
Chapter 4

Global Behavior: simple examples

Different local behaviors have been analyzed in the previous chapter.
Unfortunately, such analysis is insufficient if one wants to understand the
global behavior of a Dynamical System. To make precise what we mean by
global behavior we need some definitions.

Definition 4.0.1 Given a Dynamical System (X,φt), t ∈ N or R+, a set
A ⊂ X is called invariant if, for all t, ∅ 6= φ−1

t (A) ⊂ A.

Essentially, the global understanding of a system entails a detailed knowl-
edge of its invariant set and of the dynamics in a neighborhood of such sets.
This is in general very hard to achieve, essentially the rest of this book devoted
to the study of some special cases.

Remark 4.0.2 We start with some simple considerations in the case of con-
tinuous Dynamical Systems (this is part of a general theory called Topological
Dynamical Systems1) and then we will address more subtle phenomena that
depend on the smoothness of the systems.

4.1 Long time behavior and invariant sets

First of all let us note that if we are interested in the long time behavior
of a system and we look at it locally (i.e. in the neighborhood of a point)
then three cases are possible: either the motion leaves the neighborhood and
never returns, or leaves the neighborhood but eventually it comes back or
never leaves. Clearly, in the first case the neighborhood in question has little
interest in the study of the long time behavior. This is made precise by the
following.

1Recall that a Topological Dynamical Systems is a couple (X,φt) where X is a topolog-
ical space and φt is a continuous action of R (or R+,N,Z) on X.

62



4.1. LONG TIME BEHAVIOR AND INVARIANT SETS 63

Definition 4.1.1 Given a Dynamical System (X,φt), a point x ∈ X is called
wandering if there exists a neighborhood U of x and a t0 ≥ 1 such that, for all
t ≥ t0, φt(U)∩U = ∅. A point that is not wandering is called non-wandering.
The set of non-wandering points is called NW ({φt}) or simply NW if no
confusion arises.

Problem 4.1 If φt ∈ C0, then the set NW is closed and forward invariant
(i.e. φt(NW ) ⊂ NW for each t ≥ 0). If the φt are open maps, then NW is
also invariant.

Problem 4.2 Construct an example of a topological dynamical systems in
which the non-wandering set is not invariant.

Problem 4.3 Show that if A is invariant, then the sets Λ = ∩∞t=0φ
−1
t A

and Ω = ∪∞t=0φt(A) are non-empty, invariant and, more, φ−1
t (Λ) = Λ and

φ−1
t (Ω) = Ω

The relevance for the long time behavior is emphasized by the following
lemma.

Lemma 4.1.2 If K ⊂ X is compact and K ∩ NW = ∅, then for all x ∈ K
there exists T such that φt(x) 6∈ K for all t ≥ T . In addition, if K is invariant,
then T can be chosen independent of x.

Proof. If all the points in K are wandering, then for each x ∈ K there
exists a neighborhood U(x) and a time t(x) such that φtU(x) ∩ U(x) = ∅
for all t ≥ t(x). Clearly {U(x)}x∈K is an open covering of K, hence we
can extract a finite subcover. Let {Ui}Ni=1 be such a subcover, let {ti} be the
corresponding associated times. If x ∈ K then x ∈ Ui for some i ∈ {1, . . . , N},
and φt(x) 6∈ Ui for t ≥ ti. If φt(x) 6∈ K for all t ≥ ti, then we are done. If
there exists t ≥ ti such that φt(x) ∈ K, then φt(x) must belong to another
Uj , that will leave forever for t ≥ tj . It is then clear that φt(x) cannot remain
in K for a time longer than

∑
i ti, nor can the trajectory return for more than

N times.
If K is invariant then it follows that if x 6∈ K then φtx 6∈ K for all t ≥ 0.

Thus once a point exits K it can never come back. The above argument then
show that each point must exit forever in a time at most

∑
i ti. �

Corollary 4.1.3 If K ⊂ X is compact and invariant, then either there exists
n ∈ N such that T−nK = ∅ or NW ∩K 6= ∅.

Proof. If NW ∩K = ∅, then Lemma 4.1.2 imply that there exists n ∈ N
such that TnK ∩K = ∅, hence T−nK = ∅. �

To see the connection to long time behavior and invariant sets we need an
extra definition
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Definition 4.1.4 Given a topological Dynamical System (X,φt), t ∈ I ∈
{R,Z,R+,N}, and x ∈ X we call ω(x) (the ω-limit set of x) the accumulation
points of the set ∪t≥0{φt(x)}. If t belongs to R or Z, then the α-limit set is
defined analogously with t ≤ 0.

Problem 4.4 Show that the ω-limit sets are closed sets such that φt(ω) = ω
(hence if φt is invertible then the omega limits are invariant).

Theorem 4.1.5 For each x ∈ X we have ω(x) ⊂ NW . In addition, if X is
a proper metric space,2 then for each z ∈ X either holds limt→∞ d(φt(x), z) =
∞, or limt→∞ d(φt(x), NW ) = 0.

Proof. Let x ∈ X. If z ∈ ω(x), then for each neighborhood U of z we
have {tn} ⊂ R+ such that φtn(x) ∈ U . Thus φtn+1−tnU∩U ⊃ {φtn+1(x)} 6= ∅.
Hence z ∈ NW .

Let us come to the second part of the Theorem. If the two alternatives
do not hold, then there exists a compact set (a closed ball) that contains
infinitely many points of the orbit of x all at a finite distance from NW . This
implies that the orbit has an accumulation point (hence an element of ω(x))
not in NW contradicting the first part of the Theorem. �

In particular the above Theorem shows that all the interesting long time
dynamical behavior happens in a neighborhood of the non-wandering set.

Problem 4.5 Given a discrete topological dynamical system (X,T ), let A =
NW (T ). Since A is forward invariant, one can consider the restriction S of
T to A. Find an example in which NW (S) is strictly smaller than A.

Definition 4.1.6 Given a Dynamical System (X,φt), a point x ∈ X is called
recurrent if x ∈ ω(x). The set of recurrent points is called R({φt}), or simply
R if no confusions arises.

Problem 4.6 Consider a linear system ẋ = Ax. Show that if A is hyperbolic,
then NW = {0}.

Problem 4.7 Consider a saddle-node bifurcation in one dimension. Show
that in a small neighborhood of the bifurcation point, when two fixed points
x1, x2 are present, NW = {x1, x2}. Show that this may not be the case in
higher dimensions.

Problem 4.8 Consider the ODE ẋ =

(
0 −ω0

ω0 0

)
, ω0 > 0, 2πω0 6∈ Q. Show

that NW = R2, while for each x ∈ R2 holds ω(x) = {z ∈ R2 : ‖z‖ = ‖x‖}.
2That is, a distance d is defined and the base for the topology is made of the sets

Br(x) = {y ∈ X : d(x, y) < r} (this is called a metric space). A proper metric space is
one in which all the closed balls {y ∈ X : d(x, y) ≤ r} are compact.
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Problem 4.9 In the case of the Hopf bifurcation in two dimensions when
the fixed point O is repelling, and hence the periodic orbit γ is attracting,
show that (in a neighborhood of O for the bifurcation parameter small enough)
NW = {O} ∩ γ.

Remark 4.1.7 We have thus seen examples in which the ω-limit sets can be
a point or a periodic orbit, do other possibilities exists?

This question is going to lead us to a long journey.

4.2 Poincaré-Bendixon

See [HS74].

4.3 Equations on the Torus

As we have seen a generic family of vector fields in R2 can have a very limited
choice of bounded invariant sets: either a fixed point and the associated stable
and unstable manifolds, or (by Poincaré-Bendixon) a periodic orbit. Yet
one can have a differential equation on different manifolds, notably the torus
T2 = R2/Z2.

Problem 4.10 Consider the vector fields V (x) = ω ∈ R2 on T2 and show
that the orbit of the associated flow can be everywhere dense.

The above problem shows that on T2 it is possible to have a new ω-limit
set: T2 itself! Can such a situation take place for an open set of vector fields?
To understand the situation it is useful to generalize the setting of Problem
4.10.

Definition 4.3.1 A closed non self-intersecting curve γ ∈ Cr(S1,T2), r ≥ 1,
is called a global (cross) section for the flow associated to V if

a) γ′ is always transversal to V .3

b) for each x ∈ T2 there exists t ∈ R+ such that φt(x) ∈ γ.

Given a cross section γ we can define the return time τ : γ → R+ as the first
t > 0 such that φt(x) ∈ γ and the Poincaré map f : γ → γ as f(x) = φτ(x)(x).

Problem 4.11 Show that if γ ∈ Cr(S1,T2) is a global cross section and f is
the associate Poincaré map, then f ∈ Cr and (γ, f) is a Dynamical Systems
that describe the dynamics when it returns to γ.

3That is, the vectors {γ′(t), V (γ(t))} span R2 for all t ∈ S1.
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Lemma 4.3.2 (Siegel) Let V ∈ Cr(T2,R2) be a nowhere zero vector field.
If the associated flow has no periodic orbits, then there exists a global section
γ. In addition, if f : γ → γ is the Poincaré map associated to the flow, then
f ∈ Cr(γ, γ).

Proof. The (nice) idea is to construct a section close to an orbit. Let
φt be the flow associated to the vector field V . Let x ∈ NW and consider
an open segment, of length less than 1/2, Σ, x ∈ Σ, transversal to the vector
field (similar to the construction in the Flow Box Theorem 2.1.1). Since x
is non-wandering and due to Theorem 2.1.1, there exists z ∈ Σ, z 6= x, and
t ∈ R such that φt(z) ∈ Σ, this being the first return to Σ. Since there are no
periodic orbits z 6= φt(z).

We will construct a global section close to {φs(z)}ts=0 ∪ Σ. Note that the
closed curve that one obtains joining z to φt(z) along Σ cannot be omotopic to
a point. Otherwise the curve would have an interior homeomorphic to a disk
in R2 from which the orbits cannot escape either in the future or the past. By
Poincarè–Bendixon this would imply the existence of a periodic orbit contrary
to the hypothesis. To properly explain the construction it is convenient to
introduce a flow box type system of coordinates near such an orbit.

For s ∈ [−1/2, 1/2] let ϕ(s) = z + s(x − z)‖x − z‖−1. Clearly ϕ(0) = z,
ϕ(‖x − z‖) = x, and holds ϕ([−1/2, 1/2]) ⊃ Σ. Next, for each y ∈ Σ let
s ∈ [−1/2, 1/2] be the unique number such that y = ϕ(s) and τ(s) = inf{t >
0 : φt(y) ∈ Σ} be the first return time to the section. By Theorem 2.1.1 and
Corollary 1.1.13 there exists δ ∈ (0, 2‖x − z‖) such that τ ∈ Cr([−δ, δ],R+).
For A := {(s, t) ∈ R2 : s ∈ [−δ, δ], t ∈ [0, τ(s))} let us define the map
Ξ : A → T2 by Ξ(s, t) = φt(ϕ(s)). Note that this map is Cr and invertible
(provided δ is chosen small enough), hence it can be used as a change of
coordinates. Note that this are essentially the coordinates used in the flow
box theorem, only now they are used in a long neighborhood of an orbit.

The next step is to understand how the orbit comes back. Indeed, if
we use standard flow box coordiantes (s′, t′) in a neighborhood of Σ, then
(s, t) = (s′, t′) for t ≥ 0 but for t close to τ(s) we are again in the neighborhood
of Σ corresponding to t′ < 0. The change of coordinates can then be described
by the function θ such that φτ(s)ϕ(s) = ϕ(θ(s)). Then (s, t) corresponds to
(θ(s), t− τ(s)).

Problem 4.12 Let τ0 = τ(0), then 〈x− z, ddsφτ0(ϕ(s))|s=0〉 > 0.4

The above problem means simply that θ′ > 0.
To conclude we must analyze two possibilities: either φτz is closer to x

than z or vice versa. The two cases are treated exactly in the same way so

4This is really a consequence of the fact that the torus is orientable, yet it can be proven
directly in several ways.
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we discuss only the first, that is θ(0) > 0. We can then chose ε ∈ (0, δ)
such that θ(−ε) > 0. Consider a line (ε − 2ετ−1

0 t, t), t ∈ [0, τ0], obviously it
is always transversal to the flow. If we look at it in the standard flow box
coordinates in a neighborhood of Σ we see that it start as a decreasing curve
and, since θ′ > 0, it reappears (for t′ < 0) as a still decreasing curve. It is then
easy to see that it can be smoothly deformed, in a neighborhood of Σ, into a
closed curve that is always transversal to the flow. We have thus constructed
a smooth transversal section it remains to show that it is global.

Problem 4.13 Consider a piecewise smooth closed curve Γ in T2. Show that
T2 \ Γ is either disconnected (and one connected component is isomorphic to
an open set in R2) or it is isomorphic to a cylinder.

If the above section would not be global, then there would be trajectories
that stay forever in a set (either a piece of R2 or a cylinder) to which Poincaré-
Bendixon applies. But this would imply the presence of a periodic orbit,
contrary to the asumption. �

Problem 4.14 Show that, in the setting of the above theorem, the sign of f ′

cannot change and that the condition f ′ 6= 0 is generic.

It is important to notice that, given a topological Dynamical System
(M,f) and a function τ ∈ C0(M,R+ \ {0}) (called roof function) one can
always see them as a Poincaré section and a return time of a flow. The re-
sulting object is called a suspension or standard flow and is constructed as
follows.

Consider the set Ω̃ = {(x, s) ∈M ×R+ : s ∈ [0, τ(x)]} with the topology
induced by M × R+ equipped with the product topology.

Problem 4.15 Consider the relation (x, s) ∼ (y, t) iff x = y and s = t or
s = τ(x), t = 0 and y = f(x) or t = τ(y), s = 0 and x = f(y). Prove that it
is an equivalence relation.

One can then consider the space of the equivalence classes Ω = Ω̃/ ∼ with the
induced topology, this is the space on which the flow is defined: let t ≤ inf τ ,
define

φt(x, s) =

{
(x, s+ t) if t < τ(x)− s
(f(x), t+ s− τ(x)) if t ≥ τ(x)− s

and extend φt by the group property.

Theorem 4.3.3 Let V ∈ C2(T2,R2) be a nowhere zero generic vector field
with no periodic orbits. Then for each point y ∈ T2, ω(y) = T2.
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Proof. By Lemma 4.3.2 we have a smooth global section γ with a
Poincaré map g. Let h : S1 → γ be a parametrization of γ. If we set
f = h−1 ◦ g ◦ h, we can consider the return map as C2 map on the unit circle
such that f ′ 6= 0 at each point. Note that a periodic point for the map f
corresponds to a periodic orbit for the flow, hence f cannot have periodic
orbits. The claim follows then by Lemma 4.5.2 in which it is proven that a
smooth circle map with no periodic orbits has dense orbits. �

The final natural question is:
In the hypotheses of Theorem 4.3.3, is it possible to conjugate

the flow to a rigid rotation of the torus, and, if yes, to which one?
Motivated by the above question and results we will now study orientation

preserving circle maps. It turns out to be interesting and helpful to study their
properties in relations to their increasing smoothness.

4.4 Circle maps: topology

Here , and in the following, we study a Dynamical System (S1, f) where f is
a homeomorphism of S1 (i.e. f is invertible and f(S1) = S1).

We start with some facts that follow from the simple hypothesis of conti-
nuity.

First of all note that one can lift the map f to the universal cover R of the
circle, that is defining π : R → S1 as π(x) = x mod 1, it is possible to find
F ∈ C0(R,R) such that

f ◦ π = π ◦ F.

Problem 4.16 Construct explicitly such an F . Show that F (x+1) = F (x)+
1.

Problem 4.17 If there exists L > 0 such that −L ≤ am+n ≤ an + am + L
for all n,m ∈ N, then the limit limn→∞

an
n exists.

Lemma 4.4.1 Let f : S1 → S1 be an homeomorphism and F ∈ C0(R,R) a
lift of f . Then the limit

τ(f) := lim
|n|→∞

Fn(x)

n
mod 1

exists and is independent both from the point and the lift.

Proof. Applying Problem 4.17 to the sequence Fn(x) the existence of
the limit follows. The other assertions depend on the already mentioned
equality F (x+ 1) = F (x) + 1. �
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Lemma 4.4.2 Show that τ(f) ∈ Q if and only if f has a periodic orbit.

Proof. If fq(x) = x and F is a lift then it must be F q(x) = x+p for some
p ∈ N. This immediately implies F kq(x) = x + kp and hence τ(f) = p

q ∈ Q.

On the other hand, if τ(f) = p
q ∈ Q, we have τ(fq) = p mod 1 = 0. It thus

suffices to prove that τ(f) = 0 implies f has a fixed point. Let us do a proof
by contradiction: we suppose that f has no fixed points. Note that this is
the same than saying that G(R) ∩ Z = ∅ where G(x) = F (x) − x. Since G
is continuous this implies maxG − minG < 1. Let α = minG, β = maxG.
Note that, by properly choosing the lift F , one can insure tat [α, β] ⊂ (0, 1).
Then

Fn(x) = G(Fn−1(x)) + Fn−1(x) ≥ α+ Fn−1(x) ≥ nα

hence τ(f) ≥ α, analogously τ(f) ≤ β which contradicts τ(f) = 0. �

Problem 4.18 Given f ∈ C0(S1, S1), for any interval I ⊂ S1, if f(I) ⊂ I,
then f has a fixed point in I.

Problem 4.19 If τ(f) 6∈ Q, then for each n ∈ N \ {0} and x, y ∈ S1,
{fk(y)}k∈N ∩ [x, fn(x)] 6= ∅.

Problem 4.20 If τ(f) 6∈ Q, then for each x ∈ S1 there exist infinitely many
n ∈ Z such that {fkx}|k|<n ∩ [x, fnx] = ∅.

Lemma 4.4.3 For any homomorpfism f : S1 → S1 with τ(f) 6∈ Q and any
x, y ∈ S1 holds ω(x) = ω(y).

Proof. If z ∈ ω(x), then there exists {nj} such that limj→∞ fnj (x) = z.
But then Problem 4.19 implies that for each j ∈ N there exists kj ∈ N such
that fkj (y) ∈ [fnj (x), fnj+1(x)]. Clearly limj→∞ fkj (y) = z, thus z ∈ ω(y).
Reversing the role of x and y the Lemma follows. �

Problem 4.21 Let f be a homeomorphism of S1 with irrational rotation
number show that for each ε > 0 there exists a homeomorphism fε, ‖f −
fε‖∞ ≤ ε, with τ(fε) ∈ Q.

Problem 4.22 Note that τ is a map from circle homomorphisms to [0, 1].
Show that it is a continuous map.

Problem 4.23 Let fλ be a one parameter family of homeomorphisms such
that τ(f0) < τ(f1). Suppose that τ(fλ) is increasing, what can you say on the
possible intervals in which it is not strictly increasing?
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4.5 Circle maps: differentiable theory

In this section we assume f ∈ C2(S1, S1) and ln f ′ ∈ C1(S1,R).5

Lemma 4.5.1 If τ(f) 6∈ Q and x0 6∈ ω(x0), then

∞∑
n=0

(fn)′(x0) <∞.

Proof. Let U(x0) 3 x0 be the largest open interval not intersecting
ω(x0), call K(x0) its closure. First of all we see that the invariance of
the ω-limit set implies {fn(∂K(x0))}∞n=1 ⊂ ω(x0). This implies that ei-
ther fnK(x0) ∩K(x0) = ∅ or fnK(x0) ⊃ K(x0) but the latter would imply
the existence of a fixed point for fn, which is impossible, hence all the sets
{fnK(x0)}n∈Z must be disjoint. We can now conclude thanks to a typical

distortion estimate: let Kn(x0) := fn(K(x0)), then, setting D :=
∣∣∣ f ′′f ′ ∣∣∣∞,

1 >
∑
n∈N
|Kn(x0)| =

∑
n∈N

∫
K(x0)

(fn)′(x)dx =
∑
n∈N

(fn)′(x0)

∫
K(x0)

(fn)′(x)

(fn)′(x0)
dx

≥
∑
n∈N

(fn)′(x0)

∫
K(x0)

e−
∑n−1
k=0 | ln f

′(fk(x))−ln f ′(fk(x0))|dx

≥
∑
n∈N

(fn)′(x0)

∫
K(x0)

e−
∑n−1
k=0 D|Kk(x0)|dx ≥ |K(x0)|e−D

∑
n∈N

(fn)′(x0).

�

Lemma 4.5.2 If τ(f) 6∈ Q, then, for all x ∈ S1, ω(x) = S1.

Proof. We use the same notation as in Lemma 4.5.1. If the Lemma is
false then there exists x ∈ S1 such that ω(x) 6= S1. But by Lemma 4.4.3
all the omega limit sets are equal, hence there exists x0 ∈ S1 such that
x0 6∈ ω(x0). Note that if there exists n ∈ N, n 6= 0, such that fn(x0) ∈ K(x0)
then, by the invariance of ω(x0), it must be fn(x0) 6= ∂K(x0) ⊂ ω(x0) and
then Problem 4.19 implies that there are infinitely many k such that fk(x0) ∈
[x0, f

n(x0)] ⊂ K(x0), but this is impossible since such an interval does not
contain accumulation points of the forward trajectory. Thus, for each n ∈ Z,
n 6= 0, fn(x0) 6∈ K(x0), accordingly there exist δ > 0 such that each interval
[x0, f

n(x0)] has length at least δ.
Next, choose L > 0, by Lemma 4.5.1 there exists m ∈ N such that

(fn)′(x0) < L−1, for all n > m. We can then apply Problem 4.20 to find an

5These hypotheses can be slightly weakened, see [HK95].
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|n| > m such that {fkx}|k|<n ∩ [x0, f
n(x0)] = ∅. Suppose n < 0 and let J− =

[x0, f
n(x0)], then for each k ∈ {1, . . . ,−n− 1}, fkJ− = [fkx0, f

n+kx0], since
the extreme of such an interval do not belong to J it follows that fkJ−∩J− = ∅
(otherwise the first would be contained in the second and there would be a
fixed point). Thus, setting J = [x0, f

|n|(x0)], for all k ∈ {1, . . . ,−n − 1},
holds fkJ ∩ J = ∅. The same result follows, setting J− = [x0, f

−n(x0)] , for
n > 0. Finally we conclude with another distortion argument

|f−|n|J | =
∫
J

(f−|n|)′(x)dx =
1

(f |n|)′(x0)

∫
J

(f |n|)′(f−|n|(f |n|(x0))

(f |n|)′(f−|n|x)
dx

≥ 1

(f |n|)′(x0)

∫
J

e−
∑|n|−1
k=0 D|fkJ|dx ≥ Le−Dδ.

Then choosing L > eDδ−1 leads a length of |f−|n|J | larger than one, which
contradicts the fact that f is an homeomorphism. �

The above fact can be used to prove the following result (due to Poincaré).

Theorem 4.5.3 If τ(f) = ω 6∈ Q, then f is C0-conjugate to Rω(x) = x + ω
mod 1.

Proof. See [HK95] Theorem 11.2.7. �

4.6 Circle maps: smooth theory

We have seen that the qualitative behavior of smooth circle maps with ir-
rational rotation number is similar to the behavior of the rigid rotation in
Problem 4.10. What it is not clear is if the two dynamics can be smoothly
conjugated (i.e. in the spirit of the flow box theorem, but globally). This
latter problem turns out to be extremely subtle and to require much finer
number theoretical consideration than distinguishing between rational and
irrationals.

Since we have seen that more smoothness allows to obtain stronger results,
it is natural to start by considering analytic functions.

To make the following easier, we will limit ourselves to the case of a maps
close to the identity. That is maps with a covering F : R → R of the form
F (x) = x+ ω + f(x), where f(x+ 1) = f(x) is “small”.

4.6.1 Analytic KAM theory

To define the sense in which f is small we assume first that f is an analytic
function. That is f is a restriction to the real axes of a function, that abusing
notation we will still call f , holomorphic in a strip. Let Dα = {z ∈ C :
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|=(z)| ≤ α
2π} and consider the function space Bα = {g ∈ C0(Dα,C) : g(z +

1) = g(z) ∀z ∈ Dα , g holomorphic in D̊α}. This is a Banach space when
equipped with the norm ‖g‖α = supz∈Dα |g(z)|.

Theorem 4.6.1 If τ(F ) = ω and there exist α0 ∈ (0, 1), C0 > 0 such that if
‖f −

∫
S1 f‖α0

≤ C0α
3
010−10 and ω > 0 satisfies∣∣∣∣ω − p

q

∣∣∣∣ ≥ C0

q2

for each p, q ∈ N, then there exists h ∈ Bα0/2 such that, setting H(x) =

x+ h(x), ‖h‖α0/2 ≤ 3C
− 1

3
0 ‖f‖

1
3
α0 and, for all x ∈ R,

H−1 ◦ F ◦H(x) = x+ ω. (4.6.1)

A natural question is: do irrational numbers with the above properties ex-
ists? The answer is yes (for example all the quadratic irrational satisfy such
inequalities), but a bit of theory is needed to see it. For a quick introduction
to these problems solve the Problems 4.28, 4.29, 4.30, 4.31, 4.32, 4.33, 4.34.

Remark 4.6.2 Note that we can always reduce to the case
∫
f = 0 by sub-

tracting the average to f and adding it to ω. As an exercise you can show
that given the map F (x) = x + ω + ξ + f(x), with f zero average and norm
small as in Theorem 4.6.1, there exists a ξ for which the map is conjugated
to x+ ω.

Remark 4.6.3 The unaware reader can be horrified by the 10−10 in the state-
ment of the above theorem. Such a ridiculous number is in part due to the
fact that I have privileged readability over optimality, but in part it comes with
the method. Indeed, it is well known among specialists that to obtain optimal
estimates for KAM-type theorems is a very hard problem. Indeed, it is a field
of research currently active.

Proof of Theorem 4.6.1. First of all remark that f̂0 =
∫
S1 f and

ω + f̂0 − ‖f − f̂0‖α0 ≤ ω = τ(F ) ≤ ω + f̂0 + ‖f − f̂0‖α0

thus

|f̂0| ≤ ‖f − f̂0‖α0
. (4.6.2)

Next, note that if H is invertible, then equation (4.6.1) is equivalent to, for
each z ∈ Dα0/2,

h(z + ω)− h(z) = f(z + h(z)). (4.6.3)
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In fact, we are interested to solving the above equation only for real z. In the
following to avoid confusion I will use z for a complex variable and x for a
real one.

It is natural to introduce the linear operator Lωg(x) = g(x+ω)− g(x). If
such an operator were invertible, then we could write

h = L−1
ω f ◦H, (4.6.4)

that looks like a fixed point problem and hopefully can be studies with known
techniques.

We have thus to study the operator Lω. The best is to compute it in
Fourier series:

Lωg(x) =
∑
k∈Z

e2πikx(e2πiωk − 1)ĝk

where g(x) =
∑
k∈Z e

2πikxĝk. Thus, provided ĝ0 = 0,

L−1
ω g(x) =

∑
k∈Z\{0}

e2πikx ĝk
e2πiωk − 1

.

Thanks to the fact that ω 6∈ Q, the coefficients in the above formula are well
defined. Yet, it remains the issue of the convergence of the series. Indeed, the
coefficients can be very large since,6∣∣e2πiωk − 1

∣∣ ≥ 2 inf
p∈N
|ωk − p| ≥ 2C0|k|−1.

This is the main difficulty of the present problem: the infamous small divisors.
Clearly, due to the small divisors L−1

ω is not a bounded operator. This makes
it very hard to study directly (4.6.4). To bypass this problem we need an
idea.

The idea that we will use if due to Kolomogorov and goes as follows:
instead of solving (4.6.4) consider the change of variables H0(x) = x+ h0(x)

where h0 = L−1
ω (f − f̂0). Of course such a change of variable it is not the

right one since
h0(x+ ω)− h0(x) = f(x)− f̂0, (4.6.5)

yet one can try to write

H−1
0 ◦ F ◦H0(x) = x+ ω + f1(x) (4.6.6)

and hope that f1 is much smaller that f . If this is the case one can iterate the
procedure and hope that it converges to a limiting change of variables that is
the one we are looking for.

6Note that |eix − 1| ≥ | sinx| ≥ 2x
π

, provided x ∈ [0, π/2]. On the other hand if

x ∈ [π/2, π], then |eix − 1| ≥ |1 − cosx| ≥ 1. Hence we can use the simple, but not very
sharp, estimate |e2πix − 1| ≥ infp∈Z 2|x− p|.
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To implement the above idea the first thing we need is to connect the
analysis via Fourier series to the analytic properties of the functions.

Consider the norm

|g|α :=
∑
k∈Z

eα|k||ĝk|.

Let us call Bα the Banach space of the periodic functions (of period one) on
R equipped with the above norm.

Note that, for β < α,7

|L−1
ω g|β ≤

∑
k∈Z

|k|
2C0

eβ|k||ĝk| ≤
|g|α
2C0

sup
k∈Z
|k|e−(α−β)|k|

≤ |g|α
2eC0(α− β)

(4.6.7)

Thus L−1
ω : Bα → Bβ is a bounded operator for each α > β.

The point is that there is a connection between the above Banach spaces,
namely we can define Ξ : Bβ → Bα, by Ξg(x) = g(x), for all x ∈ R.8 To see
the relation between the norms, let us compute the Fourier coefficients

[Ξ̂g]k =
1

i

∫ 1

0

e2πikxg(x)dx

Problem 4.24 Show that |[Ξg]k| ≤ e−α|k|‖g‖α.

Hence, for α > β, ‖Ξ‖Bα→Bβ ≤ 2(1 − eβ−α)−1. Note also that we can easily
define the inverse: if g ∈ Bα, then define

Ξ−1g(z) =
∑
k∈Z

e2πikz ĝk

Problem 4.25 Verify that the above is really the inverse of Ξ.

7Here we use that, for each n ∈ N and σ > 0,

sup
k∈N

kne−σk ≤ sup
x∈R+

xne−σx =
(n
σ

)n
e−n ≤ e−1σ−nn!.

The last inequality is an application of Stirling formula. If you do not remember it, here is
the baby version used above,

n! = e
∑n
k=1 ln k ≥ e

∫n
1 ln xdx = en lnn−n+1 = nne−n+1.

8In other words we simply take the restriction of the function to the real axis.
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If g ∈ Bα, then

‖Ξ−1g‖α ≤
∑
k∈Z

e|k|α|ĝk| = |g|α.

Thus ‖Ξ−1‖Bα→Bα ≤ 1.

Problem 4.26 Show that, for each α > β, α−β < 2, setting h0 = Ξ−1L−1
ω Ξ(f−

f̂0), holds

‖h0‖β ≤
4‖f − f̂0‖α
C0(α− β)2

‖h′0‖β ≤
64π

C0(α− β)3
‖f − f̂0‖α.

The point of the spaces Bα is that the equation (4.6.6) for f1 reads

f1(x) = h0(x)− h0(x+ ω + f1(x)) + f(x+ h0(x)). (4.6.8)

To study such equation in Bα is highly non trivial, while Bα is much better
suited to estimate the norms of composition of functions.

To study (4.6.8) in Bα the first step is to verify that it makes sense.
Obviously one can see it as the restriction to the real axes of an equation
involving functions defined on the complex plane, yet it is necessary to check
that the composition is well defined, that is we have to carefully analyze
domains and ranges of the various functions. For later use we carry out all
the needed estimates in the following Lemma.

Lemma 4.6.4 Given functions f ∈ Bα and h ∈ Bβ, α > β > α/2 such that,

setting F (z) = z + ω + f(z), we have τ(F ) = ω, ‖f − f̂0‖α ≤ α−β
2π and h

satisfies (4.6.5), it follows that ‖h‖β ≤ α−β
16π , ‖h′‖β ≤ 1

16 , H(z) = z + h(z) is
invertible, H−1 ∈ Bγ , γ ≤ 2β − α, and there exists a function f1 ∈ Bγ with
‖f1 −

∫
S1 f1‖γ ≤ 1

2‖f −
∫
S1 f‖α satisfying

H−1 ◦ F ◦H(z) = z + ω + f1(z) =: F1(z).

Proof. First of all H is invertible when restricted to the real axis since
H ′ ≥ 1

2 . Let H−1(z) = z + ψ(z), clearly

ψ(z) = −h(z + ψ(z)).

So the inverse is the fixed point of the operator K(ψ)(z) = −h(z + ψ(z))
which is well defined on the set A = {ψ ∈ Bγ : ‖ψ‖γ ≤ α−β

2π }. It is easy to
verify that such a fixed point exists and is unique.
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Note that the function f1 must satisfy equation (4.6.8). To solve (4.6.8)
we must look for a fixed point for the operator

K(ϕ)(z) = h(z)− h(z + ω + ϕ(z)) + f(z + h(z))

on the set A = {ϕ ∈ Bγ : ‖ϕ − f̂0‖γ ≤ 1
4‖f − f̂0‖α}. Note that the

composition of functions is well defined, hence so is K.
Let us check that K(A) ⊂ A.

K(ϕ)(z)− f̂0 = h(z)− h(z + ω) + h(z + ω)− h(z + ω + ϕ(z)) + f(z + h(z))− f̂0

= f(z + h(z))− f(z) + h(z + ω)− h(z + ω + ϕ(z)).

Thus, using the estimate in Problem 4.35 and recalling (4.6.2),

‖K(ϕ)−f̂0‖γ ≤ ‖f ′‖β‖h‖γ+‖h′‖β‖ϕ‖γ ≤
1

8
‖f‖α+

1

16
‖ϕ−f̂0‖γ+

1

16
|f̂0| ≤

1

4
‖f‖α.

In addition, if ϕ, ϕ̃ ∈ A, then

‖K(ϕ)−K(ϕ̃)‖γ ≤ ‖h′‖β‖ϕ− ϕ̃‖γ ≤
1

16
‖ϕ− ϕ̃‖γ .

Thus, by the usual contraction argument, there exists f1 ∈ A such that
K(f1) = f1. On the other hand F1 is conjugated to F and hence it has
rotation number ω. Thus (4.6.3) implies |

∫
S1 f1| ≤ ‖f1 −

∫
S1 f1‖γ and∥∥∥∥f1 −

∫
S1

f1

∥∥∥∥
γ

≤
∥∥∥∥f1 −

∫
S1

f0

∥∥∥∥
γ

+

∣∣∣∣∫
S1

f0 − f1

∣∣∣∣ ≤ 1

2
‖f − f̂0‖α.

�

Since we need to restrict the domain several time it is convenient to do
it in a systematic fashion. Let ρk := e−kτα, and apply Lemma 4.6.4 with
β = ρ2 and γ = ρ4. A simple computation shows that the condition on β, γ
are satisfied if e−τ ≥ 2

3 . Then, setting ε = ‖f − f̂0‖α, Lemma 4.6.4 applies

provided ε ≤ min{ ταπe ,
C0τ

3α3

128e3π }.
9 We then choose τ0 = α−1C

− 1
3

0 ε
1
3 . Hence

min{ ταπe ,
C0τ

3α3

128e3π } = C0τ
3α3

128e3π provided ε ≤ 103e3
√
C0.

We now implement an iterative procedure by setting: f0 = f ,

hn(z + ω)− hn(z) = fn(z) , Hn(z) = z + hn(z) , Fn(z) = z + ω + fn(z),

H−1
n ◦ Fn ◦Hn(z) = z + ω + fn+1(z).

9Just use Problem 4.26 and the fact that 1− e−x =
∫ x
0 e−ydy ≥ e−1x, for x ∈ (0, 1), to

check the hypotheses of the Lemma.
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In addition, we set α0 = α, αn+1 = e−4τnαn, εn+1 = εn
2 and τn = α−1

n C
− 1

3
0 ε

1
3
n .

Note that this choices imply that Lemma 4.6.4 can be applied at each stage

of the iteration. Now, if αn ≥ 1
2α0, holds εn = 2−nε, τn ≤ 2α−1

0 2−n/3C
− 1

3
0 ε

1
3 .

This implies αn = α0e
−4

∑n−1
k=0 τk ≥ e−40α−1

0 C
− 1

3
0 ε

1
3 α0 which is always larger

than α0/2 provided ε ≤ C0

[
α0 ln 2

40

]3
. Note that all our condition on ε are

satisfied if ε ≤ 1
5C0α

3
010−5.

We have thus a sequence of changes of variables Hn(z) = z + hn(z), the
next question is if it exists H(z) = limn→∞H0 ◦H1 ◦ · · · ◦Hn(z). It suffices
to prove that the sequence is uniformly bounded on Dα0/2

|H0 ◦H1 ◦ · · · ◦Hn(z)− z| ≤
n∑
k=0

‖hk‖αk ≤
n∑
k=0

e2εk
C0τ2

kα
2
k

≤
∞∑
k=0

2−k/3ε
1
3 e2C

− 1
3

0 ≤ ε 1
3 5e2C

− 1
3

0

Similarly it follows that the Hn form a Chauchy sequence, hence they have

a limit H ∈ Bα0/2 with ‖id−H‖α0/2 ≤ ε
1
3 5e2C

− 1
3

0 . From this it follows also
(see Problem 4.35)

‖1−H ′‖α0/4 ≤
40πe2ε

1
3

α0C
1
3
0

≤ 1

2
, (4.6.9)

provided ε ≤ 10−10C0α
3. Hence H is invertible and this concludes the proof.

�

4.6.2 Smooth KAM theory

The final question is: do similar results hold assuming less smoothness? The
answer is yes, yet to explore optimal results it is not an easy task. Here we
content ourselves with a partial, but enlightening, result.

Theorem 4.6.5 For each r > 4,10 if τ(F ) = ω, ‖f−f̂0‖Cr ≤ 10−17C0(r−4)9

and ω > 0 satisfies ∣∣∣∣ω − p

q

∣∣∣∣ ≥ C0

q2

for each p, q ∈ N, then there exists h ∈ C1 such that, setting H(x) = x+ h(x),
H is invertible and

H−1 ◦ F ◦ H(x) = x+ ω.

10 In fact, by a more sophisticated proof, r > 3 suffices [Her83].
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Proof. The basic idea is to write f = f̂0 +
∑∞
m=0 f̃m where

f̃m(x) =
∑

eam≤|k|<ea(m+1)

f̂ke
2πikx

and a > 1 is a parameter to be chosen later.11 Then one can apply Theorem
4.6.1 one f̃m at a time. Indeed, let αm = b(m+ 1)e−a(m+1), for some a, b > 0
to be chosen later, where then

‖f̃m‖αm ≤
∑

eam≤|k|<ea(m+1)

|f̂k|eαm|k| ≤
∑

eam≤|k|<ea(m+1)

|f |Cr (2π)−r|k|−reαm|k|

≤
∑

eam≤k<ea(m+1)

2|f |Cr (2π)−re−rameb(m+1)

≤ 2|f |Cre−(ar−a−b)m+a.

If |f |Cr is small enough, we can apply Theorem 4.6.1 to f̃0. Indeed, let F̃0(z) =
z+ω+ ξ0 + f̃0(z), then ξ0−‖f̃0‖∞ ≤ τ(F0)−ω ≤ ξ0 + ‖f̃0‖∞, so there exists
|ξ0| ≤ ‖f̃0‖∞ such that τ(F0) = ω. Hence, there exist h̃0 such that, setting
H̃0(z) = z + h̃0(z) and F̃0(z) = z + ξ0 + f̃0(z),

H̃−1
0 ◦ F̃0 ◦ H̃0(z) = z + ω =: Rω(z).

The obvious next step is to compute f1 such that, for each n ∈ N,

H̃−1
0 ◦

(
Rω +

1∑
k=0

f̃k

)
◦ H̃0(z) = z + ω + f1(z).

This is possible if |f |Cr is small enough. We can then try to iterate the above
procedure by applying Theorem 4.6.1 to f1 and so on.

To this end we set up the following iterative scheme: f0 = f̃0, H−1 = id.

For k ∈ N0 let Fk(z) = z + ω + ςk + f̂0 +
∑k
j=0 f̃j(z), τ(Fk) = ω,

∫
S1 fk = 0

Fk(z) = z + ω + ξk + fk(z) ; τ(Fk) = ω (4.6.10)

H−1
k ◦ Fk ◦Hk(z) = z + ω ; Hk(z) = z + hk(z) (4.6.11)

Hk = Hk−1 ◦Hk (4.6.12)

H−1
k ◦ Fk+1 ◦ Hk = Fk+1. (4.6.13)

Note that, for each k ∈ N0,

H−1
k ◦ Fk ◦ Hk(z) = H−1

k ◦ H
−1
k−1 ◦ Fk ◦ Hk−1 ◦Hk(z)

= H−1
k ◦ Fk ◦Hk = Rω.

(4.6.14)

11 This choice (a la Panley Wiener) for the decomposition of f is not optimal, yet it
makes the latter computations simpler.
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The rest of the proof consists in a rather tedious verification that the induction
is well posed and in estimating the norms of the objects involved.

Let us assume by induction that there exists B > 1 such that, for each
k ∈ N and j < k, ‖fj‖αj/2 ≤ B‖f̃j‖αj . In addition, we writeHk(z) = z+hk(z)
and, setting 3δ := a(r − 4)− b, assume that

‖hk−1‖αk−1/4 ≤ 10−3
k−1∑
j=0

e−δjαj =: 10−3Ak−1

‖h′k−1‖αk/8 ≤
1

4
− 1

2k + 1
.

Note that this is obviously true for k = 0. Remark that Theorem 4.6.1 implies
that there exists a solution hk ∈ Bαk/4 to (4.6.11) provided ‖fk‖αk/2 ≤ C?α3

k,
with C? = C010−11. Under the above hypotheses,

‖fk‖αk/2 ≤ B‖f̃k‖αk ≤ 2B|f |Cre−(ar−a−b)k+a

≤ 2B|f |Crb−3(k + 1)−3e−3δk+4aα3
k ≤ C?δ6e−3δkα3

k ≤ C?δ6e−3δkα3
k

provided δ > 0 and |f |Cr ≤ 1
2C?B

−1b3e−4aδ6. Thus, by Theorem 4.6.1,

‖hk‖αk/4 ≤ 3C
− 1

3
0 ‖fk‖

1
3
αk/2 ≤ 3C

− 1
3

0 C
1
3
? δ

2e−δkαk ≤ 10−3δ2e−δkαk.

Moreover (see Problem 4.35)

‖h′k‖αk/8 ≤ 16π‖hk‖αk/4α
−1
k ≤ 4 · 10−2δ2e−δk < 1/4.

By (4.6.12) it follows

hk(z) = hk(z) + hk−1(z + hk(z)),

which is well posed in Bαk/4 provided a ≥ 2, since this implies that αk(1 + 4 ·
10−3δ2e−δk) ≤ αk−1. Moreover ‖hk‖αk/4 ≤ 10−3Ak

‖h′k‖αk/8 ≤
[

1

4
− 1

2k + 1

]
(1 + 4 · 10−2δ2e−δk) + 4 · 10−2δ2e−δk ≤ 1

4
− 1

2k + 2
.

Equation (4.6.13), also recalling (4.6.14), is equivalent to

f̃k+1(z) = fk+1(z) + ξk+1

f̃k+1(z) = ςk+1 − ςk + hk(z + ω)− hk(z + ω + f̃k+1(z))

+ f̃k+1(x+ hk(x)).

(4.6.15)
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Since Hk is invertible this implies that f̃k+1 is well defined on the real line.
This implies that

Fk+1(x) =x+ ω + ςk+1 − ςk + hk(x+ ω)− hk(x+ ω + f̃k+1(x)) + f̃k+1(x+ hk(x))

=:x+ ω + g(x).

By induction it follows that, for all q ∈ N,

Fqk+1(z) = z + nω +

n−1∑
j=0

g(Fjk+1(x)).

As usual remark that Fqk+1(z) − z cannot be an integer since otherwise we
would have a periodic point and we would have τ(Fk+1) = p

q ∈ Q, contrary
to the hypothesis. It follows that for each q ∈ N there exists p ∈ N such that,
for all x ∈ R,

p− 1 ≤ x+ qω +

q−1∑
j=0

g(Fjk+1(x)) ≤ p.

Since, τ(F ) = ω it follows ∣∣∣∣∣∣1q
q−1∑
j=0

g(Fjk+1(x))

∣∣∣∣∣∣ ≤ 1

q

hence, by the arbitrariness of q,

|ςk+1 − ςk| ≤
1

4
‖f̃k+1‖∞ + ‖f̃k+1‖∞

Using the above estimate in equation (4.6.15) yields ‖fk+1‖∞ ≤ 4‖f̃k+1‖∞,
hence

|ςk+1 − ςk| ≤ 2‖f̃k+1‖∞. (4.6.16)

To obtain an estimate of the ‖ · ‖αk+1
norm of f̃k+1 from equation (4.6.15) we

consider the operator K : D → Bαk+1/2, where

D = {ϕ ∈ Bαk+1/2 : ‖ϕ‖αk+1/2 ≤
1

2
B‖f̃k+1‖αk+1

},

defined by

K(ϕ) = ςk+1 − ςk + hk(z + ω)− hk(z + ω + ϕ(z)) + f̃k+1(x+ hk(x)).

The operator is well defined if e−a ≤ 1
4 and |f |Cr ≤ e−2a b

4B . Moreover
K(D) ⊂ D provided B ≥ 8. By the usual contraction theorem it follows
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‖f̃k+1‖αk+1/2 ≤ 1
2B‖f̃k+1‖αk+1

. Thus ‖fk+1‖αk+1/2 ≤ ‖f̃k+1−
∫
S1 f̃k+1‖αk+1/2 ≤

B‖f̃k+1‖αk+1
, whereby concluding the induction.

The last thing we must prove is that the change of coordinate Hn is con-
vergent. Note that

|H′n(x)| ≤
n∏
k=0

‖H̃ ′k‖αk
8
≤

n∏
k=0

e4·10−2δ2e−δk ≤ e4·102δ.

It is then easy to see that the Hn form a Chauchy sequence in C1. The
theorem follows by collecting all the above inequalities and setting B = 8,
a = 2, b = (r−4)/3 and recalling the condition |f |Cr ≤ 1

2C?B
−1b3e−4aδ6. �

Problems

4.27. If M is a Cr manifold, f ∈ Cr(M,M) is a diffeomorphism and τ ∈
Cr(M, (0,∞)), show that the associated suspension flow is defined on a
Cr manifold and is Cr.

4.28. Consider the Dynamical System ([0, 1], T ) where

T (x) =
1

x
−
⌊

1

x

⌋
=

1

x
mod 1

(bac is the integer part of a). This is called the Gauss map. Prove that
for each x ∈ Q ∩ [0, 1] holds limn→∞ Tn(x) = 0.

4.29. Prove that any infinite continuous fraction of the form

a0 +
1

a1 +
1

a2 +
1

a3 + ...

with ai ∈ N defines a real number.

4.30. Prove that, for each a ∈ N,

x =
1

a+
1

a+
1

a+ ...

=
−a+

√
a2 + 4

2
.
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4.31. Prove that, for all s > 2, for Lebesgue almost all numbers x ∈ [0, 1]
there exists C > 0 such that12∣∣∣∣x− p

q

∣∣∣∣ ≥ C

qs

for all p, q ∈ N.

4.32. Let fa(x) = 1
a+x . Given a sequence [a0, a1, . . . , an] show that

fa0 ◦ · · · ◦ fan(x) =
1

a0 +
1

a1 + ... 1

an + x

=
pn + pn−1x

qn + qn−1x
,

where pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1, p−1 = 0,
q−1 = 1, p0 = 1, q0 = a0. In addition, show that, for all n ∈ N,
pnqn−1 − qnpn−1 = (−1)n and decude that pn, qn have no common
divisor different from one. Finally, verify that

fa0 ◦ · · · ◦ fan(x)− fa0 ◦ · · · ◦ fan+1(x) =
(−1)n+1[x2 + an+1x− 1]

(qn + qn−1x)(qn+1 + qnx)
.

4.33. Let ω ∈ [0, 1). Show that there exists infinitely many p, q ∈ N such that∣∣∣∣ω − p

q

∣∣∣∣ ≤ 1

q2
.

4.34. Let ω ∈ [0, 1) have the continuous fraction expansion given by [a0, a1 . . . ].
Suppose that infn an > 0 and supn an <∞.13 Show that there exists a
constant c > 0 such that for all p, q ∈ N∣∣∣∣ω − p

q

∣∣∣∣ ≥ c

q2
.

4.35. For each ϕ ∈ Bα and β < α show that ‖ϕ′‖β ≤ 2π‖ϕ‖α
α−β .

4.36. Let us consider an holomorphic function f : U ⊂ C → C where U is an
open set containing zero. Assume that f(0) = 0, f ′(0) = e2πiω. Prove
that, if ω is Diophantine, then it is possible to find an open set D ⊂ U
on which f is conjugated to the map fω(z) = e2πiωz.

12The composition below is often called iterated function system, it can be naturally
viewed as a time dependent dynamical system.

13Such numbers ω are called of constant type.
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Hints to solving the Problems

4.2 Consider a system ([0, 1], T ) such that T is piecewise linear, it has an
unstable fixed point at x0 and an attracting fixed point at z ∈ (0, x0) so
that the set [z, x0] is forward invariant. Finally arrange so that T (0) =
x0 and T (x) ≤ x0 for x near zero.

4.10 The equation ẋ = ω = (ω1, ω2) on T2 has the solution x(t) = (x1(t), x2(t)) =
x0 + ωt mod 1. If one looks at the flow only at the times τn = nω−1

1 ,
then x(nτ) = x0+(0, αn) mod 1 where α := ω2

ω1
. One can then consider

the circle map f : S1 → S1 defined by f(z) = z + α mod 1. Clearly,
if the orbits of such a map are dense in S1 the original flow will be
dense in T2. The density follows in the case α 6∈ Q. In fact this implies
that f has no periodic orbits. Then {fn(0)} is made of distinct points
and contains a converging subsequence (by compactness) hence for each
ε > 0 exists n̄ ∈ N such that |z − f n̄(z)| ≤ ε, that is f n̄ is a rotation by
less than ε. Hence the orbit {fkn̄(z)} enters in the ε-neighborhood of
each point of S1.

4.13 Suppose that there exists ϕ(r, s), ϕ ∈ C0([0, 1]×T1,R), such that ϕ(1, ·)
is a parametrization of Γ and ϕ(0, s) = y for some fixed y ∈ T2 (i.e. Γ
is homotopic to y).

4.12 First of all notice that if ξ(t) is the derivative with respect to the initial
condition and ξ(0) = λV (x(0)), for some λ, then ξ(t) = λV (x(t)) for
all t. Define then ω(x, y) = x1y2 − x2y1 and verify that x, y 6= 0 and
ω(x, y) = 0 imply that there exists λ ∈ R such that x = λy.14 This
means that ω(ξ(t), V (x(t))) cannot change sign. Hence the result.

4.17 Let lim infn→∞
an
n = a > −∞, then for each ε,m > 0 exists n̄ ∈ N,

n̄ > m, such that |an̄−an̄| ≤ εn̄. Let l ∈ N, l > n̄, and write l = kn̄+r,
r < n̄, then

a− ε ≤ al
l
≤ kan̄ + kL+ ar

l
≤ kn̄(a+ ε) + kL+ ar

l

= a+ ε+
L

m
+
ar
l
.

From which the claim follows.

4.18 Stetting I = [a, b] note that g(x) = f(x)− x has a zero in I.

14By the way, ω is a symplectic form and its existence implies that the manifold is
orientable.
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4.19 This is the same than saying
⋃
k∈N f

−k[x, fn(x)] = S1. Argue by con-

tradiction. Consider f−kn[x, fn(x)], this are contiguous intervals. If
they do not cover all S1, then their length must go to zero and f−knx
must have a limit, call it z. Then

z = lim
k→∞

f−kn(x) = lim
k→∞

f−kn(fn(x)) = fn(z).

Hence f must have a periodic point contradicting τ(f) 6∈ Q.

4.26 For the second inequality use Problem 4.35.

4.28 If x = p0
q0

, p0 ≤ q0, then q0 = k1p0 + p1, with p1 < p0, and T (x) = p1
p0

.

Let q1 = p0 and go on noticing that pi+1 < pi.
15

4.29 Note that if you fix the first n {ai}, this corresponds to specifying
which elements of the partition {[ 1

i+1 ,
1
i ]} are visited by the trajec-

tory of {T ix}, T being the Gauss map. By the expansivity of the map
readily follows that x must belong to an interval of size λ−n for some
λ > 1.

4.30 Note that T (x) = x, where T is the Gauss map. Study periodic contin-
uous fractions of period two.

4.31 To see it consider the sets Ip,q := [pq − Cq
−s, pq − Cq

−s]. If p ≤ q, then

Ip,q ⊂ [0, 1]. Clearly if α 6∈ Ip,p for all q ≥ p ∈ N, then α satisfies
the Diophantine condition. But

∑
q≥p | Ip,q| ≤ C

∑∞
q=1 q

−s+1 which
converges provided s > 2 and can be made arbitrarily small by choosing
C small. Accordingly, almost all numbers are Diophantine for any s > 2.

4.32 By induction.

4.33 The result is trivial for rational numbers. By Problem 4.29, ω =
limn→∞ fa0 ◦ · · · ◦ fan(0). Moreover, fa([0,∞)) ⊂ [0, a−1]. Thus for
each n ∈ N there exists xn ∈ [0, a−1

n+1] such that ω = fa0 ◦ · · · ◦ fan(xn).
Thus, be the monotonicity of the fa it follows that either ω ∈ [fa0 ◦ · · · ◦

15This is nothing else that the Euclidean algorithm to find the greatest common divisor
of two integers [Euc78, Elements, Book VII, Proposition 1 and 2]. The greatest common
divisor is clearly the last non-zero pi. This provides also a remarkable way of writing
rational numbers: continuous fractions

p0

q0
=

1

k1 +
1

k2 + ...
+

1

kn

.
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fan(0), fa0 ◦ · · · ◦ fan+1(0)] or ω ∈ [fa0 ◦ · · · ◦ fan+1(0), fa0 ◦ · · · ◦ fan(0)].
One can then use the equalities of Problem 4.32 to conclude all the
rationals fa0 ◦ · · · ◦ fan(0) satisfy

|ω − fa0 ◦ · · · ◦ fan(0)| ≤ 1

an+1q2
n

.

You did not like this argument? Here is an interesting alternative. Prob-
lem 4.32 implies that

fa0 ◦ · · · ◦ fan(0) =

n∑
k=0

(−1)k

qkqk−1
.

Since the odd and even partial sum of an alternating series form mono-
tone sequences that converge to the limit from opposite sides, it follows
that

|ω − fa0 ◦ · · · ◦ fan(0)| ≤ |fa0 ◦ · · · ◦ fan(0)− fa0 ◦ · · · ◦ fan+1
(0)|

≤ 1

an+1q2
n

.

4.34 As we have argued at the end of the hint of Problem 4.34, ω ∈ [fa0 ◦
· · · ◦ fan(0), fa0 ◦ · · · ◦ fan+1

(0)] =: In. Note that if q < qn then∣∣∣∣pq − pn
qn

∣∣∣∣ ≥ 1

qnq
;

∣∣∣∣pq − pn
qn

∣∣∣∣ ≥ 1

qn+1q
.

But |In| = 1
qnqn+1

so it cannot contain any rational number with de-

nominator strictly less than qn. Accordingly, pq 6∈ In and thus |ω− p
q | ≥

1
qn+1q

> 1
qn+1qn

. In other words the fraction determined by [a0, . . . , an]

are the best approximation of ω among all the numbers with denomi-
nator smaller than qn. Since,

|ω − fa0 ◦ · · · ◦ fan(0)| ≥ |fa0 ◦ · · · ◦ fan(0)− fa0 ◦ · · · ◦ fan+2(0)|

≥ 1

(an+1 + 2)q2
n

.

the result follows by simple computations.

4.35 Since ϕ is holomorphic by Rienmann formula we have

ϕ′(z) =
1

2πi

∫
γ

ϕ(ζ)

(z − ζ)2
dζ
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where γ is a simple closed curve in Dα surrounding z ∈ Dβ . For γ we

chose the curve {z + α−β
2π eiθ}θ∈[0,2π]. Hence

‖ϕ′‖β ≤
1

2π

∫ 2π

0

2π|ϕ|α
α− β

dθ =
2π|ϕ|α
α− β

.

4.36 Mimic Theorem 4.6.1.

Notes

Lemma 4.3.2 is due to Siegel [Sie45], see [NZ99] for a detailed treatment
of flows on surfaces. A detailed treatment of circle rotations can be found in
[Her83, Her86]. A general treatment of KAM theory for Hamiltonian Systems,
with an emphasis on concrete applications, can be found in [CC95].


