
Chapter 1

The origins: Differential equations

As this book is about Dynamical Systems, let’s start by defining the
object of study. The concept of Dynamical System is a very general one
and it appears in many branches of mathematics from discrete mathematics,
number theory, probability, geometry and analysis and has wide applications
in physics, chemistry, biology, economy and social sciences.

Probably the most general formulation of such a concept is the action of a
monoid over an algebra. Given a monoid G and an algebra A the (left)-action
of G on A is simply a map f : G×A → A such that

1. f(gh, a) = f(g, f(h, a)) for each g, h ∈ G and a ∈ A;

2. f(e, a) = a for every a ∈ A, where e is the identity element of G;

3. f(g, a+ b) = f(g, a) + f(g, b) for each g ∈ G and a, b ∈ A;

4. f(g, ab) = f(g, a)f(g, b) for each g ∈ G and a, b ∈ A;

In our discussion we will be mainly motivated by physics. In fact, we will
consider only the cases in which G ∈ {N,Z,R+,R}1 is interpreted as time
and A is given by an algebra of functions over some set X, interpreted as the
observables of the system.2 In addition, we will restrict ourselves to situations
where the action over the algebra is induced by an action over the set X (this
is a map f : G×X → X that satisfies condition 1, 2 above).3 Indeed, given

1Although even in physics other possibilities are very relevant, e.g. in the case of Statis-
tical Mechanics it is natural to consider the action of the space translations, i.e. the groups
{Zd,Rd} for some d ∈ N, d > 1.

2Again other possibilities are relevant, e.g. the case of Quantum Mechanics (in the so
called Heisenberg picture) where the algebra of the observable is non commutative and
consists of the bounded operators over some Hilbert space.

3Again relevant cases are not included, for example all Markov Process where the evo-
lution is given by the action of some semigroup.
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an action f of G on X and an algebra A of functions on X such that, for
all a ∈ A and g ∈ G, b(·) := a(f(g, ·)) ∈ A. It is then natural to define
f̃(g, a)(x) := a(f(g, x)) for all g ∈ G, a ∈ A and x ∈ X. It is then easy to
verify that f̃ satisfies conditions 1-4 above.

We will call discrete time Dynamical System the ones in which G ∈ {N,Z}
and continuous time Dynamical Systems the ones in which G ∈ {R+,R}.
Note that, in the first case, f(n, x) = f(n−1+1, x) = f(1, f(n−1, x)), hence
defining T : X → X as T (x) = f(1, x), holds f(n, x) = Tn(x).4 Thus in such a
case we can (and will) specify the Dynamical System by writing only (X,T ).
In the case of continuos Dynamical Systems we will write φt(x) := f(t, x)
and call φt a flow (if the group is R) or a semi-flow (if the group is R+)
and will specify the Dynamical System by writing (X,φt). In fact, in this
notes we will be interested only in Dynamical Systems with more structure
i.e. topological, measurable or smooth Dynamical Systems. By topological
Dynamical Systems we mean a triplet (X, T , T ), where T is a topology and T
is continuos (if B ∈ T , then T−1B ∈ T ). By smooth we consider the case in
which X has a differentiable structure and T is r-times differentiable for some
r ∈ N. Finally, a measurable Dynamical Systems is a quadruple (X,Σ, T, µ)
where Σ is a σ-algebra, T is measurable (if B ∈ Σ, then T−1B ∈ Σ) and µ is
an invariant measure (for all B ∈ Σ, µ(T−1B) = µ(B)).5

So far for general definitions that, to be honest, are not so inspiring. In-
deed, what characterizes the modern Dynamical Systems is not so much the
setting but rather the type of questions that are asked, first and foremost:

• Which behaviors are visible in nature? (stability and bifurcation
theory).

• What happens for very long times? (statistics and asymptotic
theory)

The rest of this book will deal in various ways with such questions.

The original motivation for the above setting and for these questions comes
from the study of the motion which, after Newton, typically appears as so-
lution of an ordinary differential equation (ODE). It is then natural to start
with a brief reminder of basic ODE theory.6

In section 1.1 I will recall the theorem of existence and uniqueness of the
solutions of an ODE. In addition, I will state the Gronwall inequality, a very
useful inequality for estimating the growth rate of the solution of an ODE.

4Obviously T 2(x) = T ◦T (x) = T (T (x)), T 3(x) = T ◦T ◦T (x) = T (T (T (x))) and so on.
5The definitions for continuos Dynamical Systems are the same with {φt} taking the

place of T .
6In fact, also the solutions of a partial differential equation (PDE) may give rise to a

Dynamical System, yet the corresponding theory is typically harder to investigate.
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Finally, a theorem yielding the smooth dependence of the solutions of an ODE
from an external parameter or from the initial conditions is provided.

In section 1.2 is given a very brief account of linear equations with constant
coefficients (by discussing the exponential of a matrix) and of Floquet theory.
That is the study of the solutions of a linear equation with coefficients varying
periodically in time. The basic result being that the asymptotic properties
of the solutions can be understood just by looking at the solutions after one
period.

Finally, section 1.3 discusses the possibility of qualitative understanding
the behavior of the solutions of ODE that cannot be solved explicitly (essen-
tially all the ODEs). The arguments are very naive and are intended only to
convince the reader that a) something can be done; b) a more sophisticated
theory needs to be developed in order to have a satisfactory picture.

1.1 Few basic facts about ODE: a reminder

Our starting point is the initial Cauchy problem for ODE. That is, given a
separable Banach space B,7 V ∈ C0

loc(B × R,B),8 and x0 ∈ B, find an open
interval 0 3 I ⊂ R and x ∈ C1(I,B) such that

ẋ(t) = V (x(t), t)

x(0) = x0.
(1.1.1)

In the next chapters I will be mainly interested in the case B = Rd, for
some d ∈ N. Thus, the reader uncomfortable with Banach spaces can safely
substitute Rd to B in all the subsequent arguments. Yet, it is interesting
that the theory can be developed for general Banach spaces at no extra cost.
For simplicity, in the following we will always assume that all the Banach
spaces are separable even if not explicitly mentioned. In essence, this is just
a fancy way of saying that much of the following depends only on the Banach

7A Banach spaces is a complete normed vector spaces. This means that a Banach space
is a vector space V , over R or C, equipped with a norm ‖·‖ such that every Cauchy sequence
in V has a limit in V . By separable we mean that there exists a countable dense set. Check
[RS80, Kat66] for more details or [DS88] for a lot more details.

8Given two Banach spaces B1,B2, an open set U ⊂ B1, and q ∈ N by Cq(U,B2) we mean
the continuous functions from U to B2 that are q time (Fréchet) differentiable and the q-th
differentials are continuous (see Problem 1.18 for a very quick discussion of differentiation
in Banach spaces). Such a vector space can be equipped with the norm ‖ · ‖Cq given by
the sup of all its derivatives till the order q included. If we then consider the subset for
which such a norm is finte, then we have again a vector space which is, in fact, a Banach
space. We will call such a Banach space Cq(U,B2, ‖ · ‖Cq ), yet, when no confusion can
arise, we will abuse of notation and call it simply Cq(U,B2). By Cqloc(U,B2) we mean the
vector space of the functions f : U → B2 such that, for each u ∈ U and R > 0 such that
B(u,R) = {v ∈ B1 : ‖v− u‖ ≤ R} ⊂ U , f ∈ Cq(B(u,R),B2, ‖ · ‖Cq ). Note that, Cqloc is not
a Banach space (in fact, it is a Fréchet space).



6 CHAPTER 1. THE ORIGINS: DIFFERENTIAL EQUATIONS

structure of Rd, that is on the fact that Rd is a complete vector space with
a norm (e.g. the euclidean norm) and, for example, nowhere is used the fact
that Rd has a finite basis.

On the contrary, in the following chapters I will consider ODE on (finite
dimensional) manifolds. Yet, not much extra theory is needed in order to do
this, since ODE on manifolds can always be reduced to the case Rd case. I
will briefly comment on this issue in section 1.1.5.

The first problem that comes to mind is

Question 1 Does the Chauchy problem (1.1.1) always admit a solution? If
there exists a solution is it unique?

To address such an issue it is convenient to consider the equation9

x(t) = x0 +

∫ t

0

V (x(s), s)ds (1.1.2)

Problem 1.1 Show that for each finite open interval 0 ∈ I ⊂ R, if x ∈
C1(I,B) is a solution of (1.1.1), then it is a solution of (1.1.2). Show that
if x ∈ C0(I,B) is a solution of (1.1.2) then x ∈ C1(I,B) and is a solution of
(1.1.1).

1.1.1 Existence and uniqueness

The issue of existence and uniqueness of the solutions of (1.1.1) can be solved
by applying the clasical Banach fixed point Theorem (see A.1.1), provided we
make a stronger assumption on V .

Theorem 1.1.1 (Existence and Uniqueness theorem for ODE) For each
V ∈ C1

loc(B × R,B) and x0 ∈ B there exists δ ∈ R+ such that there exists a
unique solution of (1.1.1) in C1((−δ, δ),B).10

Proof. Let δ ∈ (0, 1). The reader can verify that the vector space
C0([−δ, δ],B), equipped with the norm ‖u‖∞ := supt∈[−δ,δ] ‖u(t)‖B is a Ba-

nach space.11 For eachR ≥ 0 let us define the domainDR = {y ∈ C0([−δ, δ],B) :
‖y − x0‖∞ ≤ R} and the operator K : DR → C0([−δ, δ],B) by12

K(u)(t) := x0 +

∫ t

0

V (u(s), s)ds.

9The most convenient meaning of the integral of a function with values in a Banach space
is the Bochner sense, which reduces to the usual Lebesgue integral in the case B = Rd, see
[Yos95] for definition and properties. Yet, for our purposes the equivalent of the Riemannian
integral suffices and it is defined in the obvious manner. See Problem 1.20 for details.

10 We equip B×R with the norm ‖(x, t)‖ ≤ sup{‖x‖B, |t|}, where ‖ · ‖B is the norm of B.
11It suffices to remember that the uniform limit of continuous functions is a continuos

function.
12 The meaning of C0(K,B2) where K is a closed set of B1 is the usual one.
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Let Mδ = sup|t|≤δ supu∈DR
{‖V (u, t)‖ + ‖∂uV (u, t)‖}, note that Mδ is a de-

creasing function of δ.13 Then, for each u ∈ DR and |t| ≤ δ, (recall Problem
1.22)

‖K(u(t))− x0‖ ≤ δMδ ≤ R

provided we chose δMδ ≤ R. Thus K maps DR into DR. In addition, for
each u, v ∈ DR,

‖K(u)−K(v)‖∞ ≤ δMδ‖u− v‖∞ ≤
1

2
‖u− v‖∞,

provided we chose 2δMδ ≤ 1. We can then apply Theorem A.1.1 and obtain
a unique solution of the equation Ku = u in BR. This shows the existence
and uniqueness of the solution of (1.1.2). The Theorem follows then by re-
membering Problem 1.1. �

Remark 1.1.2 Note that in the proof of Theorem A.1.1 one can chose the
same δ for an open set of initial condition.

Remark 1.1.3 The hypotheses of the above Theorem can be easily weakened
to the case of V locally Lipschitz in x and continuous in t, yet only continuity
does not suffice for uniqueness as shown by the example

ẋ =
√
x

x(0) = 0.

which has the infinitely many solutions xa(t) = 0 for t ≤ a and xa(t) =
1
4 (t− a)2 for t ≥ a, a ∈ R.14

Remark 1.1.4 The restriction to an interval of size δ in Theorem A.1.1
cannot be avoided as shown by the example

ẋ = x2

x(0) = 1.

Its solution x(t) = (1− t)−1 is not continuous, nor bounded, for t = 1.

We have seen a mechanism whereby the solution cannot be defined for all
times, the next Lemma shows that, for C1 vector fields, the above is the only
mechanism.15

13 The finiteness of Mδ follows form the definition of C1loc in footnote 8.
14If B is finite dimensional, then V ∈ C0 suffices for the existence of a solution. This

follows by a direct application of Schauder fixed point Theorem to (1.1.2). For informations
on such a fixed point theorem and fixed point theorems in general see [Zei86].

15I state the result for positive times, for negative times is the same.
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Lemma 1.1.5 In the hypotheses of Theorem 1.1.1, if x ∈ C1
loc((−δ, δ),B) is

a solution of (1.1.1) for some δ, δ > 0, and if there exists M > 0 such that
supt∈[0,δ) ‖x(t)‖ ≤ M , then there exists δ̄ > δ and x̄ ∈ C1((−δ, δ̄),B) that
solves (1.1.1) (i.e. the solution can be extended for longer times).

Proof. Let {tn} be any sequence that converges to δ, then

‖x(tn)− x(tm)‖ ≤
∫ tm

tn

‖V (x(s), s)‖ds ≤ |tn − tm| sup
‖z‖≤M

sup
s∈[0,δ)

‖V (z, s)‖.

Thus {x(tn)} is a Cauchy sequence and admits a limit x∗ ∈ B such that

x∗ = lim
n→∞

x(tn) = lim
t→δ

x(t) = x0 +

∫ δ

0

V (x(s), s)ds.

We can then consider the equation

y(t) = x∗ +

∫ t

0

V (y(s), s+ δ)ds.

By Theorem 1.1.1 there exists δ1 and y ∈ C1((−δ1, δ1),B) which satisfy the
above equation. Let then δ̄ = δ + δ1 and define

x̄(t) :=

{
x(t) fot all t ∈ (−δ, δ)
y(t− δ) fot all t ∈ [δ, δ̄).

Clearly x̄ ∈ C0((−δ, δ̄),B) and, for t ∈ [δ, δ̄) holds true

x̄(t) = x∗ +

∫ t

δ

V (x̄(s), s)ds = x0 +

∫ δ

0

V (x̄(s), s)ds+

∫ t

δ

V (x̄(s), s)ds

= x0 +

∫ t

0

V (x̄(s), s)ds.

Thus, again remembering Problem 1.1, the Lemma follows. �

Remark 1.1.6 Applying repeatedly Lemma 1.1.5 it follows that there exists
a maximal open interval J ⊂ R such that the Cauchy problem (1.1.1) has a
unique solution belonging to C1

loc(J,B).

1.1.2 Growald inequality

We have seen that the escape (growth) to infinity is the only obstruction to
enlarging the domain of the solution.16 The question remains: how large the
maximal interval J in Remark 1.1.6 can be?

16Of course, this is the case only for regular vector fields. For other possibilities think of
the case of collisions among planets.
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To understand better how the solution of an ODE can grow we need a
technical but extremely useful Lemma.

Lemma 1.1.7 (Integral Gronwald inequality) Let L, T ∈ R+ and ξ, f ∈
C0([0, T ],R). If, for all t ∈ [0, T ],

ξ(t) ≤ L
∫ t

0

ξ(s) ds+ f(t),

then

ξ(t) ≤ f(t) + L

∫ t

0

eL(t−s)f(s) ds.

Proof. Let us first consider the case in which f ≡ 0. In this case the
Lemma asserts ξ(t) ≤ 0. Indeed, since ξ is a continuos function there exists
t∗ ∈ [0, (2L)−1] ∩ [0, T ] =: I1 such that ξ(t∗) = supt∈I1 ξ(t). But then,

ξ(t∗) ≤ L
∫ t∗

0

ξ(s) ds ≤ ξ(t∗)Lt∗ ≤
1

2
ξ(t∗)

which implies ξ(t∗) ≤ 0 and hence ξ(t) ≤ 0 for each t ∈ I1. If I1 = [0, T ], then
we are done, otherwise letting t1 := (2L)−1 we have

ξ(t) ≤ L
∫ t

t1

ξ(s) ds

and we can make the same argument as before in the interval [t1, 2t1]. Iter-
ating we have ξ(t) ≤ 0 for all t ∈ [0, T ].

To treat the general case we reduce it to the previous one. Let

ζ(t) := ξ(t)− f(t)− L
∫ t

0

eL(t−s)f(s) ds.

Then

ζ(t) ≤ L
∫ t

0

ξ(s) ds−
∫ t

0

LeL(t−s)f(s) ds

= L

∫ t

0

ζ(s) ds+ L

∫ t

0

{
f(s)ds+ L

∫ s

0

eL(s−τ)f(τ)dτ

}
−
∫ t

0

LeL(t−s)f(s) ds.

Next, notice that∫ t

0

dsL

∫ s

0

eL(s−τ)f(τ) dτ = L

∫ t

0

dτf(τ)

∫ t

τ

dseL(s−τ)

=

∫ t

0

f(s){eL(t−s) − 1}ds.
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Thus,

ζ(t) ≤ L
∫ t

0

ζ(s) ds.

We have then reduced the problem to the previous case which implies that it
must be ζ(t) ≤ 0 from which the Lemma follows. �

Let us see the usefulness of the above Lemma in a concrete example. Let
L(B,B) be the Banach space of the linear bounded operators from B to B.17

Lemma 1.1.8 For each A ∈ C1
loc(R, L(B,B)), consider the Cauchy problem

ẋ(t) = A(t)x(t)

x(0) = x0.

If ‖A(t)‖ ≤ L for all 0 ≤ t ≤ T ∈ R, then ‖x(t)‖ ≤ eLt‖x0‖ for all 0 ≤ t ≤ T .
In particular, the solution is defined on all R.

Proof. If we write the equation in the equivalent integral form we have

‖x(t)‖ ≤ ‖x0‖+

∫ t

0

‖A(s)x(s)‖ ds ≤ ‖x0‖+ L

∫ t

0

‖x(s)‖ ds.

Setting ξ(t) := ‖x(t)‖ and applying Lemma 1.1.7 the Lemma follows.
Since, for all T ∈ R+, supt≤T ‖A(t)‖ <∞, the the Lemma follows. �

Problem 1.2 Explain why Lemma 1.1.8 does not apply to the following set-
ting: B = C1(Rn,R) and

ẋ(t, z) = α(z, t)∂zx(t, z),

for some α ∈ C1(Rn,R), α(z, T + t) = α(z, t), T > 0. Compare with Problem
1.24.

1.1.3 Flows

In this section we analyze the case in which the vector field is time independent
and grows at most linearly.

Lemma 1.1.9 Given V ∈ C1
loc(B,B), if there exists L,M ≥ 0 such that

‖V (x)‖ ≤ L‖x‖ + M , then the solution of (1.1.1) exists for all times and
for all initial conditions.

17The norm of L ∈ L(B,B) is given by ‖L‖ := sup v∈B
‖v‖=1

‖Lv‖. If B = Rd, then L(B,B)

is just the vector space of the d× d matrices.
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Proof. We argue by contradiction. Choose any initial condition x0 ∈ B
and let I(x0) = (−δ−(x0), δ+(x0)) be the maximal interval on which the
solution is defined. If δ+(x0) <∞, then for each t ≤ δ+(x0)

‖x(t)‖ ≤ ‖x0‖+ L

∫ t

0

‖x(s)‖ds+Mt.

Thus Gronwald inequality implies

‖x(t)‖ ≤ eLt
{
‖x0‖+ML−1

}
for t ∈ [0, δ+(x0)). Then, by Lemma 1.1.5, the solution can be extended,
contrary to the assumption that (−δ−(x0), δ+(x0)) was the maximal interval.
A similar argument holds for negative t. �

For each x0 ∈ B and t ∈ R let x(t, x0) be the solution of (1.1.1) at time t.

Lemma 1.1.10 For each V as in Lemma 1.1.9, setting φt(x0) := x(t, x0),
φ−t = φ−1

t for t ≥ 0, we have that (B, φt), t ∈ R, is a Dynamical System.

Proof. All we need to prove is that φt is an action of R on B. First
of all note that φt is indeed invertible. If not then there would be x, x′ ∈ B
such that φt(x) = φt(x

′). But then the uniqueness of the solutions of the
ODE implies x = x′. Moreover it is easy to check that φ−t(x0) = x(−t, x0).
Finally, φt(φs(x)) = φt+s(x). �

Remark 1.1.11 We have thus proved that a large class of vector fields gives
rise to flows.

1.1.4 Dependence on a parameter

Having established the existence and uniqueness of the solution, the next
natural questions present itself.

Question 2 How do the solutions depend on the initial condition? How do
the solutions depend on a change of the vector field?

To discuss such issues it is convenient to analyze first the second question.
More precisely, given V ∈ C2

loc(B×R×Rd,B) we consider the Chauchy problem

ẋ(t) = V (x(t), t, λ)

x(0) = x0.
(1.1.3)

Clearly the solution will depend on the parameter λ. The question is then:
calling x(t, λ) the solution of (1.1.3), for a given t ∈ R what can we say about
the function x(t, ·)?

For simplicity let us consider the case V ∈ C2(B ×R×Rd,B), the general
case is similar and is left to the reader.
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Theorem 1.1.12 (Smooth dependence on a parameter) Given two Ba-
nach spaces B,B1, let V ∈ C2(B × R × B1,B). Let X(t, x0, λ) be the unique
solution of (1.1.3), then X(t, x0, ·) ∈ C1

loc(B1,B).

Proof. For each x0 ∈ B consider the ODE for ξ ∈ C1
loc(R×B1, L(B1,B))

ξ̇(t, λ) = ∂xV (X(t, x0, λ), t, λ) · ξ(t, λ) + ∂λV (X(t, x0, λ), t, λ)

ξ(0, λ) = 0.
(1.1.4)

We claim that ξ(t) = ∂λX(t, x0, λ).18 To verify the claim it suffices to prove
that there exists C > 0 such that, for h ∈ B1 small enough, if ζ(t, h, λ) :=
X(t, x0, λ+h)−X(t, x0, λ)−ξ(t)h, then ‖ζ(t, h)‖ ≤ C‖h‖2. By Taylor formula
we have19

ζ̇(t, h) = V (X(t, x0, λ+ h), t, λ+ h)− V (X(t, x0, λ), t, λ)

− ∂xV (X(t, x0, λ), t) · ξ(t)h− ∂λV (X(t, x0, λ), t, λ)h

= ∂xV (X(t, x0, λ), t) · ζ(t, h) +R(t)

(1.1.5)

where, in the last line, we have used

V (X(t, x0, λ+ h), t, λ)− V (X(t, x0, λ), t, λ)

= ∂xV (X(t, x0, λ), t, λ) · (X(t, x0, λ+ h), t, λ)−X(t, x0, λ))

+O(‖X(t, x0, λ+ h), t, λ)−X(t, x0, λ)‖2),

and

‖R(t)‖ ≤ C
(
‖X(t, x0, λ+ h)−X(t, x0, λ)‖2 + ‖h‖2

)
≤ 2C(‖ζ(t, h)‖2 + (1 + ‖ξ(t)‖2)‖h‖2).

with C = ‖V ‖C2 . Note that ζ(0) = 0. We can then conclude by using Lemma
1.1.7. Indeed such a Lemma applied to (1.1.4) implies ‖ξ(t)‖ ≤ eC1t, for some
C1 > 0. Next, let T > 0 be the maximal time such that ‖ζ(t, h)‖ ≤ 1/2 and
e2C1T ≤ 2. Then, for t ≤ T , (1.1.5) yields

‖ζ(t, h)‖ ≤
∫ t

0

2C‖ζ(s)‖ds+ 3‖h‖2

and Lemma 1.1.7, again, implies the announced estimate. �

Problem 1.3 Prove the analogous of Theorem 1.1.12 when V ∈ C1
loc.

18 If B = Rd e B1 = Rm then ξ is just a d×m matrix.
19 Note that we cannot Taylor expand X(t, x0, λ+ h) with respect to h, since we do not

know yet that X is differentiable with respect to λ.
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Corollary 1.1.13 (Smooth dependence on initial conditions) Let V ∈
C2(B × R,B). For each x0 ∈ B let X(t, x0) be the unique solution of (1.1.1).
Then, for each t ∈ R, X(t, ·) ∈ C1

loc(B,B) and ξ = ∂x0
X is a solution of

ξ̇(t) = ∂xV (X(t, x0), t) · ξ(t)
ξ(0) = 1.

(1.1.6)

Proof. Set z = x− x0 and consider the resulting equation

ż = V (z + x0, t) =: V̄ (z, t, x0)

z(0) = 0.

One can then consider x0 as an external parameter, applying Theorem 1.1.12
yields the result. �

1.1.5 ODE on Manifolds–few words

Let us remind that a topological manifold is a second countable Hausdorff
space which is locally homeomorphic to Euclidean space. A chart over a
topological manifold M is a pair (U, φ) such that U ⊂ M is an open set and
φ : U → Rn, for some n ∈ N, is an homeomorphism between U and the
open set Φ(U). An atlas on a topological manifold is a countable collection
of charts {(Uα, φα)}. We say that an atlas is Ck if φα ◦ φ−1

β is Ck when is

defined. We say that two Ck atlas are equivalent if their union is a Ck atlas.
A Ck manifold is a topological manifold equipped with an equivalence class
of Ck atlas (often called a differentiable structure).

Although most often we will be concerned with manifolds embedded in
some Rd, also other possibilities will be relevant. Let us consider two exam-
ples.

Problem 1.4 Show that Rd is a C∞ manifold.20

Problem 1.5 Let f ∈ Ck(Rd,R), and consider M = {(x, y) ∈ Rd × R : y =
f(x)}. Consider the atlas consisting of the chart (M,φ) where φ(x, y) = x.
This is a C∞ manifold.

Problem 1.6 Check that Td = Rd/Zd is a C∞ manifold.

Given two differentiable manifolds (Ck manifolds with k ≥ 1) M1,M2 and
a map f : M1 → M2 we say that f ∈ Cr(M1,M2), r ≤ k, if for each atlas

20 Note that, contrary to Ck, C∞ is not a Banach space (there is no good norm). It is
possible to give to it the structure of a Fréchet space [RS80], but we will refrain from such
subtleties. We just consider C∞ = ∩n∈NCn as a vector space.
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{(Uα, φα)} of M1 and atlas {(Vβ , ψβ)} of M2, holds true ψβ ◦ f ◦ φ−1
α ∈ Cr on

their domains of definition.
Given a differentiable manifold M and x ∈ M , we say that two curves

γ1, γ2 ∈ C1((−1, 1),M), such that γ1(0) = γ1(0) = x, are equivalent at x if
for each chart (U, φ) such that x ∈ U holds true (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0). A
tangent vector at x is an equivalence class of curves.

Problem 1.7 Show that if M is localy homeorphic to Rd, then the set of
tangent vectors at any x ∈M form canonically a d dimensional vector space.21

We will use TxM to designate the tangent space at x, that is the set of the
tangent vectors at x. The tangent bundle is the disjoint union of the tangent
spaces, i.e. TM = ∪x∈M{x} × TxM . Finally, a vector field is a section of the
tangent bundle, i.e. Ṽ : M → TM such that Ṽ (x) = (x, V (x)), V (x) ∈ TxM .
Form now on, with a slight abuse of notation, we will identify Ṽ with V . Also,
given f ∈ C1(M1,M2), since the image of a C1 curve is a C1 curve, ve have
naturally defined a map f∗ : TM1 → TM2.

Problem 1.8 If f ∈ C1(Rd,Rn) discuss the relation between f∗ and the
derivative Df .

We have finally the language to define O.D.E. on manifolds, in fact the Cauchy
problem is exactly given again by (1.1.1), only now V is a, possibly time
dependent, C1 vector field.

Problem 1.9 Suppose that x0 belongs to some chart (U, φ), show that the
solution of

ẋ = V (x, t)

x(0) = x0

for a sufficiently small time can be obtained by the solution of an appropriate
O.D.E. in φ(U).

Problem 1.10 Given a finite atlas {(Uα, φα)}, show that there exists a smooth
partition of unity subordinated to the atlas, that is a collections {ϕα} ∈
C∞(M,R) such that

∑
α ϕα = 1 and suppϕα ⊂ Uα.

Problem 1.11 Given a smooth vector field V consider

ẋ = V (x)

x(0) = x0

(1.1.7)

21If (U, φ) is a chart containing x, and γ1, γ2 two curves, think of the curves γλ(t) = γ1(λt)
and φ−1(φ(γ1(t)) + φ(γ2(t))− φ(x)).
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with x0 ∈ Uα for some element of an atlas {(Uαφα)}. Let zα(t) be the solution
of

żα = (φα)∗V (zα)

zα(0) = φα(x0)

and suppose that φ−1
α (z(1)) ∈ Uβ. Consider then the solution of

żβ = (φβ)∗V (zβ)

zβ(1) = φβ(φ−1
α (zα(1))).

Show that there exists t1 > 1 such that

x(t) = φ−1
α (zα(t)) for t ∈ [0, 1]

x(t) = φ−1
β (zβ(t)) for t ∈ (1, t1)

is a solution of (1.1.7) in the time interval [0, t1).

Remark 1.1.14 We have seen that the theory of ODE on manifolds can be
reduced locally to the case of Rd. Yet, the reader should be aware that the
global properties of the solutions can be very different. We will comment at
length on this issue later on.

1.2 Linear ODE and Floquet theory

Let us briefly discuss the simplest possible differential equation: the affine
ones. We restrict ourselves to the case B = Rd for some d ∈ N since we will
use some spectral theory which is substantially more complex in the general
case.

1.2.1 Linear equations

Consider

ẋ = Ax

x(0) = x0.
(1.2.8)

Problem 1.12 Show, by induction, that for each n ∈ N the solution of
(1.2.8) satisfies

x(t) =

n∑
k=0

1

k!
Aktkx0 +

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnA
n+1x(tn).
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Taking the limit for n → ∞ in the above expression one readily obtains
x(t) =

∑∞
n=0

1
n!A

ntnx0. That this is a solution can be verified directly insert-
ing this formula in (1.2.8) (and noticing that the series and the series obtained
by deviating term by term are uniformly convergent). By the standard ana-
lytic functional calculus for matrices (and operators, see Appendix C) we can
thus write x(t) = eAtx0. The above discussion provides a general solution for
all equations of the type (1.2.8).

In reality life it is not that simple: if one has a concrete matrix A and
wants to compute eAt, this may be quite unpleasant. A general strategy,
although not necessarily the simplest one, is to perform a linear change of
variables x = Uz. Then ż = U−1AUz, and U is chosen so that Λ = U−1AU
is in Jordan normal form. Then

x(t) = Uz(t) = UeΛtz0 = UeΛtU−1x0.

It suffices then to know how to take exponentials of Jordan blocks, and this
can be computed by using the defining series.

Problem 1.13 Compute eΛt for

Λ =

(
a 0
0 a

)
; Λ =

(
a 1
0 a

)
; Λ =

a 1 0
0 a 1
0 0 a

 .

Another, equivalent, point of view is to look for solutions of the type
x(t) = eatv, substituting in the first of (1.2.8) one obtains av = Av. Thus, as
we know already, each eigenvalue of A provides a solution of (1.2.8) (ignoring
the initial condition). If there exists real eigenvectors {vi}di=1 which span all
Rd then one can write the general solution, depending on d parameters αi, as
x(t) =

∑d
i=1 αivie

ait, where ai is he eigenvalue associated to the eigenvector

vi. One can then satisfy the initial condition by solving x0 =
∑d
i=1 αivi.

The same can be done is the eigenvectors are complex, by working in Cd
instead then Rd. If Jordan blocks are present one can look for solutions of
the form x(t) =

∑p
k=0

1
(p−k)! t

keatvk, compare this formula with your solution

of Problem 1.13.

Remark 1.2.1 Note that if the matrix A does not have eigenvalues with zero
real part, then (by spectral decomposition) one can write Rd = V−⊕V+, where
AV± = V± and A restricted to V− has eigenvalues with negative real part
while on V+ has eigenvalues with positive real part. Hence if x0 ∈ V− it
will hold limn→∞ x(t) = 0, and if x0 ∈ V+ it will hold limn→∞ ‖x(t)‖ = ∞.
Accordingly if x0 6∈ V− we can write it as x0 = x− + x+, where x± ∈ V±.
Hence limn→∞ ‖x(t)‖ = ∞ and the trajectory will escape to infinity while
getting exponentially close to the subspace V+. This is our first long time
result.
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A slightly more complex situation is given by

ẋ = Ax+ b(t)

x(0) = x0,
(1.2.9)

where b ∈ C0(R,Rd). The solution of (1.2.9) is given by22

x(t) = eAtx0 +

∫ t

0

eA(t−s)b(s)ds. (1.2.10)

1.2.2 Floquet theory

Let us consider the simplest case of a linear time dependent equation: there
exists a continuous function A ∈ C0

loc(R, L(B,B)) and T ∈ R+ such that, for
all t ∈ R, A(t + T ) = A(t). More precisely, let Φ(x0, s, t) be the solution of
the Cauchy problem23

ẋ(t) = A(t)x(t)

x(s) = x0.
(1.2.11)

Problem 1.14 Verify the following facts for each x0, y0 ∈ B and for each
a, b, t, s, τ ∈ R

• Φ(ax0 + by0, s, t) = aΦ(x0, s, t) + bΦ(y0, s, t),

• Φ(x0, s, t) = Φ(Φ(x0, s, τ), τ, t),

• Φ(x0, s+ T, t+ T ) = Φ(x0, s, t).

By the first property of Problem 1.14 there exists K ∈ C1
loc(R2, L(B,B)) such

that Φ(x0, s, t) = K(s, t)x0, the second property implies that K(τ, t)K(s, τ) =
K(s, t), the third that K(s + T, t + T ) = K(s, t). The next step is the first
occurrence in this book of a very simply but very powerful idea to analyze
dynamical systems: a Poincaré section. Essentially the idea consist in look-
ing at the system only at specially selected moments in time. In this case
it is convenient to look at t ∈ {nT}n∈Z. That is, we want to investigate
Φ(x0, 0, nT ) =: F (x0, n).

Lemma 1.2.2 The couple (Rd, F ) is a discrete Dynamical System.

22To obtain it just look for a solution of the form x(t) = eAtz(t) and deduce the differential
equation for z.

23The solution is well defined for all times by Lemma 1.1.9.
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Proof. We have to show that F is an action of Z on Rd. Let f(x0) :=
F (x0, 1).

F (x0, n) = Φ(x0, 0, nT ) = Φ(Φ(x0, 0, (n− 1)T ), (n− 1)T, nT ))

= Φ(Φ(x0, 0, (n− 1)T ), 0, T )) = f(Φ(x0, 0, (n− 1)T )) = fn(x0).

In addition, note that the uniqueness of the solutions of the ODE implies that
if f(x0) = 0, then x0 = 0. Now, by construction, f(x0) = K(0, T )x0, thus
K(0, T ) is an invertible matrix. Hence F (x0,−n) = f−n(x0) for all n ∈ N. �

By using the functional calculus (see Problem C.19) one can define B :=
T−1 lnK(0, T ), so eBT = K(0, T ). Let us now consider P (t) := K(0, t)e−Bt.

P (t+ T ) = K(0, t+ T )e−B(t+T ) = K(T, t+ T )K(0, T )K(0, T )−1e−Bt

= K(0, t)e−Bt = P (t).

We have just proven the following result.

Theorem 1.2.3 (Floquet theorem) The solutions of the equation (1.2.11)
can be written as x(t) = P (t)eBtK(s, 0)x0 where P (t+ T ) = P (t) is periodic.

Note that the matrix B can be complex valued. This can be avoided at a
little extra cost.

Problem 1.15 Prove that the solutions of the equation (1.2.11) can be writ-
ten as x(t) = P (t)eBtx0 where B is real and P (t+ 2T ) = P (t) is periodic of
period 2T .

Note that Theorem 1.2.3 implies that the long time behavior is completely
contained in the eigenvalues of the matrix B often called floquet exponents.

Problem 1.16 Find the solutions of

ẋ = a(t)Ax

where a ∈ C0(R,R) is periodic of period T and A is a fixed matrix.

Problem 1.17 Given a fixed matrix A and a function at matrix values B(t)
of period T , consider the equation ẋ = (A + εB(t))x, ε ∈ R. Show that, for
ε small enough, calling νi the Floquet exponents and setting λi = eνi (often
called Floquet multiplier), the λi are ε-close to the eigenvalues of A.
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1.3 Qualitative study of ODE

The previous discussion has shed some light on the behavior of linear ODE,
unfortunately the interesting ODE are typically non linear. Although some
nonlinear ODE can be solved explicitly (see any ODE book for examples)
typically this is not possible, hence the need of a qualitative theory. As
for the qualitative study of functions this can be done quite naively in one
dimension, while higher dimensions requires some non trivial theory. Let us
see such a naive qualitative theory for ODE via few examples.

1.3.1 The one dimensional case

This situation is very similar to the study of the graph of a function of one
variable. Indeed to draw the graph one studies the first derivative and here
the first derivative is specified by the equation. Let us consider a couple of
simple examples. Consider

ẋ = e−x
2

+ x− 2 = V (x)

x0 = 0.

One cannot integrate the function V (x)−1 (which would yield an explicit
solution of the ODE), yet from the equation follows that there exists a close
to 2 such that ẋ is negative if x ≤ a and positive otherwise. This implies that
the solution starts to be decreasing and keeps decreasing forever.

Next, consider

ẋ = 1− 2tx

x0 = a.

Such an equation cannot be solved by separation of variables, yet the above
arguments still apply. In particular, for t ≥ 0, we have ẋ(t) < 0 iff x(t) > 1

2t .
On the other hand if x(t) > 1

2t it will be so forever. In fact, consider g(t) =
x(t) − 1

2t , then g′(t) = ẋ(t) + 1
2t2 . So if g(t∗) = 0, then g′(t∗) > 0 hence for

t < t∗ one has g(t) < 0. Thus the solution will increase until it will intersect
the curve 1

2t and then it will start decreasing but always staying above such

a curve. Accordingly, for t ≥ t∗ we can write x(t) = 1+α(t)
2t with α ≥ 0. Then

ẋ(t) = −α(t), that is

1

2t
≤ x(t) =

1

2t∗
−
∫ t

t∗

α(s)ds (1.3.12)

moreover − 1+α(t)
2t2 + α̇(t)

2t = −α(t)

α̇(t) = −(2t− 1

t
)α(t) +

1

t
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which means that either α(t) ≤ 1
2t2−1 or it is decreasing. But if it is de-

creasing it must decrease to zero otherwise (1.3.12) would be falso for large t.
Accordingly it must be limt→∞ α(t) = 0.

1.3.2 Autonomous equations in two dimensions

In this case the basic idea is to consider one component as a function of the
other and in this way reduce to the previous case. Let us see some examples.

Van Der Pol equation

Consider the equation

ẋ = y

ẏ = (1− 3x2)y − x.
(1.3.13)

Clearly (0, 0) is the unique zero of the vector field. If we linearise (1.3.13)
around zero we have

d

dt
(x, y) =

(
0 1
−1 1

)(
x
y

)
.

The matrix has eigenvalues λ± = 1±
√

3i
2 hence the fixed point is repelling and

the solutions spiral away from it.
The next question is if a similar motion takes place also far away from the

origin. To this end we want to forget the time dependence and concentrate
only on the shape of the trajectories. Thus we can represent trajectories on
the xy plane. Indeed, apart from the point (0, 0), either ẋ or ẏ are different
from zero. In the first case one can locally invert x(t) and write y(x) = y(t(x)).
When this is possible one obtains

dy

dx
= 1− 3x2 − x

y
,

which can be studied as in the previous examples. With a bit of work one can
see that the trajectory spirals around zero, but exactly how?

To better understand the behaviour of the solution we introduce a “Lya-
punov” like function.

L(x, y) = 2(x− x3 − y)2 + (x− y)2 + 3x2.

If (x(t), y(t))is a solution of (1.3.13), then a direct computation yields

d

dt
L(x(t), y(t)) = x2

[
6− x2 − 3(x− y)2 − 3y2

]
.
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Hence L is decreasing outside an ellipse. Since 2ab ≤ a2 + b2,24

L(x, y) = 3(x− y)2 − 4(x− y)x3 + 2x6 + 3x2 ≥ (x− y)2 + 3x2

= 4x2 − 2xy + y2 ≥ 2x2 +
1

2
y2.

Hence the level sets Kα = {(x, y) ∈ R2 : L(x, y) ≤ α} are contained in the
ellipses {(x, y) ∈ R2 : 2x2 + 1

2y
2 ≤ α} and hence are compact.

Hence far away from the origin the trajectory spirals inwardly. It follows
then, by the continuity with respect to the initial data, that there exists an
a∗ ≥ 0 such that the corresponding solution is a periodic orbit.

Lotka-Volterra equation

ẋ = ax−Ax2 − λxy
ẏ = −dy + λxy.

This equation is meant to describe the evolution of two populations one feed-
ing on the other (predator-prey). It also has periodic solutions, try to prove
it using qualitative methods.

Second order in one dimension

Consider the equation

ẍ = −γẋ+
x2

1 + x4

x(0) = 0; ẋ(0) = v.

Setting (z, w) = (x, ẋ), we can write it as

ż = w

ẇ = −γw +
z2

1 + z4

which is the type discussed above.

Clearly if we consider still higher dimensional cases the above naive ap-
proach cannot help us very much, hence the need of a more sophisticated
theory.

24 It follows from (a− b)2 ≥ 0.



22 CHAPTER 1. THE ORIGINS: DIFFERENTIAL EQUATIONS

Problems

1.18. Given two Banach spaces B1,B2 and a functionf : B1 → B2 we can
define the partial derivative at x ∈ B1 in the direction v ∈ B1 (Gâteaux
derivative) by

∂vf(x) = lim
h→0

h−1 [f(x+ hv)− f(x)] ,

if the limit exists. On the other hand we say that f is Fréchet differ-
entiable at x if there exists A ∈ L(B1,B2) (the space of the continous
linear operators from B1 to B2) such that

lim
h→0

‖f(x+ h)− f(x)−Ah‖
‖h‖

= 0,

and A is called the Fréchet differential at of f at x (often written Df(x)).
Show that if f is Fréchet differentiable at zero, then it is continuous and
Gâteaux differentiable.

1.19. Let f ∈ C0(B0,B1) and g ∈ C0(B1,B2) such that f is Fréchet dif-
ferentiable at x ∈ B0 and g is Fréchet differentaible at f(x) ∈ B1.
Show that g ◦ f ∈ C0(B0,B2) is Fréchet differentaible at x and that
D(g ◦ f)(x) = Dg(f(x)) ·Df(x) ∈ L(B0,B2). Of course, this is nothing
else than a glorified version of the chain rule.

1.20. Given a compact interval I ⊂ R, a Banach space B, and a continuous
function f ∈ C0(I,B), shows that one can define the equivalent of the
Riemannian integral.

1.21. Prove the fundamental theorem of calculus in this setting. That is,
for f ∈ C1(B1,B2) let Df(x) ∈ L(B1,B2) be the Fréchet differential at
x ∈ B1, then for each x, y ∈ B1

f(y) = f(x) +

∫ 1

0

Df(x+ t(y − x)) · (x− y)dt.

1.22. Show that, for all f ∈ C0([a, b],B),∥∥∥∥∥
∫ b

a

f(t)dt

∥∥∥∥∥ ≤
∫ b

a

‖f(t)‖dt.

1.23. Study the solutions of the following equations for all possible initial
conditions and p ∈ N

ẋ = |x|p

ẋ = x(ln |x|)p
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1.24. Let K ∈ C1(R× [0, 1]). Show that the equation

∂tu(t, s) =

∫ 1

0

K(t+ s, τ)u(t, τ)2dτ

u(0, s) = s2.

has a unique continuos solution for t small enough.

1.25. Under the same hypotheses of Problem 1.17 show that if
∫ T

0
B(s)ds = 0

and the eigenvalues of A have all multiplicity one, then the Floquet
multiplier differ from the eigenvalues of eAT only of order ε2.

1.26. Study the equation

(1 + x)yẏ + (x+ y2) = 0.

1.27. Study the equation (Bernoulli)

ẏ + p(x)y = q(x)yn.

1.28. Study the equation
ẍ = −γẋ− x3.

Hints to solving the Problems

In this section, and in the parallel sections in later chapters, I give hints for
the solution of some of the Problems.

It is a very good idea to try very hard to solve the problems before looking
at the hints: it is impossible to appreciate the solution if one has no feeling
for the difficulties in the problem. The only way I know to get such a feeling
is to seriously try to solve it.

Also, keep in mind that I suggest one way to proceed, often other ways
are possible and maybe better.

1.1 The proof is the same as the standard proof for the case B = Rd. How-
ever to see this you have to do Problems 1.18 and 1.20 to understand
exactly what the derivate and integral mean in this more general case.

1.12 For n = 0 it is just (1.1.2). To verify it for any n it suffices to show that∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn1 =
tn

(n+ 1)!
.

This follows since the domain of integration is D = {x ∈ [0, t]n+1 :
tn+1 ≤ tn ≤ · · · ≤ t}. On the other hand, for each permutation σ of the
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set {1, . . . , n+ 1} the sets Dσ = {x ∈ [0, t]n+1 : tσn+1 ≤ tσn ≤ · · · ≤ t}
have the same measure, all the Dσ are disjoint and the union of all of
them gives [0, t]n+1.

1.15 First notice that if a matrix has no eigenvalues on the negative axis
then the contour γ in C.3.2 can be taken symmetric around the real
axis and, by using C.3.2 with the standard definition of ln with a cut
on the negative real axis, this defines lnK(0, T ) with real entries (since
the formula for his complex conjugate is the same). In general use the
spectral decomposition to write K(0, T ) = C +D where σ(C)∩R− = ∅
and σ(D) ⊂ R−. Then σ(D2) ⊂ R+, hence B = 1

T lnC + 1
2T lnD2 is

real and e2BT = C2 + D2 = K(0, T )2. The rest of the argument is as
before.

1.17 Show that the solution satisfies

x(t) = eAtx0 + ε

∫ t

0

eA(t−s)B(s)x(s)ds.

and apply the perturbation theory in Appendix C.

1.20 Let I = [a, b]. Since the function is continuos, it is uniformly con-
tinuous, hence for ε > 0 there exists δ > 0 such that, for each par-
tition ξ = {[x0, x1], . . . , [xn−1, xn]}, x0 = a, xn = b, xn+1 − xn ≤ δ,
holds supz,y∈[xn+1,xn] ‖f(z)− f(y)‖ ≤ ε. Accordingly, for each choice of
zn, yn ∈ [xn+1, xn] we have∥∥∥∥∥

n−1∑
k=0

f(zk)(xk+1 − xk)−
n−1∑
k=0

f(yk)(xk+1 − xk)

∥∥∥∥∥ ≤ ε.
By similar arguments one can compare the sum defined on one partition
with the sum defined on a finer partition. Finally sum on different
partitions can be compared with the sum on the coarser partition finer
of both. This shows that all sufficiently fine partitions yield the same
approximate value, hence one can consider the partitions ξn = {[a +
i b−an , a+ (i+ 1) b−an ]}n−1

i=0 and define

∫
I

f(t)dt := lim
n→∞

n−1∑
i=0

f(a+ i
b− a
n

)
b− a
n

.

By the above discussion this is equivalent to the same limit taken along
any other partition the diameter of which elements tend uniformly to
zero.
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1.24 Consider the Banach space B = C0([0, 1],R). Then u(t, ·) ∈ B and one
can apply Theorem 1.1.1.

1.25 By Problem 1.17 we know that the solution at time T is given by the

matrix D(ε) := eAT
[
1 + ε

∫ T
0
e−AsB(s)eAsds

]
. By the results in Ap-

pendix C it follows that, for ε small enough, the eigenvalues of D(ε) are
still simple and analytic on ε. Thus, let λ(ε) one of such eigenvalues
and Π(ε) the associated eigenprojector. We have D(ε)Π(ε) = λ(ε)Π(ε).
Differentiating yields Ḋ(ε)Π(ε)+D(ε)Π̇(ε) = λ̇(ε)Π(ε)+λ(ε)Π̇(ε). Mul-
tiplying on the right by Π(ε), since Π(ε)D(ε) = D(ε)Π(ε), we have

Π(ε)Ḋ(ε)Π(ε) = λ̇(ε)Π(ε).

Since Π(ε)v = 〈a(ε), v〉b(ε) for some vectors a, b analytic in ε, λ̇(ε) =
〈a(ε), Ḋ(ε)b(ε)〉. We can now apply such a general formula to our spe-
cific case:

〈a(0), Ḋ(0)b(0)〉 = 〈a(0), eAT
∫ T

0

e−AsB(s)eAsb(0)ds〉

= 〈a(0), eAT
∫ T

0

e−AsB(s)eAsb(0)ds〉

= λ(0)

∫ T

0

〈a(0), B(s)b(0)〉ds = 0.

Notes

This chapter is super condensed and has no pretension to exhaust the theory of
ODE. If one wants to have a better understanding of the field and some ideas of
how an ODE can be solved in special cases better consult [HS74, Arn92, CL55].


