
Appendix C

Perturbation Theory
(a super-fast introduction)

The following is really super condensate (although self-consistent). If you
want more details see [RS80, Kat66] in which you probably can find more
than you are looking for.

C.1 Bounded operators

In the following we will consider only separable Banach spaces, i.e. Banach
spaces that have a countable dense set.1

Given a Banch space B we can consider the set L(B,B) of the linear
bounded operators from B to itself. We can then introduce the norm ‖B‖ =
sup‖v‖≤1 ‖Bv‖.

Problem C.1 Show that (L(B,B), ‖ · ‖) is a Banach space. That is that ‖ · ‖
is really a norm and that the space is complete with respect to such a norm.

Problem C.2 Show that the n× n matrices form a Banach Algebra.2

Problem C.3 Show that L(B,B) form a Banach algebra.3

To each A ∈ L(B,B) are associated two important subspaces: the range
R(A) = {v ∈ B : ∃ w ∈ B such that v = Aw} and the kernel N(A) = {v ∈
B : Av = 0}.

1Recall that a Banach space is a complete normed vector space (in the following we will
consider vector spaces on the field of complex numbers), that is a normed vector space in
which all the Cauchy sequences have a limit in the space. Again, if you are uncomfortable
with Banach spaces, in the following read Rd instead of B and matrices instead of operators,
but be aware that we have to develop the theory without the use of the determinant that,
in general, is not defined for operators on Banach spaces.

2A Banach Algebra A is a Banach space where it is defined the multiplications between
element with the usual properties of an algebra and, in addition, for each a, b ∈ A holds
‖ab‖ ≤ ‖a‖ · ‖b‖.

3The multiplication is given by the composition.
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Problem C.4 Prove, for each A ∈ L(B,B), that N(A) is a closed linear
subspaces of B. Show that this is not necessarily the case for R(A) if B is not
finite dimensional.

An very special, but very important, class of operators are the projectors.

Definition C.1.1 An operator Π ∈ L(B,B) is called a projector iff Π2 = Π.

Note that if Π is a projector, so is 1 − Π. We have the following interesting
fact.

Lemma C.1.2 If Π ∈ L(B,B) is a projector, then N(Π)⊕R(Π) = B.

Proof. If v ∈ B, then v = Πv+ (1−Π)v. Notice that R(1−Π) = N(Π)
and R(Π) = N(1 − Π). Finally, if v ∈ N(Π) ∩ R(Π), then v = 0, which
concludes the proof. �

Another, more general, very important class of operators are the compact
ones.

Definition C.1.3 An operator K ∈ L(B,B) is called compact iff for any
bounded set B the closure of K(B) is compact.

Remark C.1.4 Note that not all the linear operator on a Banach space are
bounded. For example consider the derivative acting on C1((0, 1),R).

C.2 Functional calculus

First of all recall that all the Riemannian theory of integration works verbatim
for function f ∈ C0(R,B), where B is a Banach space. We can thus talk of

integrals of the type
∫ b
a
f(t)dt.4 Next, we can talk of analytic functions for

functions in C0(C,B): a function is analytic in an open region U ⊂ C iff at
each point z0 ∈ U there exists a neighborhood B 3 z0 and elements {an} ⊂ B
such that

f(z) =

∞∑
n=0

an(z − z0)n ∀z ∈ B. (C.2.1)

Problem C.5 Show that if f ∈ C0(C,B) is analytic in U ⊂ C, then given
any smooth closed curve γ, contained in a sufficiently small disk in U , holds5∫

γ

f(z)dz = 0 (C.2.2)

4This is special case of the so called Bochner integral [Yos95].
5Of course, by

∫
γ f(z)dz we mean that we have to consider any smooth parametrization

g : [a, b] → C of γ, g(a) = g(b), and then
∫
γ f(z)dz :=

∫ b
a f ◦ g(t)g

′(t)dt. Show that the

definition does not depend on the parametrization and that one can use piecewise smooth
parametrizations as well.
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Then show that the same hold for any piecewise smooth closed curve with
interior contained in U , provided U is simply connected.

Problem C.6 Show that if f ∈ C0(C,B) is analytic in a simply connected
U ⊂ C, then given any smooth closed curve γ, with interior contained con-
tained in U and having in its interior a point z, hods the formula

f(z) =
1

2πi

∫
γ

(ξ − z)−1f(ξ)dξ. (C.2.3)

Problem C.7 Show that if f ∈ C0(C,B) satisfies (C.2.3) for each smooth
closed curve in a simply connected open set U , then f is analytic in U .

C.3 Spectrum and resolvent

Given A ∈ L(B,B) we define the resolvent, called ρ(A), as the set of the
z ∈ C such that (z1−A) is invertible and the inverse belongs to L(B,B). The
spectrum of A, called σ(A) is the complement of ρ(A) in C.

Problem C.8 Prove that, for each Banach space B and operator A ∈ L(B,B),
if z ∈ ρ(A), then there exists a neighborhood U of z such that (z1 − A)−1 is
analytic in U .

From the above exercise follows that ρ(A) is open, hence σ(A) is closed.

Problem C.9 Show that, for each A ∈ L(B,B), σ(A) 6= ∅.

Problem C.10 Show that if Π ∈ L(B,B) is a projector, then σ(Π) = {0, 1}.

Up to now the theory for operators seems very similar to the one for
matrices. Yet, the spectrum for matrices is always given by a finite number
of points while the situation for operators can be very dfferenct.

Problem C.11 Consider the operator L : C0([0, 1],C)→ C0([0, 1],C) defined
by

(Lf)(x) =
1

2
f(x/2) +

1

2
f(x/2 + 1/2).

Show that σ(L) = {z ∈ C : |z| ≤ 1}.

Problem C.12 Show that, if A ∈ L(B,B) and p is any polynomial, then for
each n ∈ N and smooth curve γ ⊂ C, with σ(A) in its interior,

p(A) =
1

2πi

∫
γ

p(z)(z1−A)−1dz.



C.3. SPECTRUM AND RESOLVENT 237

Problem C.13 Show that, for each A ∈ L(B,B) the limit

r(A) = lim
n→∞

‖An‖ 1
n

exists.

The above limit is called the spectral radius of A.

Lemma C.3.1 For each A ∈ L(B,B) holds true supz∈σ(A) |z| = r(A).

Proof. Since we can write

(z1−A)−1 = z−1(1− z−1A)−1 = z−1
∞∑
n=0

z−nAn,

and since the series converges if it converges in norm, from the usual criteria
for the convergence of a series follows supz∈σ(A) |z| ≤ r(A). Suppose now
that the inequality is strict, then there exists 0 < η < r(A) and a curve
γ ⊂ {z ∈ C : |z| ≤ η} which contains σ(A) in its interior. Then applying
Problem C.12 yields ‖An‖ ≤ Cηn, which contradicts η < r(A). �

Note that if f(z) =
∑∞
n=0 fnz

n is an analytic function in all C (entire), then
we can define

f(A) =

∞∑
n=0

fnA
n.

Problem C.14 Show that, if A ∈ L(B,B) and f is an entire function, then
for each smooth curve γ ⊂ C, with σ(A) in its interior,

f(A) =
1

2πi

∫
γ

f(z)(z1−A)−1dz.

In view of the above fact, the following definition is natural:

Definition C.3.2 For each A ∈ L(B,B), f analytic in a region U containing
σ(A), then for each smooth curve γ ⊂ U , with σ(A) in its interior, define

f(A) =
1

2πi

∫
γ

f(z)(z1−A)−1dz. (C.3.4)

Problem C.15 Show that the above definition does not depend on the curve
γ.

Problem C.16 For each A ∈ L(B,B) and functions f, g analytic on a do-
main D ⊃ σ(A), show that f(A) + g(A) = (f + g)(A) and f(A)g(A) =
(f · g)(A).
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Problem C.17 In the hypotheses of the Definition C.3.2 show that f(σ(A)) =
σ(f(A)) and [f(A), A] = 0.

Problem C.18 Consider f : C → C entire and A ∈ L(B,B). Suppose that
{z ∈ C : f(z) = 0} ∩ σ(A) = ∅. Show that f(A) is invertible and f(A)−1 =
f−1(A).

Problem C.19 Let A ∈ L(B,B). Suppose there exists a semi-line `, starting
from the origin, such that ` ∩ σ(A) = ∅. Prove that it is possible to define an
operator lnA such that elnA = A.

Remark C.3.3 Note that not all the interesting functions can be constructed

in such a way. In fact, A =

(
0 1
−1 0

)
is such that A2 = −1, thus it can

be interpreted as a square rooth of −1 but it cannot be obtained directly by a
formula of the type (C.3.4).

Problem C.20 Suppose that A ∈ L(B,B) and σ(A) = B ∪ C, B ∩ C = ∅,
suppose that the smooth closed curve γ ⊂ ρ(A) contains B, but not C, in its
interior, prove that

PB :=
1

2πi

∫
γ

(z1−A)−1dz

is a projector that does not depend on γ.

Note that by Problem C.17 easily follows that PBA = APB . Hence,
AR(PB) ⊂ R(PB) and AN(PB) ⊂ N(PB). Thus B = R(PB) ⊕ N(PB) pro-
vides an invariant decomposition for A.

Problem C.21 In the hypotheses of Problem C.20, prove that A = PBAPB+
(1− PB)A(1− PB).

Problem C.22 In the hypotheses of Problem C.20, prove that σ(PBAPB) =
B ∪ {0}. Moreover, if dim(R(PB)) = D < ∞, then the cardinality of B is
≤ D.

C.4 Perturbations

Let us consider A,B ∈ L(B,B) and the family of operators Aν := A+ νB.

Lemma C.4.1 For each δ > 0 there exists νδ ∈ R such that, for all |ν| ≤ νδ,
ρ(Aν) ⊃ {z ∈ C : d(z, σ(A)) > δ}.
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Proof. Let d(z, σ(A)) > δ, then

(z1−Aν) = (z1−A)
[
1− ν(z1−A)−1B

]
(C.4.5)

Now ‖(z1 − A)−1B‖ is a continuous function in z outside σ(A), moreover it
is bounded outside a ball of large enough radius, hence there exists Mδ > 0
such that

∑
d(z,σ(A))>δ ‖(z1−A)−1B‖ ≤Mδ. Choosing νδ = (2Mδ)

−1 yields
the result. �

Suppose that z̄ ∈ C is an isolated point of σ(A), that is there exists δ > 0 such
that {z ∈ C : |z − z̄| ≤ δ} ∩ (σ(A) \ {z̄}) = ∅, then the above Lemma shows
that, for ν small enough, {z ∈ C : |z − z̄| ≤ δ} still contains an isolated part
of the spectrum of σ(Aν), let us call it Bν , clearly B0 = {z̄}.

Problem C.23 Let PBν be defined as in Problem C.20. Prove that, for ν
small enough, it is an analytic function of ν.

Problem C.24 If P,Q are two projectors and ‖P−Q‖ < 1, then dim(R(P )) =
dim(R(Q)).

The above two exercises imply that the dimension of the eigenspace R(PBν )
is constant.

Next, we consider the case in whichB0 consist of one point and dim(R(PB0
)) =

1, it follows that also Bν must consist of only one point, let us set Pν := PBν .

Lemma C.4.2 If dim(R(P0)) = 1, then Aν has a unique eigenvalue zν in a
neighborhood of z̄, z0 = z̄. In addition zν is an analytic function of ν.

Proof. From the previous exercises it follows that Pν is a rank one
operator which depend analytically on ν. In addition, since Pν is a rank
one projector it must have the form Pνw = vν`ν(w), where `ν ∈ B′.6 Then
zνPν = PνAνPν . Next, setting a(ν) := `0(Pνv0) = `ν(v0)`0(vν), we have
that a is analytic and a(0) = 1. Thus a 6= 0 in a neighborhood of zero and
zν = a(ν)−1`0(PνAνPνv0) is analytic in such a neighborhood. �

Problem C.25 If dim(R(P0)) = 1, then there exists hν ∈ B and `ν ∈ B′
such that Pνf = hν`ν(f) for each f ∈ B. Prove that hν , `ν can be chosen to
be analytic functions of ν.

Hence in the case of A ∈ L(B,B) with an isolated simple7 eigenvalue z̄
we have that the corresponding eigenvalue zν of Aν = A+ νB, B ∈ L(B,B),
for ν small enough, depend smoothly from ν. In addition, using the notation

6By B′, the dual space, we mean the set of bounded linear functionals on B. Verify that

is a Banach space with the norm ‖`‖ =
∑
w∈B

|`(w)|
‖w‖ .

7That is with the associated eigenprojector of rank one.
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of the previous Lemma, we can easily compute the derivative: differentiating
Aνvν = zνvν with respect to ν and then setting ν = 0, yields

Bv +Av′0 = z′0v + z̄v′0.

But, for all w ∈ B, Pw = v`(w), with `(Aw) = z̄`(w) and `(v) = 1, thus
applying ` to both sides of the above equation yields

z′0 = `(Bv).

Problem C.26 Compute v′0.

Problem C.27 What does it happen if the eigenspace associated to z̄ is finite
dimensional, but with dimension strictly larger than one?

Hints to solving the Problems

C.1. The triangle inequality follows trivially from the triangle inequality of
the norm of B. To verify the completeness suppose that {Bn} is a
Cauchy sequence in L(B,B). Then, for each v ∈ B, {Bnv} is a Cauchy
sequence in B, hence it has a limit, call it B(v). We have so defined
a function from B to teself. Show that such a function is linear and
bounded, hence it defines an element of L(B,B), which can easily be
verified to be the limit of {Bn}.

C.2. Use the norm ‖A‖ = supv∈Rn
‖Av‖
‖v‖ .

C.3. Use the same norm as in Problem C.2.

C.4. The first part is trivial. For the second one can consider the vector
space `2 = {x ∈ RN :

∑∞
i=0 x

2
i < ∞}. Equipped with the norm

‖x‖ =
√∑∞

i=0 x
2
i it is a Banach (actually Hilbert) space. Consider now

the vectors ei ∈ `2 defined by (ei) = δik and the operator (Ax)k = 1
kxk.

Then R(A) = {x ∈ `2 :
∑∞
k=0 k

2x2k < ∞}, which is dense in `2 but
strictly smaller.

C.5. Check that the same argument used in the well known case B = C works
also here.

C.6. Check that the same argument used in the well known case B = C works
also here.

C.7. Check that the same argument used in the well known case B = C works
also here.
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C.8. Note that

(ζ1−A) = (z1−A− (z − ζ)1) = (z1−A)
[
1− (z − ζ)(z1−A)−1

]
and that if ‖(z− ζ)(z1−A)−1‖ < 1 then the inverse of 1− (z− ζ)(z1−
A)−1 is given by

∑∞
n=0(z− ζ)n[(z1−A)−1]n (the Von Neumann series–

which really is just the geometric series).

C.9. If σ(A) = ∅, then (z1 − A)−1 is an entire function, then the Von Neu-
mann series shows that (z1−A)−1 = z−1(1− z−1A)−1 goes to zero for
large z, and then (C.2.3) shows that (z1−A)−1 = 0 which is impossible.

C.10. Verify that (z1−Π)−1 = z−1
[
1− (z − 1)−1Π

]
.

C.11. The idea is to look for eigenvalues by using Fourier series. Let f =∑
k∈Z fke

2πikx and consider the equation Lf = zf ,∑
k∈Z

fk
1

2

{
eπikx + eπikx+πik

}
= z

∑
k∈Z

fke
2πikx.

Let us then restrict to the case in which f2k+1 = 0, then∑
k∈Z

f2ke
2πikx = z

∑
k∈Z

fke
2πikx.

Thus we have a solution provided f2k = zfk, such conditions are satisfied
by any sequence of the type

fk =

{
zj if k = 2jm, j ∈ N
0 otherwise

for m ∈ N. It remains to verify that
∑∞
j=0 z

je2πi2
jx belong to C0. This is

the case if the series is uniformly convergent, which happens for |z| < 1.
Thus all the points in {z ∈ C : |z| < 1} are point spectrum of infinite
multiplicity. Since the spectrum is closed the statement of the Problem
follows.

C.12. Let p(z) = zn, then

1

2πi

∫
γ

zn(z1−A)−1dz = An +
1

2πi

∫
γ

(zn −An)(z1−A)−1dz

= An +

n−1∑
k=0

1

2πi

∫
γ

zkAn−kdz = An.

The statement for general polynomial follows trivially.
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C.14. Approximate by polynomials.

C.17. For z 6∈ f(σ(A)) it is well defined

K(z) :=
1

2πi

∫
γ

(z − f(ζ))−1(ζ1−A)−1 dζ,

with γ containing σ(A) in its interior. By direct computation, using def-
inition C.3.2, one can verify that (z1− f(A))K(z) = 1, thus σ(f(A)) ⊂
f(σ(A)). On the other hand if, if f is not constant, then for each z ∈ C
f(z)−f(ξ) = (z−ξ)g(ξ). Hence, applying Definition C.3.2 and Problem
C.16 it follows f(z)1−f(A) = (z−A)g(A) which shows that if z ∈ σ(A),
then f(z) ∈ σ(A) (otherwise (z −A)

[
g(A)(f(z)1− f(A))−1

]
= 1).

C.19. Since one can define the logarithm on C\`, one can use Definition C.3.2
to define lnA. It suffices to prove that if f : U → C and g : V → C, with
σ(A) ⊂ U , f(U) ⊂ V , then g(f(A)) = g ◦ f(A). Whereby showing that
the definition C.3.2 is a reasonable one. Indeed, rememebring Problems
C.17, C.18,

g(f(A)) =
1

2πi

∫
γ

g(z)(z1− f(A))−1dz

=
1

(2πi)2

∫
γ1

∫
γ

g(z)

z − f(ξ)
(ξ1−A)−1dzdξ

=
1

2πi

∫
γ1

g(f(ξ))(ξ1−A)−1dξ = f ◦ g(A).

From this imediately follows elnA = A.

C.20. The non dependence on γ is obvious. A projector is characterized by
the property P 2 = P . Thus

P 2
B :=

1

(2πi)2

∫
γ1

∫
γ2

(z1−A)−1(ζ1−A)−1dzdζ

=
1

(2πi)2

∫
γ1

dz

∫
γ2

dζ(z − ζ)−1
[
(z1−A)−1 − (ζ1−A)−1

]
.

If we have chosen γ1 in the interior of γ2, then (z − ζ)−1(ζ1 − A)−1

is analytic in the interior of γ1, hence the corresponding integral gives
zero. The other integral gives PB , as announced.

C.21. Use the above decomposition and the fact that (1− PB) is a projector.
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C.22. The first part follows from the previous decomposition. Indeed, for z
large (by Neumann series)

(z1−A)−1 = (z1− PBAPB)−1 + (z1− (1− PB)A(1− PB))−1.

Since the above functions are analytic in the respective resolvent sets
it follows that σ(A) ⊂ σ(PBAPB) ∪ σ((1 − PB)A(1 − PB)). Next, for
z 6∈ B, define the operator

K(z) :=
1

2πi

∫
γ

(z − ξ)−1(ξ1−A)−1 dξ,

where γ contains B, but no other part of the spectrum, in its interior. By
direct computation (using Fubini and the standard facts about residues
and integration of analytic functions) verify that

(z1− PBAPB)K(z) = PB .

This implies that, for z 6= 0, (z1− PBAPB)(K(z) + z−1(1− PB)) = 1,
that is (z1 − PBAPB)−1 = K(z) + z−1(1 − PB). Hence σ(PBAPB) ⊂
B ∪ {0}. Since PB has a kernel, zero must be in the spectrum. On the
other hand the same argument applied to 1−PB yields σ((1−PB)A)1−
PB)) ⊂ C ∪ {0}, hence σ(PBAPB) = B ∪ {0}.
The second property follows from the fact that PBAPB , when restricted
to the space R(PB) is described by a D×D matrix AB and the equation
det(z1−AB) = 0 is a polynomial of degree D in z and hence has exactly
D solutions (counted with multiplicity).8

C.23. Use the representation in Problem C.20 and formula (C.4.5).

C.24. Note that Q(1 + P − Q) = QP , then Q = (1 − (Q − P ))−1QP , hence
dim(R(P )) ≥ dim(R(Q)), exchanging the role of P and Q the result
follows.

C.25. Note that `ν(hν) = 1 since Pν is a projector, hence they are unique
apart from a noralization factor. Then we can chose the normalization

8This is the real reason why spectral theory is done over the complex rather than the
real. You should be well aquatinted with the fact that a polynomial p of degree D has
D root over C but, in case you have forgotten, consider the following: first a polynomial
of degree larger than zero must have at least a root, otherwise 1

p(z)
would be an entire

function and hence
1

p(z)
= lim
r→∞

1

2π

∫ 2π

0
dθ

1

p(z + reiθ)
= 0.

Let z1 be a root. By the Taylor expansion in z1 follows the decomposition p(z) = (z −
z1)p1(z) where p1 has degree D − 1. The result follows by induction.
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`ν(h0) = 1 for all ν small enough. Thus Pνf = hν , that is hν is analytic.
Hence, for each g ∈ B and ν small, `ν(g)`0(hν) = `0(Pνg), which implies
`ν analytic for ν small.

C.27. Think hard.9

9 A good idea is to start by considering concrete examples, for instance(
1 0
0 1

)
+ µ

(
0 1
1 0

)
;

(
1 1
0 1

)
+ µ

(
0 1
1 0

)
.


