
Appendix B

Implicit function theorem
(a quantitative version)

In this appendix we recall the implicit function Theorem. We provide an
explicit proof because we use in the text a quantitative version of the theorem
so it is important to keep track of the various constants.

B.1 The theorem

Let n,m ∈ N and F ∈ C1(Rm+n,Rm) and let (x0, λ0) ∈ Rn × Rm such that
F (x0, λ0) = 0. For each δ > 0 let Vδ = {(x, λ) ∈ Rn+m : ‖x − x0‖ ≤
δ, ‖λ− λ0‖ ≤ δ}.

Theorem B.1.1 Assume that ∂xF (x0, λ0) is invertible and choose δ > 0 such
that sup(x,λ)∈Vδ

‖1−[∂xF (x0, λ0)]−1∂xF (x, λ)‖ ≤ 1
2}. Let Bδ = sup(x,λ)∈Vδ

‖∂λF (x, λ)‖
and M = ‖∂xF (x0, λ0)−1‖. Set δ1 = (2MBδ)

−1δ and Λδ1 := {λ ∈ Rm : ‖λ−
λ‖ < δ1}. Then there exists g ∈ C1(Λδ1 ,Rm) such that all the solutions of the
equation F (x, λ) = 0 in the set {(x, λ) ∈ B1×B2 : ‖λ−λ0‖ < δ1, ‖x−x0‖ < δ}
are given by (g(λ), λ). In addition,

∂λg(λ) = −(∂xF (g(λ), λ))−1∂λF (g(λ), λ).

We will do the proof in several steps.

B.1.1 Existence of the solution

Let A(x, λ) = ∂xF (x, λ), M = ‖A(x0, λ0)−1‖.
We want to solve the equation F (x, λ) = 0, various approaches are possi-

ble. Here we will use a simplification of Newton method, made possible by the
fact that we already know a good approximation of the zero we are looking for.
Let λ be such that ‖λ−λ0‖ < δ1 ≤ δ. Consider Uδ = {x ∈ Rn : ‖x−x0‖ ≤ δ}
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and the function Θλ : Uδ → Rn defined by1

Θλ(x) = x−A(x0, λ0)−1F (x, λ). (B.1.1)

Problem B.1 Prove that, for x ∈ U(λ), F (x, λ) = 0 is equivalent to x =
Θλ(x).

Next,

‖Θλ(x0)−Θλ0
(x0)‖ ≤M‖F (x0, λ)‖ ≤MBδδ1.

In addition, ‖∂xΘλ‖ = ‖1−A(x0, λ0)−1A(x, λ)‖ ≤ 1
2 . Thus,

‖Θλ(x)− x0‖ ≤
1

2
‖x− x0‖+ ‖Θλ(x0)− x0‖ ≤

1

2
‖x− x0‖+MBδδ1 ≤ δ.

The existence of x ∈ Uδ such that Θλ(x) = x follows then by the standard
fixed point Theorem A.1.1. We have so obtained a function g : {λ : ‖λ −
λ0‖ ≤ δ1} = Λδ1 → Rn such that F (g(λ), λ) = 0. it remains the question of
the regularity.

B.1.2 Lipschitz continuity and Differentiability

Let λ, λ′ ∈ Λδ1 . By (B.1.1)

‖g(λ)− g(λ′)‖ ≤ 1

2
‖g(λ)− g(λ′)‖+MBδ|λ− λ′|

This yields the Lipschitz continuity of the function g. To obtain the differ-
entiability we note that, by the differentiability of F and the above Lipschitz
continuity of g, for h ∈ Rm small enough,

‖F (g(λ+ h), λ+ h)− F (g(λ), λ) + ∂xF [g(λ+ h)− g(λ)] + ∂λFh‖ = o(‖h‖).

Since F (g(λ+ h), λ+ h) = F (g(λ), λ) = 0, we have that

lim
h→0
‖h‖−1‖g(λ+ h)− g(λ) + [∂xF ]−1∂λFh‖ = 0

which concludes the proof of the Theorem, the continuity of the derivative
being obvious be the obtained explicit formula.

1The Newton method would consist in finding a fixed point for the function x −
A(x, λ)−1F (x, λ). This gives a much faster convergence and hence is preferable in ap-
plications, yet here it would make the estimates a bit more complicated.
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B.2 Generalization

First of all note that the above theorem implies the inverse function theorem.
Indeed if f : Rn → Rn is a function such that ∂xf is invertible at some point
x0, then one can consider the function F (x, y) = f(x) − y. Applying the
implicit function theorem to the equation F (x, y) = 0 it follows that y = f(x)
are the only solution, hence the function is locally invertible.

The above theorem can be generalized in several ways.

Problem B.2 Show that if F in Theorem B.1.1 is Cr, then also g is Cr.

Problem B.3 Verify that if B1,B2 are two Banach spaces and in Theorem
B.1.1 we have B1 instead of Rn and B2 instead of Rm the Theorem remains
true and the proof remains exactly the same.

As I mentioned the statement of Theorem B.1.1 is suitable for quantitative
applications.

Problem B.4 Suppose that in Theorem B.1.1 we have F ∈ C2, then show
that we can chose

δ = [2‖D∂xF‖∞]
−1
.


