

∫
e−βH(q,p)E(ϕ(q(t, q, p), p(t, q, p)))

∣∣
t=0

=

∫
e−βH(q,p)

{
p∂qϕ− [V ′(q) + γp]∂pϕ+

ε2σ2

2
∂2
pϕ

}
=

∫
e−βH(q,p)

{
−βγp2 + γ + ε2σ2β2p2 − βε2σ2

}
ϕ.

Thus the derivative is zero provided γ = ε2σ2β and we obtain the interpretation
that the friction (that can also be interpreted as a drift) is related to the inverse of
the temperature and the diffusivity (this is some sort of Einstein relation).

Note that, possibly with some work, it might be possible to reduced the effect of
external factors, hence making ε smaller. It is then clear that, in the study of (1.1),
we should be interested only in phenomena that are, in some sense, independent on
ε. Indeed, if some behaviour would be present for some level of noise and not for a
near by level, this would mean that our model is rather useless for applications.

The study of equations of the type (1.1), (1.2) is a wide, currently active, and
interesting branch of mathematics, but will not be our focus. Our focus will be
to try to understand in which way a deterministic dynamics can give rise to a
stochastic behaviour.

2. Chaos

We have seen that a simple system like a pendulum can exhibit the phenomena of
strong dependence from initial conditions, colloquially often called chaos. However,
in such an example the set for which we showed such a behaviour was of zero
Lebesgue measure. It is widely believed that such properties holds for a positive
measure set of point, but we are far away from a proof of such a fact. By KAM
theory a positive measure of trajectory have instead a regular behaviour. Thus
we expect, in general, realistic systems to have a mixture of regular and chaotic
motion. Unfortunately, we have no idea how to treat such systems. It is then
natural to start the study from simpler systems in which one of the possibilities is
absent. Here we will concentrate on systems for which all the trajectories have a
strong dependence from the initial conditions. This are called uniformly hyperbolic
systems. Examples of paramount importance are geodesic flows on manifolds of
negative curvature and the automorphisms of a torus.

Yet, to explain the ideas in their simplest form it is better to start with the
simplest possible example: smooth expanding maps of a circle. We will therefore
consider this seemingly ridiculously simple model: the macroscopic degree of free-
dom is θ ∈ T and does nothing. The microscopic dynamics is given by expanding

1 Here E is the expectation with respect to the Brownian motion and q(t, q, p), p(t, q, p) is the
process with initial conditions (q, p).
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circle maps. The influence of the microscopic variable on the macroscopic one is
small. In mathematical terms, such systems are described by maps Fε ∈ Cr(T2,T2),
r > 1, defined as

Fε(x, θ) = (f(x, θ), θ + εω(x, θ))

∂xf ≥ λ > 1; ‖ω‖Cr = 1.
(2.1)

Given some initial condition (x, θ) = (x0, θ0), the time evolution of the system is
described by (xn, θn) = Fnε (x0, θ0).

As mentioned, for ε = 0, θ is a constant of motion. The study of the system
(2.1) for ε 6= 0 has proven rather non trivial and is far from being completed.
Accordingly, here we will just take it as a motivation that points us in a specific
direction of research.

As, we have explained there should be a scale separation between the macroscopic
and the microscopic variables. Here the scale separation is in time and is given by
ε, hence the proper way of thinking is that the macroscopic time is ε slower of the
microscopic time. In other words we should be interested in the behaviours of the
variable θε ∈ C0([0, T ],T) defined by

θε(t) = θbε−1tc + (ε−1t− bε−1tc)(θbε−1tc+1 − θbε−1tc),

and, first, we should ask ourselves, if is has some limiting behaviour for ε→ 0.
To further simplify the problem, let us start with the case ∂θω = ∂θf = 0. This

is called a skew product. In such a simple situation

(2.2)

∣∣∣∣∣∣θε(t)− ε
bε−1tc−1∑
k=0

ω ◦ fk(x0)

∣∣∣∣∣∣ ≤ C#ε.

Thus our variable is described by an ergodic average. By Birkhoff ergodic theorem

the limε→0 ε
∑bε−1tc−1
k=0 ω ◦ fk(x0) exists for almost every point with respect to any

invariant measure of f , but what are such invariant measures?

2.1. Invariant measures. Deterministic system often have a lot of invariant mea-
sures. In particular, to any periodic orbit is associated an invariant measure. Given
such plentiful possibilities, we need a criteria to select the invariant measures that we
think might be physically relevant. A common choice is to consider measures that
can be obtained by push forward of measures absolutely continuous with respect to
Lebesgue. That is, let dµ = h(x)dx, h ∈ L1(T1,Leb) and define f∗µ(ϕ) = µ(ϕ ◦ f).
Note that if µ is a probability measure (i.e., h ≥ 0 and µ(1) = 1), then also f∗µ is
a probability measure. Then

1

n

n−1∑
k=0

fk∗ µ

is a weakly compact set, hence it has accumulation points. On can easily see that
such accumulation points are invariant measures for f , that is fixed points for f∗.
We would then like to study such fixed points.

A simple change of variables shows that d(f∗µ)
dLeb = Lh where

Lh(x) =
∑

f(y)=x

h(y)

f ′(y)
.
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The operator L is called a (Ruelle) transfer operator. Of course an operator, to be
properly defined, must have a well specified domain. Since∫

|Lh(x)|dx ≤
∫
L|h|(x)dx =

∫
|h(x)|dx

it follows that L is a contraction on L1(T,Leb). However, the spectrum of L on L1

turns out to be the full unit disk, not a very useful fact.
Following Lasota-Yorke, we look then at the action of L on W 1,1.

d

dx
Lh = L

(
h

f ′

)
− L

(
h
f ′′

(f ′)2

)
.

The above implies the so called Lasota-Yorke inequalities

‖Lh‖L1 ≤ ‖h‖L1

‖(Lh)′‖L1 ≤ λ−1‖h′‖L1 +D‖h‖L1 .
(2.3)

Such inequalities imply that L, when acting on W 1,1 has a spectral gap. To give

an idea of the why, let us consider the simple case in which D = ‖ f ′′

(f ′)2 ‖L∞ is small,

more precisely λ−1 +D < 1.
Note that, if Leb(h) = 0, then Leb(Lh) = 0, hence the space V = {h ∈ L1 :

Leb(h) = 0} is invariant under L. Also, if h ∈ V, then, by the mean value theorem,
there must exists x∗ such that h(x∗) = 0, thus

‖h‖L1 =

∫
T
|h(x)| =

∫
T

∫ x

x∗

|h′(y)| ≤ ‖h′‖L1 .

Next, let us define the norm ‖h‖W 1,1 = ‖h′‖L1 +a‖h‖L1 for some a > 0 to be chosen
shortly. Then, for h ∈ V,

‖Lh‖W 1,1 ≤ λ−1‖h‖W 1,1 + (D + a)‖h‖L1 ≤ (λ−1 +D + a)‖h‖W 1,1 .

We can then choose a such that λ−1+D+a < 1, and we have that L is a contraction
on V. Since L′ Leb = Leb, hence 1 ∈ σ(L), we have that there exists h∗ ∈ L1 such
that Lh = h∗ Leb(h) + Qh, where ‖Q‖W 1,1 < 1 and LebQ = Qh∗ = 0. We have
just proven that h∗(x)dx is the only invariant measure of f absolutely continuous
with respect to Lebesgue.2

In fact, the above spectral decomposition, and hence the uniqueness of the in-
variant measure absolutely continuous with respect to Lebesgue, holds in much
higher generality, in particular for each f ∈ C2 such that |f ′| ≥ λ > 1 (see [1]
for an exhaustive discussion or have a look here for a quicker, but more detailed,
discussion of the present case3).

2.2. Back to our problem. By the results of the previous section it follows that,
for lebesgue almost all x,

lim
ε→0

θε(t) = θ̄(t) = t

∫
ω(x)h∗(x)dx =: tω̄.

That is, the limit satisfies the differential equation

(2.4) ˙̄θ = ω̄.

2 To make the argument precise use that W 1,1 is dense in L1.
3 The latter are personal notes not for diffusion as they are written in a very preliminary form,

so read at your own risk.

http://www.mat.uniroma2.it/~liverani/SysDyn15/chap7.pdf
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This is a rather simple example of averaging. Something similar holds in general,
see [2] for details. We have then seen how a very simple macroscopic behaviour
arises form an complex microscopic behaviour. Remark that (2.4) looks like the
equation of an isolated system, although it describes the evolution of a degree of
freedom in contact with another (microscopic) degree of freedom whose effect has
been averaged out.

How can we detect that in reality the system is not isolated? To do that we have
to look at it a bit more closely or for a longer time. Let us start doing the former.

3. Noise form determinism

To look more closely means, for example, to consider the variable

ζε =
1√
ε

(θε(t)− θ̄(t))

and ask if it has some limiting behaviour when ε → 0. In order to answer to such
a question it is necessary first to discuss which initial conditions are physically
reasonable.

3.1. Initial Conditions. Physically to fix an initial condition is equivalent to
preparing the system in some state. Let us consider, for example, the problem
of preparing a bunch of systems in the “same state”. What can we do?

One possibility is to take one system as the reference system. Start with a lot
of systems, make a measure, and discard all the systems that give a value different
form the reference one. For simplicity, let us consider the system (2.1) and assume
that we can make measures only on the variable θ. Clearly, by consecutive measures
we can get some information also on the variable x, but not very precise. Say that
we can determine that x belongs to some interval I, |I| = δ, δ << 1.4

So, we do a measure, we determine that, for the reference system, x ∈ I0 and
we discard all the systems for which x 6∈ I0. We wait a fixed time, say t0 (which
corresponds to the microscopic time n0 = ε−1t0), and repeat the measurement.
What will happen?

Due to the expansivity of the map, after time t0, before the measure we will be
able to say only that x belongs to some interval I ′0, |I ′0| ≥ λn0δ. We perform the
measure and again we are going to discard the systems that differ from the reference
one. How many systems we discard? That depends on how the initial systems were
distributed. Suppose we discard a percentage 1−λ−n0 of systems, that would mean
that originally the systems were distributed not so differently from Lebesgue.

Now we can repeat again the measure. Note that now we are considering systems
that had the same behaviour for some time. We can then ask ourselves if this means
that they will have similar behaviour in the future. That would mean that, next
time, we will discard a smaller percentage of systems. If you consider the previous
discuss you will see that this is unlikely. If the original systems were distributed
not so differently from Lebesgue, then you would expect to keep a percentage λ−n0

of systems every time. In other words, there is not way to determine the variable x
with a precisione larger than δ. Asking for a big grant to built a better measurement
apparatus will not help you much, you will just decrease a bit the value of δ.

4 Note that an error in measurements is inevitable, here we are just saying that it is not too
much larger than ε.
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What can we then use as an initial condition? Well, if we have done the exper-
iment, and we have seen that every time we keep a percentage λ−n0 of systems,
then we can assume that the same will happen in the future and this is tanta-
mount to assume that the variable x is a random variable distributed according to
a probability distribution absolutely continuos with respect to Lebesgue.5

From now on this will be our standing assumption. That is, we consider the
system (2.1) with random initial conditions such that, for each ϕ ∈ C0,

(3.1) E(ϕ(x0, θ0)) =

∫
T
ϕ(x, θ∗)ρ(x)dx

where ρ ∈W 1,1 and θ∗ ∈ T.

3.2. Central Limit Theorem. Having explained that we consider (x0, θ0) to be
random variables, it follows that ζε(t) is a random variable as well. It is then
natural to try to compute its distribution. It is well known that, to do so, it suffices
to compute the characteristic function [6], that is

Φ(ξ) = E
(
eiξζε(t)

)
.

For simplicity, let us consider again the case of a skew product (i.e. ∂θω = ∂θf = 0).
Then

(3.2)

∣∣∣∣∣∣ζε(t)−√ε
bε−1tc−1∑
k=0

ω̂ ◦ fk(x0)

∣∣∣∣∣∣ ≤ C#

√
ε,

where ω̂ = ω− ω̄. So, up to a precision of order ε, our problem is equivalent to the
one of studying the characteristic function of the sum.

To study such a sum several approaches are available: martingale approximations
[5], standard pairs [3] and spectral methods. The latter, when it works, is the more
powerful, yet it needs stronger hypotheses and hence it has a smaller range of
applicability. However, for the current presentation is the simplest one to apply
and it will then be our method of choice.

The basic idea is that it suffices to compute the characteristic function [6], that
is

E

exp

iξ√ε bε−1tc−1∑
k=0

ω̂ ◦ fk
 .

To this end we define the transfer operator, for each φ ∈ L1,

Lνφ(x) =
∑

f(y)=x

eiνω̂(y)

f ′(y)
φ(y)(3.3)

and notice that

(3.4) E

exp

iξ√ε bε−1tc−1∑
k=0

ω̂ ◦ fk
 =

∫
T
Lbε

−1tc
ξ
√
ε

ρ.

5 Note hovewer that we could have found out that the percentage of discarded systems is
different, say 1 − λ−αn0 , for some α 6= 1, and this would mean that our systems are originally
distributed according to another measure, a measure singular with respect to Lebesgue.
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The problem is then reduced to studying the properties of the operator (3.3). To
do so we note that L0 = L. Since L has a spectral gap on W 1,1, it makes sense to
try to apply perturbation theory.

Lemma 3.1. There exists ν0 > 0 and continuous functions Cν > 0 and ρν ∈ (0, 1)
such that, for all |ν| ≤ ν0, Lν = eανΠν + Qν , ΠνQν = QνΠν = 0, ‖Qnν‖W 1,1 ≤
Cνρ

n
ν e
ανn. Also Πν(g) = hν`ν(g), `ν(hν) = 1, `ν(h′ν) = 0. In addition, everything

is analytic in ν.

Proof. Note that

‖Lνh− Lh‖W 1,1 ≤ C#|ν|‖ω̂‖C1‖h‖W 1,1 .

By standard perturbation theory, see [4], it follows that there exists ν0 > 0 such
that, for all |ν| ≤ ν0 the operator Lν has a maximal simple eigenvalue and a spectral
gap. Let eαν be the leading eigenvalue, and Πν be the associated eigenprojection,
again by standard perturbation theory they are analytic in ν. Hence also h̄ν =
Πνh∗, ¯̀

ν = Leb Πν and βν = ¯̀
ν(h̄ν) are analytic functions of ν. Moreover, h̄0 = h∗

and ¯̀
0 = Leb, thus we have β0 = 1 and, provided ν0 is small enough, βν 6= 0,

hence Πν = h̄ν ⊗ ˜̀
ν where ˜̀

ν = β−1
ν

¯̀
ν . Note however that there is some freedom:

Πν = hν ⊗ `ν where `ν = γ−1
ν

˜̀
ν and hν = γν h̄ν for any arbitrary non zero function

γν . We can thus impose the condition

0 = `ν(h′ν) = `ν(γ′ν h̄ν + γν h̄
′
ν) = γ−1

ν γ′ν + ˜̀
ν(h̄′ν).

The above equation yields the choice

γν = exp

[
−
∫ ν

0

˜̀
ν′(h̄ν′)dν

′
]
.

We have thus seen that there are analytic hν ∈ W 1,1 and `ν ∈ (W 1,1)′, the eigen-
value of the dual operator and normalised so that `ν(hν) = 1, such that `ν(hν) = 1,
`ν(h′ν) = 0 and Πν = hν ⊗ `ν are analytic in ν. Also

(3.5) Lνhν = eανhν ,

and α0 = 1, h0 = h∗ and `0 = Leb. �

Lemma 3.2. Fot all |ν| ≤ ν0, the function αν satisfies α0 = α′0 = 0 and |αν |C3 ≤
C#, α′′0 ≤ 0. Finally, α′′0 = 0 iff there exists g ∈ C0 such that ω̂ = g− g ◦ f ; that is,
only if ω̂ is a C0-coboundary.

Proof. As we mentioned αν is analytic in ν by standard perturbation theory, hence
the bound on the C3 norm.

We can differentiate (3.5) obtaining

(3.6) L′νhν + Lνh′ν = α′νe
ανhν + eανh′ν .

Applying `ν yields

(3.7)
dαν
dν

= i`ν(ω̂hν) =: iµν(ω̂).

Thus α′0 = 0. Differentiating again yields

(3.8)
d2αν
dν2

= i`′ν(ω̂hν) + i`ν(ω̂h′ν) = i`′ν(ωνhν) + i`ν(ωνh
′
ν).

where ων = ω̂ − µν(ω̂). On the other hand, from (3.6) and (3.7) we have

(1eαν − Lν)h′ν = iLν(ωνhν),
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Since, by construction, Πνh
′
ν = 0, the above equation can be studied in the space

Vν = (1−Πν)W 1,1 in which 1eαν − Lν is invertible.

Setting L̂ν := e−ανLνand Q̂ν := e−ανQν we have

(3.9) h′ν = i(1− Q̂ν)−1L̂ν(ωνhν).

Doing similar considerations on the equation `ν(Lν) = αν`ν(g), we obtain

α′′ν = −`ν(ων(1− Q̂ν)−1(1+ Q̂ν)(ωνhν))

= −
∞∑
n=1

`ν(ωνL̂nν (1+ L̂ν)(ωνhν))

= −µν(ω2
ν)− 2

∞∑
n=1

`ν(ωνL̂nν (ωνhν)).

(3.10)

Finally, notice that

`ν(ωνL̂nν (ωνhν)) = `ν(L̂nν (ων ◦ fnωνhν)) = µν(ων ◦ fnων)

and

lim
n→∞

1

n
µν

[n−1∑
k=0

ων ◦ fk
]2
 = lim

n→∞

1

n

n−1∑
k,j=0

µν(ων ◦ fkων ◦ f j)

= µν(ω2
ν) + lim

n→∞

2

n

n−1∑
k=1

(n− k)µν(ων ◦ fkων)

= µν(ω2
ν) + 2

∞∑
k=1

µν(ων ◦ fkων).

(3.11)

The above two facts and equation (3.10) yield6

(3.12) − α′′0 = lim
n→∞

1

n
µ0

[n−1∑
k=0

ω0 ◦ fk
]2
 ≥ 0.

Finally, note that the computations in (3.11) imply that, if α′′0 = 0,

µ0

[n−1∑
k=0

ω0 ◦ fk
]2
 = −2

n−1∑
k=1

k Leb(ω̂ ◦ fkω̂),

and the last quantity, by the decay of correlations, is uniformly bounded. Accord-
ingly,

∑n−1
k=0 ω0 ◦ fk is uniformly bounded, and hence weakly compact, in L2. We

can then extract a converging subsequence, let g ∈ L2 be its limit. Then, for each
φ ∈W 1,1,7

Leb (φ(g ◦ f − g)) = lim
j→∞

nj−1∑
k=0

Leb
(
φ[ω̂ ◦ fk+1 − ω̂ ◦ fk]

)
= −Leb(φω̂) + lim

j→∞
Leb(ω̂Lnjφ) = −Leb(φω̂).

6 This, together with equation (3.10), is a simple instance of the so called Green-Kubo formula.
7 Here we are using that the composition with f is a continuous operator in L2, indeed

‖ϕ ◦ f‖L2 = Leb(|ϕ|2L1) ≤ C#‖ϕ‖L2 .
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Since W 1,1 is dense in L2, it follows that g− g ◦ f = ω̂. The only problem left is to
show that g is regular. Note that, it holds as well g ∈ L2(µ0) and without loss of
generality, we can assume µ0(g) = 0. Then, multiplying by h0 and applying L

Lω̂h0 = Lgh0 − L(g ◦ fh0) = L(gh0)− gh0 = (Q0 − 1)(gh0).

That is gh0 = −(1 − Q0)−1Lω̂h0 ∈ W 1,1 ⊂ C0. On the other hand note that,
since h0 ≥ 0, if there exists x̄ ∈ T such that 0 = h0(x̄) then for all n ∈ N we have

0 = Lnh0(x̄) =
∑
y∈f−n(x̄)

h0(y)
(fn)′(y) . Thus h0 must be zero on all the pre-images of

x̄, but this would imply that h0 ≡ 0. Hence it must be h0 > 0 and then g ∈ C0 as
claimed. �

We can now collect all our work: suppose we would line to do a measure rep-
resented by the function ψε,z(ζε) = ψ((ζε − z)ε−α), where ψ ∈ C∞(R,R+) has
support in the interval [−1, 1] and α ∈ [0, 1/2). This essentially means that we
want to know what is probability to find the variable ζε in a interval of size 2εα

centred at z. Hence, using (3.2) and (3.4) we want, and can, compute8

E(ψε,z(ζε)) =
1

2π

∫
ψ̂ε,z(ξ)

∫
T
Lbε

−1tc
ξ
√
ε

ρ+O(ε
1
2−α)

=
1

2π

∫
√
ε|ξ|≤ν0

εαeiξzψ̂(ξεα)

∫
T
Lbε

−1tc
ξ
√
ε

ρ+O(ε
1
2−α)

+O

(∫
|η|≥ν0εα−1/2

|ψ̂(ξ)|

)
.

Thus, if we set β = min{2α, 1
2 − α} > 0 and σ2 = −α′′0 , we have

E(ψε,z(ζε)) =
1

2π

∫
√
ε|ξ|≤ν0

εαeiξzψ̂(ξεα)e−
t
2σ

2ξ2+O(
√
εξ3)dξ +O(εβ)

=
ψ̂(0)

2π

∫
R
εαeiξze−

t
2σ

2ξ2dξ +O(εβ)

= Leb(ψε,z)
e−

z2

2σ2t

σ
√

2πt
+O(εβ).

Of course, since Leb(ψε,z) = O(εα) the above formula is useful only if β > α, thus

we can explore the distribution till intervals of size ε
1
4 . To have informations on

smaller scales one must investigate the operators Lν for values of ν beyond the
perturbative regime. This is indeed possible, but outside the scopes of the present
notes.

4. But, really, where does probability comes from?

In the last lecture we have seen how random behaviour can arise from a deter-
ministic one. Only some of you might feel that I have been cheating: after all a
system starts form a certain initial condition and does not care if we know it or
not! So, the probability has been introduced as a representation of our ignorance
and why should the system worry about we do or do not know?

To further the discussion along this lines would lead us to argue about the
relation between the frequentist interpretation of probability and the Bayesian view

8 Remember that ψ̂(ξ) =
∫
e−iξxψ(x)dx and ψ(x) = 1

2π

∫
e1ξxψ̂(ξ)dξ.
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of probability. Such a discussion could easily go on indefinitely without getting
anywhere. Therefore I’d like to take a different point of view and ask: is it possible
to obtain an almost everywhere results? That is: random behaviour can occur for
almost all initial conditions? Of course this does not solve completely the problem:
almost all implies a probability, and it remains open the issue of which reference
probability we should consider. But at least it would eliminate the average with
respect to the initial conditions, which is rather unsatisfactory.9

Only, if you fix the initial condition then ζε(t) will be some path, there is no
randomness, so, what can we say? If you think a bit you will see that the same
problem occurs for the Brownian motion itself: if you look only at one realisation,
how do you deicide that the motion is random? There is no probability over there!
This is a problem that experimentalists know very well, they often have at disposal
only one system, hence how to compute averages? The usual answer is to look at the
system at different time intervals and consider such measures and their relations.
For example, for Brownian motion, the increments should be distributed according
to a Gaussian and should be independent. One can then choose a time interval h
and different times {ti}Ni=1, ti+1 − ti ≥ h and study the quantities

1

N

N∑
i=1

ϕ(B(ti + h)−B(ti))

1

N

N∑
i=1

ϕ(B(ti+1 + h)−B(ti+1))g(B(ti + h)−B(ti)).

(4.1)

Then, by Birkhoff ergodic theorem, the first quantity, for N →∞, should converge
to the average of ϕ with respect to a Gaussian, and the second should converge to
the product of the averages of ϕ and g, for almost all the trajectories.

If an experimentalist would measure the quantities (4.1) and find out the above
behaviour, the she would be rather satisfied that she is observing a genuine Brown-
ian motion. It is then natural to ask: in the model we are discussing what happens
to the analogous of (4.1), that is to

1

N

N∑
i=1

ϕ(ζε(ti + h)− ζε(ti))

1

N

N∑
i=1

ϕ(ζε(ti+1 + h)− ζε(ti+1))g(ζε(ti + h)− ζε(ti)).

(4.2)

Let us analyse the first quantity, the second being similar. We have seen in the
previous lecture that the convergence of the random variables is implied by the
convergence of the characteristic function. Hence we would like to show that,
Lebesgue almost surely,

lim
N→∞

lim
ε→0

1

N

N∑
i=1

exp [iξ(ζε(ti + h)− ζε(ti))] = E(eiξ(ζε(h)−ζε(0)))

= exp

[
−ξ

2σ2h

2

]
.

(4.3)

9If you want to make a theory that explains how to boil eggs, you should be weary of one that
tells you that doing such and such the average egg will be properly boiled: it could be that half

of the eggs are burned and the other half frozen!
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To this end, let us start computing

lim
ε→0

E

∣∣∣∣∣ 1

N

N∑
i=1

exp [iξ(ζε(ti + h)− ζε(ti))]− exp

[
−ξ

2σ2h

2

]∣∣∣∣∣
2


= lim
ε→0

1

N2

N∑
i=1

N∑
i=j

E [exp [iξ {(ζε(ti + h)− ζε(tj))− (ζε(tj + h)− ζε(ti))}]]

− exp
[
−ξ2σ2h

]
.

Recalling (3.2), we have, setting ∆i,j = (ζε(ti + h)− ζε(tj))− (ζε(tj + h)− ζε(ti)),∣∣∣∣∣∣∆i,j −
√
ε

bε−1(ti+h)c−1∑
k=bε−1tic

ω̂ ◦ fk(x0) +
√
ε

bε−1(tj+h)c−1∑
k=bε−1tjc

ω̂ ◦ fk(x0)

∣∣∣∣∣∣ ≤ C#

√
ε.

We can then introduce again the transfer operators

Lh(x) =
∑

f(y)=x

1

f ′(y)
h(y); Lνh(x) =

∑
f(y)=x

eiνω̂(y)

f ′(y)
h(y),

and write, if i > j,

E
[
eiξ∆i,j

]
= E

[
Lh/ε
ξ
√
ε
L[ti−tj−h]/εLh/ε−ξ√εL

ti/ερ
]

+O(
√
ε)

= exp
[
−ξ2σ2h

]
+O(

√
ε+ e−c#h/ε)

while, if i = j, then E [iξ∆i,j ] = 1 +O(
√
ε). Thus

lim
ε→0

E

∣∣∣∣∣ 1

N

N∑
i=1

exp [iξ(ζε(ti + h)− ζε(ti))]− exp

[
−ξ

2σ2h

2

]∣∣∣∣∣
2
 = O

(
1

N

)
.

Then, by Chebyshev’s inequality, setting SN = 1
N

∑N
i=1 exp [iξ(ζε(ti + h)− ζε(ti))],

we have

P
[{∣∣∣∣SN − exp

[
−ξ

2σ2h

2

]∣∣∣∣ ≥ δ}] ≤ C#

δ2N
.

On the other hand

|SN+m − SN | ≤ C#
m

N
.

Hence, for k ∈ N and j,m ≤ 2k/2,

|S2k+j2k/2+m − S2k+jk| ≤ C#2−k/2.

Accordingly, for N ≥ C# ln δ−1,

P
[{

sup
n≥N

∣∣∣∣Sn − exp

[
−ξ

2σ2h

2

]∣∣∣∣ ≥ 2δ

}]

≤
∑

k≥ln2N

2k/2−1∑
j=0

P
[{∣∣∣∣S2k+j2k/2 − exp

[
−ξ

2σ2h

2

]∣∣∣∣ ≥ δ}]
≤

∑
k≥ln2N

2−k/2δ−2 ≤ C#√
Nδ2

,

which proves equation (4.3).



DETERMINISTIC NOISE 13

References

[1] V.Baladi, Positive transfer operators an decay of correlations, World scientific, Singapore
(2000).

[2] Jacopo De Simoi, carlangelo Liverani, The Martingale approach after Varadhan and Dol-

pogpyat . In ”Hyperbolic Dynamics, Fluctuations and Large Deviations”, Dolgopyat, Pesin,
Pollicott, Stoyanov editors, Proceedings of Symposia in Pure Mathematics, 89, AMS (2015).

[3] Dmitry Dolgopyat. Averaging and invariant measures. Mosc. Math. J., 5(3):537–576, 742,

2005.
[4] Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-

Verlag, Berlin, 1995. Reprint of the 1980 edition.
[5] Carlangelo Liverani, Central Limit Theorem for Deterministic Systems, International Con-

ference on Dynamical Systems, Montevideo 1995, a tribute to Ricardo Ma e, Pitman Re-

search Notes in Mathemaics Series, 362, editori F.Ledrappier, J.Levovicz, S.Newhouse,
(1996).

[6] Varadhan, S. R. S. Probability theory. Courant Lecture Notes in Mathematics, 7. New York

University, Courant Institute of Mathematical Sciences, New York; American Mathematical
Society, Providence, RI, 2001. viii+167 pp.

[7] Varadhan, S. R. S. Stochastic processes. Courant Lecture Notes in Mathematics, 16. Courant

Institute of Mathematical Sciences, New York; American Mathematical Society, Providence,
RI, 2007. x+126 pp.

Carlangelo Liverani, Dipartimento di Matematica, II Università di Roma (Tor Ver-
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