
Chapter 6

Qualitative statistical properties:
general facts

From the previous chapter we learned that long time predic-
tions may be impossible even for seemingly simple Dynamicl Systems.
Yet, surprisingly, it is exactly such an unpredictability that makes sta-
tistical predictions possible. In this chapter we expalin how to make
sense of sentences like: such and such will happen with probability p.

For simplicity we will maily consider dicrete Dynamcial Systems,
eventhough we will briefly comment on flows.

6.1 Basic Definitions and examples

Definition 6.1.1 By Dynamical System with discrete time we mean a
triplet (X, T, µ) where X is a measurable space,1 µ is a measure and T
is a measurable map from X to itself that preserves the measure (i.e.,
µ(T−1A) = µ(A) for each measurable set A ⊂ X).

An equivalent characterization of invariant measure is µ(f ◦ T ) =
µ(f) for each f ∈ L1(X, µ) since, for each measurable set A, µ(χA ◦
T ) = µ(χT−1A) = µ(T−1A), where χA is the characteristic function of
the set A.

Remark 6.1.2 In the following we will always assume µ(X) < ∞
1By measurable space we simply mean a set X together with a σ-algebra that

defines the measurable sets.
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118 CHAPTER 6. QUALITATIVE STATISTICAL PROPERTIES

(and quite often µ(X) = 1, i.e. µ is a probability measure). Never-
theless, the reader should be aware that there exists a very rich theory
pertaining to the case µ(X) =∞, see [Aar97].

Definition 6.1.3 By Dynamical System with continuous time we mean
a triplet (X, φt, µ) where X is a measurable space, µ is a measure and
φt is a measurable group (φt(x) is a measurable function for each t,
φt(x) is a measurable function of t for almost all x ∈ X; φ0 =identity
and φt ◦ φs = φt+s for each t, s ∈ R) or semigroup (t ∈ R+) from X
to itself that preserves the measure (i.e., µ((φt)−1A) = µ(A) for each
measurable set A ⊂ X).

The above definitions are very general, this reflects the wideness
of the field of Dynamical Systems. In the present book we will be
interested in much more specialized situations.

In particular, X will always be a topological compact space. The
measures will alway belong to the class M1(X) of Borel probability
measures on X.2 For future use, given a topological space X and a
map T let us define MT as the collection of all Borel measures that
are T invariant.3

OftenX will consist of finite unions of smooth manifolds (eventually
with boundaries). Analogously, the dynamics (the map or the flow) will
be smooth in the interior of X.

Let us see few examples to get a feeling of how a Dynamical System
can look like.

6.1.1 Examples

Rotations

Let T be R mod 1. By this we mean R quotiented with respect to the
equivalence relations x ∼ y if and only if x − y ∈ Z. T can be though
as the interval [0, 1] with the points 0 and 1 identified. We put on it the
topology induced by the topology of R via the defined equivalence relation.
Such a topology is the usual one on [0, 1], apart from the fact that each
open set containing 0 must contain 1 as well. Clearly, from the topological

2Remember that a Borel measure is a measure defined on the Borel σ-algebra,
that is the σ-algebra generated by the open sets.

3Obviously, for each µ ∈MT , (X,T, µ) is a Dynamical System.
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point of view, T is a circle. We choose the Borel σ-algebra. By µ we
choose the Lebesgue measure m, while T : T→ T is defined by

Tx = x+ ω mod 1,

for some ω ∈ R. In essence, T translates, or rotates, each point by the
same quantity ω. It is easy to see that the measure µ is invariant (Problem
6.4).

Bernoulli shift

A Dynamical System needs not live on some differentiable manifold, more
abstract possibilities are available.

Let Zn = {1, 2, ..., n}, then define the set of two sided (or one sided)

sequences Σn = ZZ
n (Σ+

n = ZZ+
n ). This means that the elements of Σn

are sequences σ = {..., σ−1, σ0, σ1, ......} (σ = {σ0, σ1, ......} in the one
sided case) where σi ∈ Zn. To define the measure and the σ-algebra a bit
of care is necessary. To start with, consider the cylinder sets, that is the
sets of the form

Aji = {σ ∈ Σn | σi = j}.

Such sets will be our basic objects and can be used to generate the
algebraA of the cylinder sets via unions and complements (or, equivalently,
intersections and complements). We can then define a topology on Σn

(the product topology, if {1, . . . , n} is endowed by the discrete topology)
by declaring the above algebra made of open sets and a basis for the
topology. To define the σ-algebra we could take the minimal σ-algebra
containing A, yet this it is not a very constructive definition, neither a
particular useful one, it is better to invoke the Carathèodory construction.

Let us start by defining a measure on Zn, that is n numbers pi > 0
such that

∑n
i=1 pi = 1. Then, for each i ∈ Z and j ∈ Zn,

µ(Aji ) = pj .

Next, for each collection of sets {Ajlil}
s
l=1, with il 6= ik for each l 6= k, we

define

µ(Aj1i1 ∩A
j2
i2
∩ ... ∩Ajsis ) =

s∏
l=1

pjl .
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We now know the measure of all finite intersection of the sets Aji . Obvi-
ously µ(Ac) := 1− µ(A) and the measure of the union of two sets A, B
obviously must satisfy µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B). We have
so defined µ on A. It is easy to check that such a µ is σ-additive on A;
namely: if {Ai} ⊂ A are pairwise disjoint sets and ∪∞i=1Ai ∈ A, then
µ(∪∞i=1Ai) =

∑∞
i=1 µ(Ai). The next step is to define an outer measure4

µ∗(A) := inf
B∈A
B⊃A

µ(B) ∀A ⊂ Σn.

Finally, we can define the σ-algebra as the collection of all the sets
that satisfy the Carathèodory’s criterion, namely A is measurable (that
is belongs to the σ-algebra) iff

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) ∀E ⊂ Σn.

The reader can check that the sets in A are indeed measurable.
The Carathèodory Theorem then asserts that the measurable sets form

a σ-algebra and that on such a σ-algebra µ∗ is numerably additive, thus
we have our measure µ (simply the restriction of µ∗ to the σ-algebra).5

The σ-algebra so obtained is nothing else than the completion with respect
to µ of the minimal σ-algebra containing A (all the sets with zero outer
measure are measurable).

The map T : Σn → Σn (usually called shift) is defined by

(Tσ)i = σi+1.

We leave to the reader the task to show that the measure is invariant (see
Problem 6.12).

To understand what’s going on, let us consider the function f : Σ →
Zn defined by f(σ) = σ0. If we consider T t, t ∈ N, as the time evolution
and f as an observation, then f(T tσ) = σt. This can be interpreted as
the observation of some phenomenon at various times. If we do not know
anything concerning the state of the system, then the probability to see

4An outer measure has the following properties: i) µ∗(∅) = 0; ii) µ∗(A) ≤ µ∗(B)
if A ⊂ B; iii)µ∗(∪∞i=1Ai) ≤

P∞
i=1 µ

∗(Ai). Note that µ∗ need not be additive on all
sets.

5See [LL01] if you want a quick look at the details of the above Theorem or
consult [Roy88] if you want a more in depth immersion in measure theory. If you
think that the above construction is too cumbersome see Problem 6.14.
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the value j at the time t is simply pj . If n = 2 and p1 = p2 = 1
2 , it could

very well be that we are observing the successive outcomes of tossing a
fair coin where 1 means head and 2 tail (or vice versa); if n = 6 it could
be the outcome of throwing a dice and so on.

Dilation

Again X = T and the measure is Lebesgue. T is defined by

Tx = 2x mod 1.

This map it is not invertible (similarly to the one sided shift). Note that,
in general, µ(TA) 6= µ(A) (e.g., A = [0, 1

2 ]).

Toral automorphism (Arnold cat)

This is an automorphism of the torus and gets its name by a picture draw
by Arnold [AA68]. The space X is the two dimensional torus T2. The
measure is again Lebesgue measure and the map is

T

(
x
y

)
=
(

1 1
1 2

)(
x
y

)
mod 1 := L

(
x
y

)
mod 1.

Since the entries of L are integers numbers it is clear that T is well defined
on the torus; in fact, it is a linear toral automorphism. The invariance of
the measure follows from detL = 1.

Hamiltonian Systems

Up to now we have seen only examples with discrete time. Typical ex-
amples of Dynamical Systems with continuous time are the solutions of
an ODE or a PDE. Let us consider the case of an Hamiltonian system.
The simplest case is when X = R2n, the σ-algebra is the Borel one and
the measure µ is the Lebesgue measure m. The dynamics is defined by a
smooth function H : X → R via the equations

dx

dt
= JgradH(x)

where grad(H)i = (∇H)i = ∂H
∂xi

and J is the block matrix

J =
(

0 1

−1 0

)
.



122 CHAPTER 6. QUALITATIVE STATISTICAL PROPERTIES

The fact that m is invariant with respect to the Hamiltonian flow is due
to the Liouville Theorem (see [Arn99] or Problem 5.7).

Such a dynamical system has a natural decomposition. Since H is
an integral of the motion, for each h ∈ R we can consider Xh = {x ∈
X | H(x) = h}. If Xh 6= ∅, then it will typically consist of a smooth
manifold,6 let us restrict ourselves to this case. Let σ be the surface
measure on Xh, then µh = σ

‖gradH‖ is an invariant measure on Xh and

(Xh, φt, µh) is a Dynamical System (see Problem 6.6).

Geodesic flow

Along the same lines any geodesic flow on a compact Riemannian manifold
naturally defines a dynamical system.

6.2 Return maps and Poincaré sections

Normally in Dynamical Systems there is a lot of emphasis on the dis-
crete case. One reason is that there is a general device that allows to
reduce the study of many properties of a continuous time Dynamical
System to the study of an appropriate discrete time Dynamical Sys-
tem: Poincaré sections (we have already seen an instance of this in the
introduction). Here we want to make few comments on this precious
tool that we will largely employ in the study of billiards.

Let us consider a smooth Dynamical System (X,φt, µ) (that is a
Dynamical Systems in continuous time where X is a smooth manifold
and φt is a smooth flow). Then we can define the vector field V (x) :=
dφt(x)
dt |t=0.7

Consider a smooth compact submanifold (possibly with boundaries)
Σ of codimension one such that TxΣ (the tangent space of Σ at the
point x) is transversal to V (x).8 We can then define the return time
τΣ : Σ→ R+ ∪ {∞} by

τΣ = inf{t ∈ R+\{0} | φt(x) ∈ Σ},
6By the implicit function theorem this is locally the case if ∇H 6= 0.
7Very often it is the other way around: the vector field is given first and then

the flow–as we saw in the introduction.
8That is TxΣ⊕ V (x) form the full tangent space at x.
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where the inf is taken to be ∞ if the set is empty. Next we define the
return map TΣ : D(T ) ⊂ Σ → Σ, where D(T ) = {x ∈ Σ|τΣ(x) < ∞},
by

TΣ(x) = φτΣ(x)(x).

It is easy to check that there exists c > 0 such that τΣ ≥ c (Problem
6.9).

To define the measure, the natural idea is to project the invariant
measure along the flow direction: for all measurable sets A ⊂ Σ, define9

νΣ(A) := lim
δ→0

1
δ
µ(φ[0, δ](A)). (6.2.1)

See Problem ?? for the existence of the above limit; see Problem 6.9 for
the proof that τΣ is finite almost everywhere and Problem 6.10 for the
proof that (Σ, TΣ, νΣ) is a dynamical system. The reader is invited
to meditate on the relation between this Dynamical System and the
original one.

6.3 Suspension flows

A natural question is if it is possible to construct a flow with a given
Poincaré section, the answer is that there are infinitely many flows with
a given section. Let us construct some of them. Given a dynamical
system (Σ, T, ν) consider X̃ := Σ × R+. Define the flow φt((x, s)) =
(x, s + t). We then define in X̃ the equivalence relation (x, t) ∼ (y, s)
iff s = t + n and y = Tnx or t = s + n and x = Tny for some n ∈ N.
A moment of reflection shows that the set X of equivalence classes is
nothing else than the set Σ × [0, 1] with the points (x, 1) and (Tx, 0)
identified. Clearly the flow is naturally quotiented over the equivalence
classes and yields a quotient flow onX, such a flow is called a suspension
flow.

A more general construction can by obtained by applying a time
change to the above example. Alternatively, one can can choose any
smooth function τ : Σ → R+, that will be called a ceiling function
and consider the set Xτ = {(x, t) ∈ Σ × R+ | t ∈ [0, τ(x)]} with the
points (x, τ(x)) and (Tx, 0) identified. A moment of reflection should

9We use the notation: φI(A) := ∪t∈Iφt(A) for each I ⊂ R.



124 CHAPTER 6. QUALITATIVE STATISTICAL PROPERTIES

show that the topology of Xτ does not depend on τ and is then the
same than the suspension defined above. The flow is again defined by
φt(x, s) = (x, s+ t) for t ≤ τ(x)− s. Such flows are called special flows.

6.4 Invariant measures

A very natural question is: given a space X and a map T does there
always exists an invariant measure µ? A non exhaustive, but quite
general, answer exists: Krylov-Bogoluvov Theorem.

First of all we need a useful characterization of invariance.

Lemma 6.4.1 Given a compact metric space X and map T continuous
apart from a compact set K,10 a Borel measure µ, such that µ(K) = 0,
is invariant if and only if µ(f ◦ T ) = µ(f) for each f ∈ C0(X).

Proof. To prove that the invariance of the measure implies the
invariance for continuous functions is obvious since each such func-
tion can be approximate uniformly by simple functions–that is, sum of
characteristic functions of measurable sets–for which the invariance it
is immediate.11 The converse implication is not so obvious.

The first thing to remember is that the Borel measures, on a com-
pact metric space, are regular [RS80]. This means that for each mea-
surable set A the following holds12

µ(A) = inf
G⊃A
G=
◦
G

µ(G) = sup
C⊂A
C=C

µ(C). (6.4.2)

Next, remember that for each closed set A and open set G ⊃ A, there
exists f ∈ C0(X) such that f(X) ⊂ [0, 1], f |Gc = 0 and f |A = 1
(this is Urysohn Lemma for Normal spaces [Roy88]). Hence, setting
BA := {f ∈ C(0)(X) | f ≥ χA},

µ(A) ≤ inf
f∈BA

µ(f) ≤ inf
G⊃A
G=
◦
G

µ(G) = µ(A). (6.4.3)

10This means that, if C ⊂ X is closed, then T−1C ∪K is closed as well.
11This is essentially the definition of integral.
12This is rather clear if one thinks of the Carathéodory construction starting from

the open sets.



6.4. INVARIANT MEASURES 125

Accordingly, for each A closed, we have

µ(T−1A) ≤ inf
f∈BA

µ(f ◦ T ) = inf
f∈BA

µ(f) = µ(A).

In addition, using again the regularity of the measure, for each A Borel
holds13

µ(T−1A) = inf
U⊃K
U=

◦
U

µ(T−1A\U) ≤ inf
U⊃K
U=

◦
U

sup
C⊂T−1A\U

C=C

µ(T−1(TC))

≤ inf
U⊃K
U=

◦
U

sup
C⊂A\TU
C=C

µ(T−1C) ≤ sup
C⊂A
C=C

µ(T−1C) = sup
C⊂A
C=C

µ(C) = µ(A).

Applying the same argument to the complement Ac of A it follow that
it must be µ(T−1A) = µ(A) for each Borel set. �

Proposition 6.4.2 (Krylov–Bogoluvov) If X is a metric compact
space and T : X → X is continuous, then there exists at least one
invariant (Borel) measure.

Proof. Consider any Borel probability measure ν and define the
following sequence of measures {νn}n∈N:14 for each Borel set A

νn(A) = ν(T−nA).

The reader can easily see that νn ∈ M1(X), the sets of the proba-
bility measures. Indeed, since T−1X = X, νn(X) = 1 for each n ∈ N.
Next, define

µn =
1
n

n−1∑
i=0

νi.

Again µn(X) = 1, so the sequence {µi}∞i=1 is contained in a weakly
compact set (the unit ball) and therefore admits a weakly convergent

13Note that, by hypothesis, if C is compact and C ∩K = ∅, then TC is compact.
14Intuitively, if we chose a point x ∈ X at random, according to the measure ν

and we ask what is the probability that Tnx ∈ A, this is exactly ν(T−nA). Hence,
our procedure to produce the point Tnx is equivalent to picking a point at random
according to the evolved measure νn.
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subsequence {µni}∞i=1; let µ be the weak limit.15 We claim that µ is
T invariant. Since µ is a Borel measure it suffices to verify that for
each f ∈ C0(X) holds µ(f ◦ T ) = µ(f) (see Lemma 6.4.1). Let f be a
continuous function, then by the weak convergence we have16

µ(f ◦ T ) = lim
j→∞

1
nj

nj−1∑
i=0

νi(f ◦ T ) = lim
j→∞

1
nj

nj−1∑
i=0

ν(f ◦ T i+1)

= lim
j→∞

1
nj


nj−1∑
i=0

νi(f) + ν(f ◦ Tnj )− ν(f)

 = µ(f).

�

The reason why the above theorem is not completely satisfactory
is that it is not constructive and, in particular, does not provide any
information on the nature of the invariant measure. On the contrary, in
many instances the interest is focused not just on any Borel measure but
on special classes of measures, for example measures connected to the
Lebesgue measure which, in some sense, can be thought as reasonably
physical measures (if such measures exists).

In the following examples we will see two main techniques to study
such problems: on the one hand it is possible to try to construct ex-
plicitly the measure and study its properties in the given situations
(expanding maps, strange attractors, solenoid, horseshoe); on the other
hand one can try to conjugate17 the given problem with another, better

15This depends on the Riesz-Markov Representation Theorem [RS80] that states
that M(X) is exactly the dual of the Banach space C0(X). Since the weak conver-
gence of measures in this case correspond exactly to the weak-* topology [RS80],
the result follows from the Banach-Alaoglu theorem stating that the unit ball of the
dual of a Banach space is compact in the weak-* topology. But see 1.6.17 if you
want a more elementary proof.

16Note that it is essential that we can check invariance only on continuous func-
tions: if we would have to check it with respect to all bounded measurable functions
we would need that µn converges in a stronger sense (strong convergence) and this
may not be true. Note as well that this is the only point where the continuity of T
is used: to insure that f ◦ T is continuous and hence that µnj (f ◦ T )→ µ(f ◦ T ).

17See Definition 6.8.2 for a precise definition and Problem 6.37 and 6.38 for some
insight.
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understood, one (logistic map, circle maps). In view of the second pos-
sibility the last example is very important (Markov measures). Such
an example gives just a hint to the possibility to construct a multitude
of invariant measures for the shift which, as we will see briefly, is a
standard system to which many other can be conjugated.

6.4.1 Examples

Contracting maps

Let X ⊂ Rn be compact and connected, T : X → X differentiable with
‖DT‖ ≤ λ−1 < 1 and T0 = 0 ∈ X. In this case 0 is the unique fixed
point and the delta function at zero is the only invariant measure.18

Expanding maps

The simplest possible case is X = T, T ∈ C2(T) with |DT | ≥ λ > 1, (see
Figure 6.1 for a pictorial example).19

1

1

Figure 6.1: Graph of an expanding map on T

18The reader will hopefully excuse this physicist language, naturally we mean that
the invariant measure is defined by δ0(f) = f(0). The property that there exists
only one invariant measure is called unique ergodicity, we will see more of it in the
sequel, e.g. see example 6.5.1.

19Note that this generalizes Examples 6.1.1.



128 CHAPTER 6. QUALITATIVE STATISTICAL PROPERTIES

We would like to have an invariant measure absolutely continuous with
respect to Lebesgue. Any such measure µ has, by definition, the Radon-
Nikodym derivative h = dµ

dm ∈ L
1(T, m), [Roy88]. In Proposition 6.4.2

we saw how a measure evolves by defining the operator

T∗µ(f) = µ(f ◦ T ) (6.4.4)

for each f ∈ C0 and µ ∈ M(X) (see also footnote 15 at page 126). If
we want to study a smaller class of measures we must first check that T∗
leaves such a class invariant. Indeed, if µ is absolutely continuous with
respect to Lebesgue then T∗µ has the same property. Moreover, if h = dµ

dm

and h1 = dT∗µ
dm then (Problem 6.15)

h1(x) = Lh(x) :=
∑

y∈T−1(x)

|DyT |−1h(y).

The operator L : L1(T, m) → L1(T, m) is called Transfer operator or
Ruelle-Perron-Frobenius operator, and has an extremely important rôle in
the study of the statistical properties of the system. Notice that ‖Lh‖1 ≤
‖h‖1.20 The key property of L, in this context, is given by the following
inequality (this type of inequality is commonly called of Lasota-York type)
(Problem 6.16) ∣∣∣∣ ddxLh(x)

∣∣∣∣ ≤ λ−1|Lh′(x)|+ C|Lh(x)| (6.4.5)

where C = ‖D2T‖∞
‖DT‖2∞

.

The above inequality implies ‖(Lh)′‖1 ≤ λ−1‖h′‖1 +C‖h‖1. Iterating
such a relation yields

‖(Lnh)′‖1 ≤
C

1− λ−1
‖h‖1 + ‖h′‖1,

for all n ∈ N. This, in turn, implies that the supn∈N ‖Lnh‖∞ < ∞.
Consequently, the sequence hn := 1

n

∑n−1
i=0 Lih is compact in L1 (this is

a consequence of standard embedding theorems21 [LL01] but see Problem

20Here ‖f‖1 :=
R
|h(x)|dx is the standard norm in L1.

21Indeed the space C1 closed with respect to the norm ‖f‖ = ‖f‖1 + ‖f ′‖1 is a
well known Banach space: the Sobolev space W 1,1.
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6.17 for an elementary proof). In analogy with Lemma 6.4.2, we have
that there exists h∗ ∈ L1 such that Lh∗ = h∗. Thus dµ := h∗dm is an
invariant measure of the type we are looking for.

In fact, it is possible to obtain some more information on such measure.
Equation 6.4.5 implies that L is a well defined operator also when restricted
to C0 or C1. Moreover, for each h ∈ C0 and n ∈ N,

|Lnh|∞ ≤ |Ln1|∞|h|∞ ≤ |h|∞(‖Ln1‖1+‖(Ln1)′‖1) ≤ |h|∞
C + 1

1− λ−1
=: C1|h|∞.

Using the above equation and iterating (6.4.5) yields, for each h ∈ C1 and
n ∈ N,

|(Lnh)′|∞ ≤ λ−nC1|h′|∞ + C2
1 |h|∞.

In other words we have a Lasota-Yorke type inequality for L acting on
C0, C1 instead of L1,W 1,1. In particular note that one can apply the
above inequalities to the average hn := 1

n

∑n−1
i=0 Lih, when h ∈ C1. Then

the compactness follows by Ascoli-Arzelá Theorem and it follows that the
invariant density is continuous (in fact, Lipschitz as already argued in the
Perron-Frobenius Theorem).

Logistic maps

Consider X = [0, 1] and

T (x) = 4x(1− x).

This map is not an everywhere expanding map (D 1
2
T = 0), yet it can be

conjugate with one, [UvN47].

To see this consider the continuous change of variables Ψ : [0, 1] →
[0, 1] defined by

Ψ(x) =
2
π

arcsin
√
x,

thus Ψ−1(x) =
(
sin π

2x
)2

. Accordingly,

T̃ (x) := Ψ ◦ T ◦Ψ−1(x) = Ψ(4 sin2 π
2x cos2 π

2x)

= Ψ([sinπx]2) = 2
π arcsin[sinπx]
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which yields22

T̃ (x) =

{
2x for x ∈ [0, 1

2 ]

2− 2x for x ∈ [1
2 , 1].

The map T̃ is called tent map for its characteristic shape, see figure
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Figure 6.2: Graph of tent map

6.2. What is more interesting is that the Lebesgue measure is invariant
for T̃ , as the reader can easily check. This means that, if we define
µ(f) := m(f ◦Ψ−1), it holds true

µ(f ◦ T ) = m(f ◦ T ◦Ψ−1) = m(f ◦Ψ−1 ◦ T̃ ) = m(f ◦Ψ−1) = µ(f).

Hence, ([0, 1], T, µ) is a Dynamical System. In addition, a trivial compu-
tation shows

µ(dx) =
1

π
√
x(1− x)

dx,

thus µ is absolutely continuous with respect to Lebesgue.

Circle maps

A circle map is an order preserving continuous map of the circle. A simple
way to describe it is to start by considering its lift. Let T̂ : R → R, such

22Remember that the domain of arcsin is [−π
2
, π

2
] and sinπx = sinπ(1− x).
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that T̂ (0) ∈ [0, 1], T̂ (x+1) = T̂ (x)+1 ad it is monotone increasing. The
circle map is then defined as T (x) = T̂ (x) mod 1. Circle maps have a
very rich theory that we do not intend to develop here, we confine ourselves
to some facts (see [HK95] for a detailed discussion of the properties below).
The first fact is that the rotation number

ρ(T ) = lim
n→∞

1
n
T̂n(x).

is well defined and does not depend on x.

We have already seen a concrete example of circle maps: the rotation
Rω by ω. Clearly ρ(Rω) = ω. It is fairly easy to see that if ρ(T ) ∈ Q then
the map has a periodic orbit. We are more interested in the case in which
the rotation number is irrational. In this case, with the extra assumption
that T is twice differentiable (actually a bit less is needed) the Denjoy
theorem holds stating that there exists a continuous invertible function h
such that Rρ(T ) ◦ h = h ◦ T , that is T is topologically conjugated to a
rigid rotation. Since we know that the Lebesgue measure is invariant for
the rotations, we can obtain an invariant measure for T by pushing the
Lebesgue measure by h, namely define

µ(f) = m(f ◦ h−1).

The natural question if the measure µ is absolutely continuous with respect
to Lebesgue is rather subtle and depends, once again, on KAM theory. In
essence the answer is positive only if T has more regularity and the rotation
number is not very well approximated by rational numbers (in some sense
it is ‘very irrational’).

Strange Attractors

We have seen the case in which all the trajectories are attracted by a point.
The reader can probably imagine a case in which the attractor is a curve
or some other simple set. Yet, it has been a fairly recent discovery that
an attractor may have a very complex (strange) structure. The following
is probably the simplest example. Let X = Q = [0, 1]2 and

T (x, y) =

{
(2x, 1

8y + 1
4) if x ∈ [0, 1/2]

(2x− 1, 1
8y + 3

4) if x ∈]1/2, 1].
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We have a map of the square that stretches in one direction by a factor
2 and contract in the other by a factor 8.

Note that T it is not continuous with respect to the normal topology,
so Proposition 6.4.2 cannot be applied directly. This problem can be solved
in at least two ways: one is to code the system and we will discuss it later
(see Examples 6.8.1), the other is to study more precisely what happens
iterating a measure in special cases.

In our situation, since TnQ consists of a multitude of thinner and
thinner strips, it is clear that there can be no invariant measure absolutely
continuous with respect to Lebesgue.23 Yet, it is very natural to ask what
happens if we iterate the Lebesgue measure by the operator T∗. It is easy
to see that T∗m is still absolutely continuous with respect to Lebesgue. In
fact, T∗ maps absolutely continuous measures into absolutely continuous
measures. Once we note this, it is very tempting to define the transfer
operator. An easy computation yields

Lh(x) = χTQ(x)
∑

y∈T−1(x)

| det(DyT )|−1h(y) = 4χTQ(x)h(T−1(x)).

Since the map expands in the unstable direction, it is quite natural to
investigate, in analogy with the expanding case, the unstable derivative
Du, that is the derivative in the x direction, of the iterate of the density.

‖DuLh‖1 ≤
1
2
‖Duh‖1 ∀h ∈ C1(Q) (6.4.6)

To see the consequences of the above estimate, consider f ∈ C(1)(Q) with
f(0, y) = f(1, y) = 0 for each y ∈ [0, 1], then if µ is a measure obtained
by the measure hdm (h ∈ C1) with the procedure of Proposition 6.4.2,24

23In fact, if µ is an invariant measure, T∗µ = µ, it follows

µ(χTnQ) = Tn∗ µ(χTnQ) = µ(χQ) = 1,

so µ must be supported on Λ = ∩∞n=0T
nQ.

24As we noted in the proof of Proposition 6.4.2, the only part that uses the
continuity of T is the proof of the invariance. Thus, in general we can construct a
measure by the averaging procedure but its invariance is not automatic.
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we have

µ(Duf) = lim
j→∞

1
nj

nj−1∑
i=0

(T∗)im(hDuf) = lim
j→∞

1
nj

nj−1∑
i=0

m(LihDuf)

= − lim
j→∞

1
nj

nj−1∑
i=0

m(fDuLih)

where we have integrated by part. Remembering (6.4.6) we have

µ(Duf) = 0,

for all f ∈ C(1)
per(Q) = {f ∈ C(1)(Q) | f(0, y) = f(1, y)}. The enlargement

of the class of functions is due to the obvious fact that, if f ∈ C(1)
per(Q),

then f̃(x, y) = f(x, y)− f(0, y) is zero on the vertical (stable) boundary
and Duf̃ = Duf .

This means that the measure µ, when restricted to the horizontal
direction, is µ-a.e. constant (see Problem 6.32). Such a strong result is
clearly a consequence of the fact that the map is essentially linear, one can
easily imagine a non linear case (think of dilations and expanding maps)
and in that case the same argument would lead to conclude that the
measure, when restricted to unstable manifolds, is absolutely continuous
with respect to the restriction of Lebesgue (these type of measures are
commonly called SRB from Sinai, Ruelle and Bowen).

We can now prove that indeed the measure µ is invariant. The discon-
tinuity line of T is {x = 1

2}. Points close to {x = 1
2} are mapped close to

the boundary of Q, so if f(0, y) = f(1, y) = 0, then f ◦ T is continuous.
Hence, the argument of Proposition 6.4.2 proves that µ(f ◦ T ) = µ(f)
for all f that vanish at the stable boundary. Yet, the characterization of
µ proves that µ({(x, y) ∈ Q | x ∈ {0, 1}}) = 0, thus we can obtain
µ(f ◦ T ) = µ(f) for all continuous functions via the Lebesgue dominated
convergence theorem and the invariance follows by Lemma 6.4.1.

Horseshoe

This very famous example consists of a map of the square Q = [0, 1]2,
the map is obtained by stretching the square in the horizontal direction,
bending it in the shape of an horseshoe and then superimposing it to the
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original square in such a way that the intersection consists of two horizontal
strips.25 Such a description is just topological, to make things clearer let
us consider a very special case:

T (x, y) =

{
(5x mod 1, 1

4y) if x ∈ [1/5, 2/5]

(5x mod 1, 1
4y + 3

4) if x ∈ [3/5, 4/5].

Note that T is not explicitly defined for x ∈ [0, 1/5[∪[2
3 ,

3
5 [∪]4/5, 1] since

for this values the horseshoe falls outside Q, so its actual shape is irrelevant.
Since the map from Q to Q is not defined on the full square, we can have
a Dynamical System only with respect to a measure for which the domain
of definition of T , and all of its powers, has measure one. We will start by
constructing such a measure.

The first step is to notice that the set

Λ = ∩n∈ZT
nQ (6.4.7)

of the points which trajectories are always in Q is 6= ∅. Second, note that
Λ = TΛ = T−1Λ, such an invariant set is called hyperbolic set as we will
see in ???. We would like to construct an invariant measure on Λ. Since
Λ is a compact set and T is continuous on it we know that there exist
invariant measures; yet, in analogy with the previous examples, we would
like to construct one coming from Lebesgue.

As already mentioned we must start by constructing a measure on
Λ− = ∩n∈N∪{0}T

−nQ since T kΛ− ⊂ Λ−. To do so it is quite natural to
construct a measure by subtracting the mass that leaks out of Q. namely,
define the operator T̃ :M(X)→M(X) by

T̃ µ(A) := µ(TA ∩Q).

Again we consider the evolution of measures of the type dµ = hdm. For
each continuous f with supp(f) ⊂ Q holds

T̃ µ(f) = µ(f ◦ T−1χQ) =
∫
T−1Q

fh ◦ T | detDT |dm.

We can thus define the operator L that evolves the densities:

Lh(x) =
5
4
χT−1Q∩Q(x)h(Tx).

25We have already seen something very similar in the introduction.
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Clearly T̃ µ(f) = m(fLh).
Note that T̃m(1) = 1

2 , thus T̃ does not map probability measures
into probability measures; this is clearly due to the mass leaking out of
Q. Calling Ds (stable derivative) the derivative in the y direction, follows
easily

‖DsLh‖1 ≤
1
4
‖Dsh‖1

for each h differentiable in the stable direction.
On the other hand, if ‖Dsh‖1 ≤ c and ∆ = [0, 1/4] ∪ [3/4, 1],

|T̃ µ(1)| =
∫
Q∩TQ

h =
∫

∆
dy

∫ 1

0
dxh(x, y)

=
∫

∆
dy

∫ 1

0
dx

∫ 1

0
dξh(x, ξ) +O(‖Dsh‖1)

=|∆|‖h‖1 +O(‖Dsh‖1) =
1
2
µ(1) +O(‖Dsh‖1).

It is then natural to define L̂h := 2Lh and T̂ = 2T̃ . Thus ‖DsL̂h‖1 ≤
1
2‖D

sh‖1. This means that { 1
n

∑n−1
i=0 T̂

iµ} are probability measures. Ac-
cordingly, there exists an accumulation point µ∗ and µ∗(Dsf) = 0 for each
f periodic in the y direction. By the same type of arguments used in the
previous examples, this means that µ∗ is constant in the y direction, it is
supported on Λ− by construction and T̃ µ∗ = 1

2µ∗ (conformal invariance)
: just the measure we where looking for.

We can now conclude the argument by evolving the measure as usual:

T∗µ∗(f) = µ∗(f ◦ T )

for all continuous f with the support in Q. Now the standard argument
applies. In such a way we have obtained the invariant measure supported
on Λ.

Markov Measures

Let us consider the shift (Σ+
n , T ). We would like to construct other invari-

ant measures bedside Bernoulli. As we have seen it suffices to specify the
measure on the algebra of the cylinders. Let us define

A(m; k1, . . . , kl) = {σ ∈ Σ+
n | σi+m = ki ∀ i ∈ {1, . . . , l}};
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this are a basis for the algebra of the cylinders.

For each n×n matrix P , Pij ≥ 0,
∑

j Pij = 1 by the Perron-Frobenius
theorem (see Secion (A.2.2)) there exists {pi} such that pP = p. Let us
define

µ(A(m; k1, . . . , kl)) = pk1Pk1k2Pk2k3 . . . Pkl−1kl .

The reader can easily verify that µ is invariant over the algebra A and
thus extends to an invariant measure. This is called Markov because it is
nothing else than a Markov chain together with its stationary measure.26

These last examples (strange attractor, solenoid, horseshoe) show
only a very dim glimpse of a much more general and extremely rich
theory (the study of SRB measures) while the last (Markov measures)
points toward another extremely rich theory: Gibbs (or equilibrium)
measures. Although this it is not the focus here, we will see a bit more
of this in the future.

One of the main objectives in dynamical systems is the study of
the long time behavior (that is the study of the trajectories Tnx for
large n). There are two main cases in which it is possible to study, in
some detail, such a long time behavior. The case in which the motion
is rather regular27 or close to it (the main examples of this possibility
are given by the so called KAM [Arn92] theory and by situations in
which the motions is attracted by a simple set); and the case in which
the motion is very irregular.28 This last case may seem surprising since
the irregularity of the motion should make its study very difficult. The
reason why such systems can be studied is, as usual, because we ask
the right questions,29 that is we ask questions not concerning the fine
details of the motion but only concerning its statistical or qualitative
properties.

The first example of such properties is the study of the invariant
sets.

26The probabilistic interpretation is that the probability of seeing the state k
at time one, given that we saw the state l at time zero, is given by Plk. So the
process has a bit of memory: it remembers its state one time step before. Of course
it is possible to consider processes that have a longer–possibly infinite–memory.
Proceeding in this direction one would define the so called Gibbs measures.

27Typically, quasi periodic motion, remember the small oscillation in the pendu-
lum.

28Remember the example in the introduction.
29Of course, the “right questions” are the ones that can be answered.
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6.5 Ergodicity

Definition 6.5.1 A measurable set A is invariant for T if T−1A ⊂ A.
A dynamical system (X, T, µ) is ergodic if each invariant set has

measure zero or one.

The definition for continuous dynamical systems being exactly the
same.

Note that if A is invariant then µ(A\T−1A) = µ(A)−µ(T−1A) = 0,
moreover Λ = ∩∞n=0T

−nA ⊂ A is invariant as well. In addition, by
definition, Λ = TΛ, which implies Λ = T−1Λ and µ(A\Λ) = 0. This
means that, if A is invariant, then it always contains a set Λ invariant
in the stronger (maybe more natural) sense that TΛ = T−1Λ = Λ.
Moreover, Λ is of full measure in A. Our definition of invariance is
motivated by its greater flexibility and the fact that, from a measure
theoretical point of view, zero measure sets can be discarded.

In essence, if a system is ergodic then most trajectories explore
all the available space. In fact, for any A of positive measure, define
Ab = ∪n∈N∪{0}T

−nA (this are the points that eventually end up in A),
since Ab ⊃ A, µ(Ab) > 0. Since T−1Ab ⊂ Ab, by ergodicity follows
µ(Ab) = 1. Thus, the points that never enter in A (that is, the points
in Acb) have zero measure. Actually, if the system has more structure
(topology) more is true (see Problem 6.21).

The reader should be aware that there are many equivalent defini-
tions of ergodicity, see Problems 6.25, 6.27, 6.28 and Theorem 6.6.6 for
some possibilities.

6.5.1 Examples

Rotations

The ergodicity of a rotation depends on ω. If ω ∈ Q then the system is not
ergodic. In fact, let ω = p

q (p, q ∈ N), then, for each x ∈ T T qx = x+ p
mod 1 = x, so T q is just the identity. An alternative way of saying this
is to notice that all the points have a periodic trajectory of period q. It
is then easy to exhibit an invariant set with measure strictly larger than
0 but strictly less than 1. Consider [0, ε], then A = ∪q−1

i=1T
−i[0, ε] is an

invariant set; clearly ε ≤ µ(A) ≤ qε, so it suffices to choose ε < q−1.
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The case ω 6∈ Q is much more interesting. First of all, for each point
x ∈ T we have that the closure of the set {Tnx}∞i=0 is equal to T, which is
to say that the orbits are dense.30 The proof is based on the fact that there
cannot be any periodic orbit. To see this suppose that x ∈ T has a periodic
orbit, that is there exists q ∈ N such that T qx = x. As a consequence
there must exist p ∈ Z such that x+ p = x+ qω or ω ∈ Q contrary to the
hypothesis. Hence, the set {T k0}∞k=0 must contain infinitely many points
and, by compactness, must contain a convergent subsequence ki. Hence,
for each ε > 0, there exists m > n ∈ N:

|Tm0− Tn0| < ε.

Since T preserves the distances, calling q = m− n, holds

|T q0| < ε.

Accordingly, the trajectory of T jq0 is a translation by a quantity less than
ε, therefore it will get closer than ε to each point in T (i.e., the orbit is
dense). Again by the conservation of the distance, since zero has a dense
orbit the same will hold for every other point.

Intuitively, the fact that the orbits are dense implies that there cannot
be a non trivial invariant set, henceforth the system is ergodic. Yet, the
proof it is not trivial since it is based on the existence of Lebesgue density
points [Roy88] (see Problem 6.40). It is a fact from general measure theory
that each measurable set A ⊂ R of positive Lebesgue measure contains,
at least, one point x̄ such that for each ε ∈ (0, 1) there exists δ > 0:

m(A ∩ [x̄− δ, x̄+ δ])
2δ

> 1− ε.

Hence, given an invariant set A of positive measure and ε > 0, first
choose δ such that the interval I := [x̄ − δ, x̄ + δ] has the property
m(I ∩ A) > (1 − ε)m(I). Second, we know already that there exists
q,M ∈ N such that {T−kqx}Mk=1 divides [0, 1] into intervals of length
less that ε

2δ. Hence, given any point x ∈ T choose k ∈ N such that
m(T−kqI ∩ [x− δ, x+ δ]) > m(I)(1− ε) so,

m(A ∩ [x− δ, x+ δ]) ≥ m(A ∩ T−kqI)−m(I)ε
≥ m(A ∩ I)−m(I)ε ≥ (1− 2ε)2δ.

30A system with a dense orbit called Topologically Transitive.
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Thus, A has density everywhere larger than 1−2ε, which implies µ(A) = 1
since ε is arbitrary.

The above proof of ergodicity it is not so trivial but it has a definite
dynamical flavor (in the sense that it is obtained by studying the evolution
of the system). Its structure allows generalizations to contexts whit a
less rich algebraic structure. Nevertheless, we must notice that, by taking
advantage of the algebraic structure (or rather the group structure) of T,
a much simpler and powerful proof is available.

Let ν ∈M1
T , then define

Fn =
∫

T
e2πinxν(dx), n ∈ N.

A simple computation, using the invariance of ν, yields

Fn = e2πinωFn

and, if ω is irrational, this implies Fn = 0 for all n 6= 0, while F0 = 1.
Next, consider f ∈ C(2)(T1) (so that we are sure that the Fourier series
converges uniformly, see Problem 6.31), then

ν(f) =
∞∑
n=0

ν(fne2πin·) =
∞∑
n=0

fnFn = f0 =
∫

T
f(x)dx.

Hence m is the unique invariant measure (unique ergodicity). This is
clearly much stronger than ergodicity (see Problem 6.25)

Expanding maps

Next, we prove that any smooth invariant map has a unique invariant mea-
sure absolutely continuos with respect to Lebesgue and hence it is ergodic
with respect to such a measure. Let h ∈ L1 be the density of an invariant
measure and A, of positive measure, an invariant set. For each ε > 0 there
exists fε ∈ C1 such that ‖fε − 1A‖1 ≤ ε. Calling fε,n = 1

n

∑n−1
i=0 Lifε

and noting that, by invariance, ϕn := 1
n

∑n−1
i=0 Li1A = 1A

1
n

∑n−1
i=0 Li1,

we have, by taking subsequeces, that fn converges in C0 to some invariant
density f̄ε while ϕn converges to 1Ah, where h is the invariant density
to which converges 1

n

∑n−1
i=0 Li1 (or rather the chosen subsequence). On

the other hand ‖f̄ε − 1Ah‖1 ≤ ε. Since the f̄ε are all uniformly Lipschitz,
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hence equicontinuous, (see the end of Example 6.4.1, Expanding maps)
by Ascoli-Arzelá we can extract a converging subquence. This means that
1A is the uniform limit of continuos functions, hence it is continuos hence
A is either empty of everything, thus the map is ergodic. The uniqueness
of the invariant measure follows by similar arguments.

Baker

This transformation gets its name from the activity of bread making, it
bears some resemblance with the horseshoe. The space X is the square
[0, 1]2, µ is again Lebesgue, and T is a transformation obtained by squash-
ing down the square into the rectangle [0, 2]× [0, 1

2 ] and then cutting the
piece [1, 2]× [0, 1

2 ] and putting it on top of the other one. In formulas

T (x, y) =


(2x,

1
2
y) mod 1 if x ∈ [0,

1
2

)

(2x,
1
2

(y + 1)) mod 1 if x ∈ [
1
2
, 1].

This transformation is ergodic as well, in fact much more. We will discuss
it later.

Translations (T1)

Let us consider the flow (T1, φt,m) where φt(x) = x + ωt mod 1, for
some ω ∈ R \ {0}. This is just a translation on the unit circle. The proof
of ergodicity is trivial and it is left to the reader.

We conclude the chapter with a theorem very helpful to establish
the ergodicity of a flow.

Theorem 6.5.2 Consider a flow (X,φt, µ) and a Poincarè section Σ
such that the set {x ∈ X | ∪t∈R φt(x)∩Σ = ∅} has zero measure. Then
the ergodicity of the flow (X,φt, µ) is equivalent to the ergodicity of the
section (Σ, TΣ, µΣ).

The proof, being straightforward, is left to the reader.
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6.5.2 Examples

Translations (T2)

Let us consider the flow (T2, φt,m) where φt(x) = x + ωt mod 1, for
some ω ∈ R2 \ {0}. This is a translation on the two dimensional torus.
To investigate we will use Theorem 6.5.2. Consider the set Σ := {(x, y) ∈
T2 | x = 0}, this is clearly a Poincaré section, unless ω1 = 0 (in which
case one can choose the section y = 0). Obviously Σ is a circle and the
Poincaré map is given by

T (y) = y +
ω2

ω1
mod 1.

The ergodicity of the flow is then reduced to the ergodicity of a circle
rotation, thus the flow is ergodic only if ω1 and ω2 have an irrational ratio.

The properties of the invariant sets of a dynamical systems have
very important reflections on the statistics of the system, in particular
on its time averages. Before making this precise (see Theorem 6.6.6)
we state few very general and far reaching results.

6.6 Some basic Theorems

Theorem 6.6.1 (Birkhoff) Let (X, T, µ) be a dynamical system, then
for each f ∈ L1(X, µ)

lim
n→∞

1
n

n−1∑
j=0

f(T jx)

exists for almost every point x ∈ X. In addition, setting

f+(x) = lim
n→∞

1
n

n−1∑
j=0

f(T jx),

holds ∫
X
f+dµ =

∫
X
fdµ.

Proof
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Since the task at hand is mainly didactic, we will consider explicitly
only the case of positive bounded functions, the completion of the proof
is left to the reader.

Let f ∈ L∞(X, dµ), f ≥ 0, and

Sn(x) ≡ 1
n

n−1∑
i=0

f(T ix).

For each x ∈ X, there exists

f
+(x) = lim sup

n→∞
Sn(x)

f+(x) = lim inf
n→∞

Sn(x).

The first remark is that both f+ and f+ are invariant functions. In
fact,

Sn(Tx) = Sn(x) +
1
n
f(Tnx)− 1

n
f(x)

so, tacking the limit the result follows.31

Next, for each n ∈ N and k, j ∈ Z we define

Dn,l,j =
{
x ∈ X

∣∣∣∣ f+(x) ∈
[
l

n
,
l + 1
n

)
; f+(x) ∈

[
j

n
,
j + 1
n

)}
,

by the invariance of the functions follows the invariance of the sets
Dn,l,j . Also, by the boundedness, follows that for each n exists n0 such
as ⋃

j,l∈{−n0, ..., n0}

Dn,l,j = X.

The key observation is the following.

Lemma 6.6.2 For each n ∈ N and l, j ∈ Z, setting A = Dn,l,j, holds

l + 1
n

µ(A) <
∫
A
fdµ+

3
n
µ(A)

j

n
µ(A) >

∫
A
fdµ− 3

n
µ(A)

31Here we have used the boundedness, this is not necessary. If f ∈ L1(X, dµ)

and positive, then Sn(Tx) ≥ Sn(x) − f(x), so f
+

(Tx) ≥ f
+

(x) and it is and easy
exercise to check that any such function must be invariant.
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From the Lemma follows

0 ≤
∫
X

(f+ − f+)dµ =
n0∑

l, j=−n0

∫
Dn,l,j

(f+ − f+)dµ

≤
n0∑

l, j=−n0

[
l + 1
n
− j

n

]
µ(Dn,l,j) <

6
n

n0∑
l, j=−n0

µ(Dn,l,j) =
6
n
.

Since n is arbitrary we have∫
X

(f+ − f+)dµ = 0

which implies f+ = f+ almost everywhere (since f+ ≥ f+ by defini-
tion) proving that the limit exists. Analogously, we can prove∫

X
(f − f+)dµ = 0.

Proof of the Lemma 6.6.2 We will prove only the first inequality,
the second being proven in exactly the same way.

For each x ∈ A we will call k(x) the first m ∈ N such that

Sm(x) >
l − 1
n

,

by construction k(x) must be finite for each x ∈ A. Hence, setting
Xk = {x ∈ A | k(x) = k}, ∪kXk = A, and for each ε > 0 there exists
N ∈ N such that

µ

(
N⋃
k=1

Xk

)
≥ µ(A)(1− ε).

Let us call

Y = A\
N⋃
k=1

Xk.

Then µ(Y ) ≤ µ(A)ε, also set L = supx∈A |f(x)|. The basic idea is to
follow, for each point x ∈ A, the trajectory {T ix}Mi=0, where M > N
will be chosen sufficiently large. If the point would never visit the set
Y , we could group the sum SM (x) in pieces all, in average, larger than
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l−1
n , so the same would hold for SM (x). The difficulties come from the

visits to the set Y .
For each n ∈ {0, ..., M} define

f̃n(x) =

 f(Tnx) if Tnx 6∈ Y
l

n
if Tnx ∈ Y

and

S̃M (x) =
1
M

M−1∑
n=0

f̃n(x).

By definition y ∈ Y implies y 6∈ X1, i.e. f(y) ≤ l−1
n . Accordingly,

f̃(x) ≥ f(Tnx) for each x ∈ A. Note that for each n we change the
function f ◦ Tn only at some points belonging to the set Y and l

n can
be taken less or equal than L ( otherwise µ(A) = 0), consequently∫

A
fdµ =

∫
A
SMdµ ≥

∫
A
S̃Mdµ− Lµ(Y ) ≥

∫
A
S̃Mdµ− Lµ(A)ε.

We are left with the problem of computing the sum. As already men-
tioned the strategy consists in dividing the points according to their
trajectory with respect to the sets Xn. To be more precise, let x ∈ A,
then by definition it must belong to some Xn or to Y . We set k1(x)
equal to j is x ∈ Xj and k1(x) = 1 if x ∈ Y . Next, k2(x) will have value
j if T k1(x)x ∈ Xj or value 1 if T k1(x) ∈ Y . If k1(x) + k2(x) < M , then
we go on and define similarly k3(x). In this way, to each x ∈ A we can
associate a number m(x) ∈ {1, ..., M} and indices {ki(x)}m(x)

i=1 , ki(x) ∈
{1, ..., N}, such that M−N ≤

∑m(x)−1
i=1 ki(x) < M ,

∑m(x)
i=1 ki(x) ≥M .

Let us call Kp(x) =
∑p

j=1 kj(x). Using such a division of the orbit in
segments of length ki(x) we can easily estimate

S̃M (x) =
1
M


m(x)−1∑
i=1

ki(x)

 1
ki(x)

Ki(x)−1∑
j=Ki−1(x)

f̃j(x)

+
M−1∑

i=Km(x)−1(x)

f̃(T ix)


≥ 1
M

m(x)−1∑
i=1

ki(x)
l − 1
n
≥ M −N

M

l − 1
n

.

Putting together the above inequalities we get
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∫
A
fdµ ≥

{
(M −N)(l − 1)

Mn
− Lε

}
µ(A)

≥ l + 1
n

µ(A)−
{

2
n

+
N(l − 1)
Mn

+ Lε

}
µ(A).

which, by choosing first ε sufficiently small and, after, M sufficiently
large, concludes the proof. �

To prove the result for all function in L1(X, µ) it is convenient
to deal at first only with positive functions (which suffice since any
function is the difference of two positive functions) and then use the
usual trick to cut off a function (that is, given f define fL by fL(x) =
f(x) if f(x) ≤ L, and fL(x) = L otherwise) and then remove the cut
off. The reader can try it as an exercise. �

Birkhoff theorem has some interesting consequences.

Corollary 6.6.3 For each f ∈ L1(X, µ) the following holds

1. f+ ∈ L1(X, µ);

2. f+(Tx) = f+(x) almost surely.

The proof is left to the reader as an easy exercise (see Problem
6.18).

Another interesting fact, that starts to show some connections be-
tween averages and invariant sets, emerges by considering a measurable
set A and its characteristic function χA. A little thought shows that
the ergodic average χ+

A(x) is simply the average frequency of visit of
the set A by the trajectory {Tnx} (Problem 6.28).

Birkhoff theorem implies also convergence in L1 and L2 (see also
Problem 6.26). Yet, it is interesting to note that convergence in L2 can
be proven in a much more direct way.

Theorem 6.6.4 (Von Neumann) Let (X,T, µ) be a Dynamical Sys-
tem, then for each f ∈ L2(X, µ) the ergodic average converges in
L2(X, µ).

Proof. We have already seen that it can be useful to lift the dy-
namics at the level of the algebra of function or at the level of measures.
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This game assumes different guises according to how one plays it, here
is another very interesting version.

Let us define U : L2(X,µ)→ L2(X,µ) as

Uf := f ◦ T.

Then, by the invariance of the measure, it follows ‖Uf‖2 = ‖f‖2, so U
is an L2 contraction (actually, and L2-isometry). If T is invertible, the
same argument applied to the inverse shows that U is indeed unitary,
otherwise we must content ourselves with

‖U∗f‖22 = 〈UU∗f, f〉 ≤ ‖UU∗f‖2‖f‖2 = ‖U∗f‖2‖f‖2,

that is ‖U∗‖2 ≤ 1 (also U∗ is and L2 contraction).
Next, consider V1 = {f ∈ L2 | Uf = f} and V2 = Rank(1 − U).

First of all, note that if f ∈ V1, then

‖U∗f − f‖22 = ‖U∗f‖22 − 〈f, U∗f〉 − 〈U∗f, f〉+ ‖f‖22 ≤ 0.

Thus, f ∈ V ∗1 := {f ∈ L2 | U∗f = f}. The same argument applied to
f ∈ V ∗1 shows that V1 = V ∗1 . To continue, consider f ∈ V1 and h ∈ L2,
then

〈f, h− Uh〉 = 〈f − U∗f, h〉 = 0.

This implies that V ⊥1 = V2, hence V1 ⊕ V2 = L2. Finally, if g ∈ V2,
then there exists h ∈ L2 such that g = h− Uh and

lim
n→∞

1
n

∞∑
i=0

U ig = lim
n→∞

1
n

(h− Unh) = 0.

On the other hand if f ∈ V1 then limn→∞
1
n

∑∞
i=0 U

if = f . The only
function on which we do not still have control are the g belonging to
the closure of V2 but not in V2. In such a case there exists {gk} ⊂ V2

with limk→∞ gk = g. Thus,

‖ 1
n

∞∑
i=0

U ig‖2 ≤ ‖
1
n

∞∑
i=0

U igk‖2 + ‖g − gk‖2 ≤ ‖
1
n

∞∑
i=0

U igk‖2 +
ε

2
,

provided we choose k large enough. Then, by choosing n sufficiently
large we obtain

‖ 1
n

∞∑
i=0

U ig‖2 ≤ ε.
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We have just proven that

lim
n→∞

1
n

n−1∑
i=0

U i = P

where P is the orthogonal projection on V1. �

Another very general result, of a somewhat disturbing nature, is
Poincaré return theorem.

Theorem 6.6.5 (Poincaré) Given a dynamical systems (X, T, µ) and
a measurable set A, with µ(A) > 0, there exists infinitely many n ∈ N
such that

µ(T−nA ∩A) 6= 0.

The proof is rather simple (by contradiction) and the reader can cer-
tainly find it out by herself (see Problem 6.19).32

Let us go back to the relation between ergodicity and averages.
From an intuitive point of view a function from X to R can be thought
as an “observable,” since to each configuration it associates a value that
can represent some relevant property of the configuration (the property
that we observe). So, if we observe the system for a long time via the
function f , what we see should be well represented by the function f+.
Furthermore, notice that there is a simple relations between invariant
functions and invariant sets. More precisely, if a measurable set A is
invariant, then its characteristic function χA is a measurable invariant
function; if f is an invariant function then for each measurable set
I ∈ R the set f−1(I) is a measurable invariant set (if the implications
of the above discussions are not clear to you, see Problem 6.27).

As a byproduct of the previous discussion it follows that if a sys-
tem is ergodic then for each function f ∈ L1(X, µ) the function f+ is

32An unsettling aspect of the theorem is due to the following possibility. Consider
a room full of air, the motion of the molecules can be thought to happen accordingly
to Newton equations, i.e. it is an Hamiltonian systems, hence a dynamical system
to which Poincaré theorem applies. Let A be the set of configurations in which all
the air is in the left side of the room. Since we ignore, in general, the past history
of the room, it could very well be that at some point in the past the systems was
in a configuration belonging to A–maybe some silly experiment was performed. So
there is a positive probability for the system to return in the same state. Therefore
the disturbing possibility of sudden death by decompression.
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almost everywhere constant and equal to
∫
X f . We have just proven

an interesting characterization of the ergodic systems:

Theorem 6.6.6 A Dynamical System (X, T, µ) is ergodic if and only
if for each f ∈ L1(X, µ) the ergodic average f+ is constant; in fact,
f+ = µ(f) a.e..

In other words, if we observe the time average of some observable for
a sufficiently long time then we obtain a value close to its space average.
The previous observation is very important especially because the space
average of a function does not depend on the dynamics. This is exactly
what we where mentioning previously: the fact that the dynamics is
sufficiently ‘complex’ allows us to ignore it completely, provided we are
interested only in knowing some average behavior. The relevance of
ergodic theory for physical systems is largely connected to this fact.

6.7 Mixing

We have argued the importance of ergodicity, yet from a physical point
of view ergodicity may be relevant only if it takes places at a sufficiently
fast rate (i.e., if the time average converges to the space average on a
physically meaningful time scale). This has prompted the study of
stronger statistical properties of which we will give a brief, and by no
mean complete, account in the following.

Definition 6.7.1 A Dynamical System (X, T, µ) is called mixing if
for every pairs of measurable sets A, B we have

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B).

Obviously, if a system is mixing, then it is ergodic. In fact, if A is
an invariant set for T , then T−nA ⊂ A, so, calling Ac the complement
of A, we have

µ(A)µ(Ac) = lim
n→∞

µ(T−nA ∩Ac) = 0,

and the measure of A is either one or zero.
An equivalent characterization of mixing is the following:
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Proposition 6.7.2 A Dynamical System (X, T, µ) is mixing if and
only if

lim
n→∞

∫
X
f ◦ Tngdµ =

∫
X
fdµ

∫
X
gdµ

for every f, g ∈ L2(X, µ) or for every f ∈ L∞(X,µ) and g ∈ L1(X,µ).33

The proof is rather straightforward and it is left as an exercise
to the reader (see Problem 6.29) together with the proof of the next
statement.

Proposition 6.7.3 A Dynamical System (X, T, µ), with X a compact
metric space, T continuous and µ Borel, is mixing if and only if for
each probability measure λ absolutely continuous with respect to µ

lim
n→∞

λ(f ◦ Tn) = µ(f)

for each f ∈ C0(T2).

This last characterization is interesting from a mathematical point
of view. Define, as usual, the evolution of a measure via the equation

(T∗λ)(f) ≡ λ(f ◦ T )

for each continuous function f . If for each measure, absolutely contin-
uous with respect to the invariant one, the evolved measure converges
weakly to the invariant measure, then the system is mixing (and thus
the evolved measures converge strongly). This has also a very impor-
tant physical meaning: if the initial configuration is known only in
probability, the probability distribution is absolutely continuous with
respect to the invariant measure, and the system is mixing, then, after
some time, the configurations are distributed according to the invari-
ant measure. Again the details of the evolution are not important to
describe relevant properties of the system.

6.7.1 Examples

Rotations

We have seen that the translations by an irrational angle are ergodic. They
are not mixing. The reader can easily see why.

33The quantity
R
X
f ◦ Tg −

R
X
f

R
X
g is called “correlation,” and its tending to

zero–which takes places always in mixing systems–it is called “decay of correlation.”
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Bernoulli shift

The key observation is that, given a measurable set A, for each ε > 0 there
exists a set Aε ∈ A, thus depending only on a finite subset of indices,34

with the property35

µ(Aε\A) ≤ ε.

Then, given A, B measurable, and for each ε > 0, let Aε, Bε be such an
approximation, and IA, IB the defining sets of indices, then∣∣µ(T−mA ∩B)− µ(A)µ(B)

∣∣ ≤ 4ε+
∣∣µ(T−mAε ∩Bε)− µ(Aε)µ(Bε)

∣∣.
If we choose m so large that (IA +m)∩ IB = ∅, then by the definition of
Bernoulli measure we have

µ(T−mAε ∩Bε) = µ(T−mAε)µ(Bε) = µ(Aε)µ(Bε),

which proves
lim
m→∞

µ(T−mA ∩B) = µ(A)µ(B).

Dilation

This system is mixing. In fact, let f, g ∈ C1(T), then we can represent
them via their Fourier series f(x) =

∑
k∈Z e

2πikxfk, f−k = fk. It is well
known that

∑
k∈Z |fk| <∞ and |fk| ≤ c

|k| , for some constant c depending
on f . Therefore,

f(Tnx) =
∑
k∈Z

e2πi2nkxfk,

which implies that the only Fourier coefficients of f ◦ Tn different from
zero are the {2nk}k∈Z. Hence,∣∣∣∣∫

T
f ◦ Tng −

∫
T
f

∫
T
g

∣∣∣∣ =

∣∣∣∣∣∑
k∈Z

fkg2nk − f0g0

∣∣∣∣∣ ≤ c2−n∑
k∈Z
|fk|.

The previous inequalities imply the exponential decay of correlations for
each smooth function. The proof is concluded by a standard approximation

34Remember, this means that there exists a finite set I ⊂ Z such that it is possible
to decide if σ ∈ Σn belongs or not to Aε only by looking at {σi}i∈I .

35This follows from our construction of the σ-algebra and by the definition of
outer measure, see Examples 6.1.1–Bernoulli shift.
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argument: given f, g ∈ L2(X, dµ), for each ε > 0 exists fε, gε ∈ C1(X):
‖f − fε‖2 < ε and ‖g − gε‖2 < ε. Thus,∣∣∣∣∫

T
f ◦ Tng −

∫
T
f

∫
T
g

∣∣∣∣ ≤ ∣∣∣∣∫
T
fε ◦ Tngε −

∫
T
fε

∫
T
gε

∣∣∣∣+2(‖f‖2+‖g‖2)ε,

which yields the result by choosing first ε small and then n sufficiently
large.

6.8 Stronger statistical properties

One very fruitful idea in the realm of measurable dynamical systems is
the idea of entropy . In some sense the entropy measure the complexity
of the motions from a measure theoretical point of view.

To define it one starts by considering a partition of the space into
measurable sets ξ := {A1, . . . An} and defines36

Hµ(ξ)−
∑
i

µ(Ai) logµ(Ai).

Given two partitions ξ = {Ai}, η = {Bj} we define ξ ∨ η := {Ai ∩Bj}.
Let then be

ξT−n := ξ ∨ T−1(ξ) ∨ · · · ∨ T−n+1(ξ).

It is then possible to prove that the sequence Hµ(ξT−n) is sub-additive,
hence the limit

hµ(T, ξ) := lim
n→∞

1
n
Hµ(ξT−n

exists.

Definition 6.8.1 The entropy of T with respect to µ is defined as

hµ(T ) := sup{hµ(T, ξ) | H(ξ) <∞}

Clearly if a system has positive metric entropy this means that the
motion has a high complexity and it is very far from regular. One of
the main property of entropy is that it is a metric invariant, that is

36The case of a countable partition, or even an uncountable partition, can be
handled and it is very relevant, but outside the aims of this book, see [Roh67] for a
complete treatment of the subject.
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if two systems are metrically conjugate (see the following), then they
have the same metric entropy.

Even more extreme form statistical behaviors are possible, to present
them we need to introduce the idea of equivalent systems. This is done
via the concept of conjugation that we have already seen informally in
Example 6.4.1 (logistic map, circle map).

Definition 6.8.2 Two Dynamical Systems (X1, T1, µ1), (X2, T2, µ2)
are (measurably) conjugate if there exists a measurable map φ : X1 →
X2 almost everywhere invertible37 such that µ1(A) = µ(φ(A)) and
T2 ◦ φ = φ ◦ T1.

Clearly, the conjugation is an equivalence relation. Its relevance for
the present discussion is that conjugate systems have the same ergodic
properties (Problem 6.38).38

We can now introduce the most extreme form of stochasticity.

Definition 6.8.3 A dynamical system (X, T, µ) is called Bernoulli if
there exists a Bernoulli shift (M, ν, σ) and a measurable isomorphism
φ : X → M (i.e., a measurable map one one and onto apart from a
set of zero measure and with measurable inverse) such that, for each
A ∈ X,

ν(φ(A)) = µ(A)

and

T = φ−1 ◦ σ ◦ φ.

That is a system is Bernoulli if it is isomorphic to a Bernoulli shift.
Since we have seen that Bernoulli systems are very stochastic (remind
that they can be seen as describing a random event like coin tossing)
this is certainly a very strong condition on the systems. In particular it
is immediate to see that Bernoulli systems are mixing (Problem 6.38).

37This means that there exists a measurable function φ−1 : X2 → X1 such that
φ ◦ φ−1 = id µ2-a.e. and φ−1 ◦ φ = id µ1-a.e..

38Of course the reader can easily imagine other forms of conjugacy, e.g. topological
or differential conjugation.
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6.8.1 Examples

Dilation

We will show that such a system is indeed Bernoulli. The map φ is obtained
by dividing [0, 1) in [0, 1

2) and [1
2 , 1). Then, given x ∈ T, we define

φ : T→ Σ+
2 by

φ(x)i =


1 if T ix ∈ [0,

1
2

)

2 if T ix ∈ [
1
2
, 1)

the reader can check that the map is measurable and that it satisfy the
required properties. Note that the above shows that the Bernoulli measure
with p1 = p2 = 1

2 is nothing else than Lebesgue measure viewed on the
numbers written in basis two. This may explain why we had to be so
careful in the construction of the Bernoulli measure.

Baker

Let us define φ−1; for each σ ∈ Σ2

x =
∞∑
i=0

σ−i
2i+1

,

y =
∞∑
i=1

σi
2i
.

Again the rest is left to the reader.

Forced Pendulum

In the introduction we have seen that there exists a square Q with stable
and unstable sides such that, calling T the map introduced by the flow at
a proper time, TQ∩Q ⊃ Qu0 ∪Qu1 . Where Qui are rectangles that go from
one stable side of Q to the other and, in analogy, T−1Q ∩Q ⊃ Qs0 ∪Qs1.

We can use this fact to code the dynamics similarly to what we have
done for the Backer map. Namely, given the set Λ =

⋂
n∈Z T

nQ (this set
it is non empty–see Example 6.4.1–Horseshoe) and φ : Λ→ Σ2 define by

[φ(x)]k =
{
i ∈ {0, 1} if k ≥ 0 and T kx ∈ Qui
i ∈ {0, 1} if k < 0 and T kx ∈ Qsi .
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It is easy to verify that φ is onto and that it is a.e. invertible. It remains to
specify the measure on the Horseshoe, we can just pull back any invariant
measure on the shift and we will get an invariant measure on the set Λ.

Let us conclude with a final remark on the physical relevance of the
concept just introduced. As we mentioned, if f is an observable, then
its ergodic average represents the result of an observation over a very
long time (the time scale being determined by the mixing properties of
the system). Yet, in reality, it may happen that we look for too short
a time or, after studying a certain quantity, we can get a grant to buy
the needed apparatus to perform more precise measurements. What
would we see in such a case? Clearly, we would not see a constant, even
for an ergodic system, and we would interpret the non constant part as
fluctuations. In many cases it may happen that this fluctuations have
a very special nature: they are Gaussian. In such a case we say that
the system satisfies the Central Limit Theorem (CLT). Let us be more
precise: define Snf := 1√

n

∑n−1
i=0 f ◦ T i.

Definition 6.8.4 Given a Dynamical System (X,T, µ) and a class of
observables A ⊂ L2(X,µ) we say that the class A satisfies the CLT if
∀f ∈ A, µ(f) = 0,

lim
n→∞

µ({x | Snf ≥ t}) =
1√
2π

∫ t

−∞
e−

x2

2σ2 dx,

where (the variance) σ is defined by σ2 = µ(f) + 2
∑∞

i=1 µ(f ◦ T if).39

The relevance of the above theorem is the following: if the system
is ergodic and satisfies the CLT, then 1

n

∑n−1
i=0 f ◦ T i − µ(f) = O( 1√

n
),

we have thus the precise scale on which the fluctuations should appear.
In this book we will be mainly interested in the question of how to

establish if a given system is ergodic or not.
Unfortunately, neither ergodicity is a typical property of dynamical

systems, nor is regular motion. It is a frustrating fact of life that
generically dynamical systems present some kind of mixed behavior.
Nevertheless, there are some class of systems that are known to be

39This definition is a bit stricter than usual because, in general, there may be
cases in which the fluctuations are Gaussian but the formula for the variance does
not hold as written.
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ergodic and among them the hyperbolic systems are probably the most
relevant. We will discuss them in the next chapters.

Problems

6.1. Given a measurable Dynamical Systems (X,T, µ) verify that, for
each measurable set A, if T (A) is measurable, then µ(TA) ≥
µ(A).

6.2. Set M1(X) = {µ ∈ M | µ(X) = 1} and M1
T (X) = M1(X) ∩

MT (X). Prove that M1
T (X) and M1(X) are convex sets in

M(x).

6.3. Call Me(X) ⊂ M1(X) the set of ergodic probability measures.
Show that Me(X) consists of the extremal points of MT (X).

6.4. Prove that the Lebesgue measure is invariant for the rotations on
T.

6.5. Consider a rotation by ω ∈ Q, find invariant measures different
from Lebesgue.

6.6. Prove that the measure µh defined in Examples 6.1.1 (Hamilto-
nian systems) is invariant for the Hamiltonian flow.

6.7. Given a Poincaré section prove that there exists c > 0 such that
inf τΣ ≥ c > 0.

6.8. Show that νΣ, defined in (6.2.1) is well defined.

6.9. Show that the return time τΣ is finite νΣ-a.e. .

6.10. Show that νΣ is TΣ invariant. Verify that, collecting the results
of the last exercises, (Σ, TΣ, νΣ) is a Dynamical System.

6.11. something about holomorphic dynamics?

6.12. Prove that the Bernoulli measure is invariant with respect to the
shift.

6.13. Let Σp be the set of periodic configurations of Σ. If µ is the
Bernoulli measure prove that µ(Σp) = 0
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6.14. Consider the Bernoulli shift on Z and define the following equiv-
alence relation: σ ∼ σ′ iff there exists n ∈ Z such that Tnσ = σ′

(this means that two sequences are equivalent if they belong to
the same orbit). Consider now the equivalence classes (the space
of orbits) and choose40 a representative from each class, call the
set so obtained K. Show that K cannot be a measurable set.

6.15. Compute the transfer operator for maps of T. Prove that ‖Lh‖1 ≤
‖h‖1.

6.16. Prove the Lasota-York inequality (6.4.5).

6.17. Prove that for each sequence {hn} ⊂ C(1)(T), with the property
supn∈N ‖h′n‖1+‖hn‖1 <∞, it is possible to extract a subsequence
converging in L1.

6.18. Prove Corollary 6.6.3.

6.19. Prove Theorem 6.6.5

6.20. Let U ⊂ X of positive measure, consider

fU (x) = lim
1
n

n−1∑
i=0

χU (T ix).

Show that the limit exists and that the setA0 := {x ∈ U | fU (x) =
0} has zero measure.

6.21. A topological Dynamical System (X,T ) is called Topologically
transitive, if it has a dense orbit. Show that if (Td, T,m) is ergodic
and T is continuous, then the system is topologically transitive.

6.22. Give an example of a system with a dense orbit which it is not
ergodic.

6.23. Give an example of an ergodic system with no dense orbit.

6.24. Give an example of a Dynamical Systems which does not have
any invariant probability measure.

40Attention !!!: here we are using the Axiom of choice.
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6.25. Show that a Dynamical Systems (X,T, µ) is ergodic if and only if
there does not exists any invariant probability measure absolutely
continuous with respect to µ, beside µ itself.

6.26. Prove that Birkhoff theorem implies Von Neumann theorem.

6.27. Prove that if (X,T, µ) is ergodic, then all f ∈ L1(X,µ) such that
f ◦ T = f are a.e. constant. Prove also the converse.

6.28. For each measurable set A, let

FA,n(x) =
1
n

n−1∑
i=0

χA(T ix).

be the average number of times x visits A in the time n. Show
that there exists FA = limn→∞ FA,n a.e. and prove that, if the
system is ergodic, FA = µ(A).

6.29. Prove Proposition 6.7.2 and Proposition 6.7.3.

6.30. Show that the irrational rotations are not mixing.

6.31. Prove that if f ∈ C2(T), then its Fourier series converges uni-
formly.41

6.32. Let ν be a Borel measure on Q = [0, 1]2 such that ν(∂xf) = 0
for all f ∈ C1

per(Q) = {f ∈ C1(Q) | f(0, y) = f(1, y) ∀ y ∈ [0, 1]}.
Prove that there exists a Borel measure ν1 on [0, 1] such that
ν = m× ν1.

6.33. Prove that is a flow is ergodic (mixing) so is each Poincarè section.
Prove that is a map is ergodic so is any suspension on the map.
Give an example of a mixing map with a non-mixing suspension
(constant ceiling).

6.34. Consider ([0, 1], T ) where

T (x) =
1
x
−
[

1
x

]
41This result is far from optimal, see [?] if you want to get deeper in the theory

of Fourier series.
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([a] is the integer part of a), and

µ(f) =
1

ln 2

∫ 1

0
f(x)

1
1 + x

dx.

Prove that ([0, 1], T, µ) is a Dynamical System.42

6.35. In view of the two previous exercises explain why it is problem-
atic to study the statistical properties of the Gauss map on a
computer.

6.36. Choose a number in [0, 1] at random according to Lebesgue dis-
tribution. Assuming that the Gauss map is mixing (which it is,
see ???) compute the average percentage of numbers larger than
n in the associated continuous fraction.

6.37. Let (X0, T0, µ0) be a Dynamical System and φ : X0 → X1 an
homeomorphism. Define T1 := φ ◦ T0 ◦ φ−1 and µ1(f) = µ0(f ◦
φ−1). Prove that (X1, T1, µ1) is a Dynamical System.

6.38. Let (X0, T0, µ0) be measurably conjugate to (X1, T1, µ1), then
show that one of the two is ergodic if and only if the other is
ergodic. Prove the same for mixing.

6.39. Show that the systems described in Examples ??–strange attrac-
tor and horseshoe, are Bernoulli.

6.40. Prove Lebesgue density theorem: for each measurable set A,
m(A) > 0, there exists x ∈ A such that for each ε > 0 exists
δ > 0 such that m(A ∩ [x− δ, x+ δ]) > (1− ε)2δ.

Hints to solving the Problems

6.3 Use Krein-Milman Theorem [DS88].

6.6 Use the properties ofH to deduce 〈∇φtxH, dxφt∇xH〉 = ‖∇xH‖2,

and thus dxφt∇xH = ‖∇xH‖2
‖∇φtxH‖2

∇φtxH + v where 〈∇φtxH, v〉 = 0.

42The above map is often called Gauss map since to him is due the discovery of
the above invariant measure.
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Then study the evolution of an arbitrarily small parallelepiped
with one side parallel to ∇xH–or look at the volume form if you
are more mathematically incline–remembering the invariance of
the volume with respect to the flow.

6.8 Use the invariance of µ and the fact that, by Problem 6.7, if
A ⊂ Σ then µ(φ[0,δ](A)∩φ[nδ, (n+1)δ]A) = 0 provided (n+1)δ ≤ c.

6.9 Let δ < c and Σδ := φ[0,δ]Σ, apply Poincaré return theorem to
Σδ.

6.12 Check it on the algebra A first.

6.13 Σp is the countable union of zero measure sets.

6.14 Show that K∩TnK ⊂ Σp, then by using Problem 6.13 show that
if K is measurable

∑∞
i=−∞ µ(TnK) = 1 which, by the invariance

of µ, is impossible.

6.15 Use the equivalent definition
∫
gLfdm =

∫
fg ◦ Tdm.

6.17 Consider partitions Pn of T in intervals of size 1
n . Define the

conditional expectation E(h|Pn)(x) = 1
m(I(x)

∫
I(x) hdm, where

x ∈ I(x) ∈ Pn. Prove that ‖E(h|Pn) − h‖1 ≤ 1
n‖h

′‖1. Notice
that the functions E(hn|Pm) have only m distinct values and,
by using the standard diagonal trick, construct an subsequence
hnj such that all the E(hnj |Pm) are converging. Prove that hnj
converges in L1.

6.19 Note that µ(T−nA ∩ T−mA) 6= 0 then, supposing without loss of
generality n < m, µ(A∩ T−m+nA) 6= 0. Then prove the theorem
by absurd remembering that µ(X) <∞.

6.20 The existence follows from Birkhoff theorem, it also follows that
A0 is an invariant set, then

0 =
∫
A0

fU =
∫
A0

χU = µ(A0).
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6.21 For each n ∈ N, x ∈ Td consider B 1
m

(x)–the ball of radius
1
m centered at x. By compactness, there are {xi} such that
∪iB 1

m
(xi) = Td. Let

Am,i = {y ∈ Td | T ky ∩B 1
M

(XI) = ∅ ∀k ∈ N},

clearly Am,i = ∩k∈NT
−kB 1

m
(xi)c has the property T−1Am,i ⊃

Am,i. It follows that Ãm,i = ∪n∈NT
−nAm,i ⊃ Am,i is an invariant

set and it holds µ(Ãm,i\Am,i) = 0. Since Am,i it is not of full
measure, Ãm,i, and thus Am,i, must have zero measure. Hence,
Ām = ∩iAm,i has zero measure. This means that ∪m∈NĀm has
zero measure. Prove now that, for each y ∈ Td, the trajectories
that never get closer than 2

m to y are contained in Ām, and thus
have measure zero. Hence, almost every point has a dense orbit.)
Extend the result to the case in which X is a compact metric
space and µ charges the open sets (that is: if U ⊂ X is open,
then µ(U) > 0.

6.22 A system with two periodic orbits, and the measure supported
on them. Along such lines more complex examples can be readily
constructed.

6.23 A non transitive system with a measure supported on a periodic
orbit.

6.24 X = Rd, Tx = x+ v, v 6= 0.

6.26 Note that the ergodic average is a contraction in L∞, an isom-
etry in L2 and that L1 ⊂ L2 (since the measure is finite). Use
Lebesgue dominate convergence theorem to prove convergence in
L2 for bounded functions. Use Fatou to show that if f ∈ L2 then
f+ ∈ L2 and a 3-ε argument to conclude.

6.28 Birkhoff theorem and Theorem 6.6.6.

6.29 Note that for each measurable set A and ε > 0 there exists
f ∈ C0(X) such that µ(|f − χA|) < ε –by Uryshon Lemma and
by the regularity of Borel measures. To prove that µ(T−nA ∩
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B) → µ(A)µ(B) choose dλ = µ(B)−1χBdµ and use the invari-
ance of µ to obtain the uniform estimate λ(|f ◦ Tn−χA ◦ Tn|) ≤
µ(B)−1µ(|f − χA|).

6.31 Remember that fn = 1
2π

∫
T e

2πinxf(x)dx. Thus

fn =
1

(2πin)22π

∫
T
e2πinxf (2)(x)dx.

6.32 The measure ν1 is nothing else then the marginal with respect
to x, that is: for each continuous function f : [0, 1] → R define
f̃ : Q → R by f̃(x, y) = f(y), then ν1(f) = ν(f̃). To prove the
statement use Fourier series. If f is smooth enough f(x, y) =∑

k∈Z f̂k(y)e2πikx where the Fourier series for f and ∂xf converge
uniformly. Then notice that 0 = ν(∂xe2πik·) = 2πikν(e2πik·) im-
plies ν(f) = ν(f̂0) = m× ν1(f).

6.34 Write µ(f ◦ T ) =
∑∞

i=1

∫ 1
i
1
i+1

f ◦ T (x)µ(dx), change variable and

use the identity 1
a2+a

= 1
a−

1
a+1 to obtain a series with alternating

signs.

6.35 The computer uses only rational numbers. It is quite amazing
that these type of pathologies arises rather rarely in the numerical
studies carried out by so many theoretical physicist.

6.36 Define f(x) = [x−1], then the entries of the continuous frac-
tion of x are {f ◦ T i}. The quantity one must compute is then
m(limk→∞

i
k

∑k−1
i=0 χ[n,∞) ◦ f ◦ T i) = µ([n,∞)).

6.40 We have seen in Examples 6.8.1-Dilations that Lebesgue measure
is equivalent to Bernoulli measure and that the cylinder corre-
spond to intervals. It then suffices to prove the theorem for the
latter. Let A ⊂ Σ+ such that µ(A) > 0, then, for each ε > 0,there
exists Aε ∈ A such that Aε ⊃ A and µ(Aε) − µ(A) < εµ(A).
Since Aε ∈ A, it exists nε ∈ N such that it is possible to decide if
σ ∈ Aε only by looking at {σ1, . . . , σnε}. Consider all the cylin-
ders I{A(0; k1, . . . , knε)}, clearly if I ∈ I then I∩Aε is either I or
∅. Let I+ = {I ∈ I | I ∩Aε = I} and I+ = {I ∈ I | I ∩Aε = ∅}.
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Now suppose that for each I ∈ I+ holds µ(I ∩ A) ≤ (1 − ε)µ(I)
then

µ(A) =
∑
I∈I+

µ(A ∩ I) ≤ (1− ε)µ(Aε) < µ(A),

which is absurd. Thus there must exists I ∈ I+: µ(A ∩ I) >
(1− ε)µ(I).

Notes

Give references for SRB and Gibbs, mention entropy, K-systems. diffeo
with holes, strange attractors, history of the field
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