
Chapter 5

Global behavior: more stu↵ is out there

very Dynamical System studied so far exhibited fairly simple
motions, allowing for a detailed understanding of its behavior. Yet, we
have not addressed yet the problem of long time predictions in systems
with more than two dimensions.

Although this is not the proper occasion for an historical excursus,
it is worthwhile to stress that the first Dynamical Systems widely in-
vestigated have been the planetary motions. Not surprisingly the main
emphasis in such investigations was accurate prediction of future posi-
tions. Nevertheless, exactly from the e↵ort of predicting accurately fu-
ture motions stemmed the consciousness of the existence of very serious
obstructions to such a program. Specifically, in the work of Poincaré
[Poi87] appeared for the first time the phenomena of instability with
respect to initial conditions, a central concept in the understanding of
modern Dynamical Systems. In fact, we will see briefly that such insta-
bility phenomena can be already observed in very simple systems–such
as a periodically forced pendulum–that exhibit a so called “homoclinic
tangle” [Mos01, PT93].

The realization that many relevant systems are very sensitive with
respect to the initial conditions dealt a strong blow to the idea that
it is always possible to predict the future behavior of a system,1 yet

1Without going to the extreme of some authors of the eighteen century arguing
that, given the present state of the universe, a su�ciently powerful mind (maybe
God) could predict all the future. Think, more modestly, of an isolated system and
imagine to use some numerical scheme to try to solve the equations of motion for
an arbitrarily long time with an arbitrary precision.

96



5.1. A PENDULUM–THE MODEL AND A QUESTION 97

the work of many physicist (and we must mention at least Boltzmann)
and mathematicians (in particular, the so called Russian School with
people like Kolmogorov, Anosov, Sinai, but also some western math-
ematicians, like Birkho↵, Smale, Ruelle and Bowen, gave important
contributions) led to the understanding that, although precise predic-
tions where not possible, it was possible and, at times, even easy to
make statistical predictions. The concept of statistical properties of
a Dynamical System will be addressed in the following chapters This
chapter is dedicated to making precise, in a simple example, the nature
of the above mentioned instability.

5.1 A pendulum–The model and a question

We will study a seemingly trivial example: a forced pendulum. To be
more concrete, let us imagine a pendulum of length l = 1 meter, mass
m = 1 kilogram and remember that the gravitational constant (on the
earth surface) is approximately g = 9.8 meters per second squared.
The Hamiltonian of the system reads [Gal83]

H =
1

2l2m
p2 �mgl cos ✓, (5.1.1)

where ✓ is the angle, counted counterclockwise, formed by the pendu-
lum with the vertical direction (✓ = 0 corresponds to the configura-
tion in which the pendulum assumes the lowest possible position) and
p = l2m✓̇ is the associated momentum. Thus (✓, p) are the coordinates
of the pendulum. The phase space M where the motion takes place
consists of T1 ⇥ R.

The equations of motion associated to the Hamiltonian (5.1.1) rep-
resent the motion of an ideal pendulum in the vacuum feeling only the
force of gravity. Clearly, this is an highly idealized situation with no
counterpart in realty. Every system interacts with the rest of the uni-
verse. Thus the only hope for the idea of isolated systems to be fruitful
is that the interaction with the exterior does not a↵ect significantly the
behavior of the system. Let us try to see what this can mean in reality.

The first issue is clearly friction. Let us imagine that we have set up
the pendulum in a reasonable vacuum and reduced the friction at the
suspension point so that the loss of energy is negligible on the time scale
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of few minutes. Does such a system behaves as an isolated pendulum
within such a time frame? One problem is that the suspension point
is still in contact with the rest of the world. If the pendulum is in a
lab not so distant from an street (a rather common situation), then
the tra�c will induce some vibrations. It is then natural to ask: what
happens if the suspension point of the pendulum vibrates?

In fact, nothing much happens for small pendulum oscillations (this
is a consequence of Komogorv-Arnold-Moser theory, an highly non triv-
ial fact), but if we start close to the vertical configuration it is con-
ceivable that a motion that would be oscillatory for the unperturbed
pendulum could gather enough energy from the external force as to
change its nature and become rotatory, this would create a substantial
di↵erence between the unperturbed (ideal) and the perturbed (more
realistic) case.

This is exactly the question we want to address:

Question: Can we really predict the motion for a reasonable time if
the initial condition is close to the vertical ?

We will assume that the frequency of vibration ! is of the order
of one hertz2 and the amplitude of the oscillations is very very small.
Hence, as good mathematicians, we will call such an amplitude ". In
other words, the suspension point moves vertically according to the law
" cos!t.

The Hamiltonian of the vibrating pendulum is then given by (see
Problem 5.1)

H"(✓, p, t) =
1

2l2m
p2 �mgl cos ✓ � "m!2l cos!t cos ✓. (5.1.2)

2One hertz corresponds to one oscillation every second, and it can be the order
of magnitude for the frequency of a vibration transmitted through the ground (R
waves) at a reasonable distance. Thus we are assuming ! = 2⇡.
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Accordingly the equation of motion are (see Problem 5.1)3

✓̇ =
@H"

@p
=

p

l2m

ṗ = �@H"

@✓
= �mgl sin ✓ � "m!2l cos!t sin ✓.

(5.1.3)

It is well known that the function H is an integral of motion for
the solutions of (5.1.3) for " = 0, that is: H computed along the solu-
tions of the associated equations of motion is constant.4 The physical
meaning of H is the energy of the system. Clearly, the energy H" is
not constant in general since the vibration can add or subtract energy
to the pendulum.

5.2 Instability–unperturbed case

Let us first recall few basic facts about the unperturbed pendulum.
The equation of motions are given by the (5.1.3) setting " = 0. It is
obvious that there exists two fixed points: (0, 0) which corresponds to
the pendulum at rest and is clearly stable , and (⇡, 0) which corresponds
to the pendulum in the vertical position and is certainly unstable. Our
interest here is to analyze the motions that start close to the unstable
equilibrium and to make more precise what it is meant by instability.

5.2.1 Unstable equilibrium

If we want to have an idea of how the motion looks like near a fixed
point the natural first step is to study the linearization of the equation
of motion near such a point. In our case, using the coordinates (✓

0

, p) =
(✓ � ⇡, p), they look like

✓̇
0

=
p

l2m
ṗ = mgl✓

0

.
(5.2.4)

3Here we write the Hamilton equations associated to the Hamiltonian, see [Arn99,
Gal83] for the general theory.

4See [Arn99, Gal83] for this general fact or do Problem 5.4 for the simple case
at hand.
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Let !p =
q

g
l , the general solution of (5.2.4) is

(✓
0

(t), p(t)) = (↵e!p

t + �e�!
p

t,ml2!p{↵e!p

t � �e�!
p

t}),
where ↵ and � are determined by the initial conditions. Note that if the
initial condition has the form ↵(1, ml

p
gl) it will evolve as ↵e!p

t(1, ml
p
gl).

While if the initial condition is of the form �(1, �ml
p
gl) it will evolve

as �e�!
p

t(1, �ml
p
gl). In other words the directions (1, ml

p
gl) and

(1, �ml
p
gl) are invariant for the linear dynamics. The first direction

is expanded (and because of this is called unstable direction) while the
second is contracted (stable direction).
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Figure 5.1: Unstable fixed point (phase portrait)

Let us imagine to start the motion from an initial condition of the
type (⇡ + ✓

0

, 0), ✓
0

2 [��, �], where �  10�4 represents the precision
with which we are able to set the initial condition (one tenth of a
millimeter); what will happen under the linear dynamics?

Our initial condition correspond to choosing, at time zero, ↵ =
�  �

2

. As time goes on the coe�cient of � becomes exponentially
small while the coe�cient of ↵ increases exponentially, thus a good
approximation of the position of the pendulum after some time is given
by

✓
0

(t) ⇡ ↵e!p

t. (5.2.5)

Since !p ⇡ 3.13 seconds�1, it follows that after about 2.5 seconds the
position of the pendulum can be anywhere up to a distance of about
10 centimeters from the unstable position.
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This means that the unstable position is really unstable and if we
tray, as best as we can, to put the pendulum in the unstable equilibrium
(always imagining that the friction has been properly reduced) it will
typically fall after few seconds and it will fall in a direction that we
are not able to predict (since it depend on the sign of �, our unknown
mistake). Nevertheless, after the ideal pendulum starts falling in one
direction the subsequent motion is completely predictable, as we will
see shortly.

An obvious objection to the above analysis is that I did not show
that the linearized equation describes a motion really close to the one
of the original equations. The answer to this question is particularly
simple in this setting and is addressed in the next subsection.

5.2.2 The unstable trajectories (separatrices)

Given the already noted fact that, for " = 0, H is a constant of motion,
the phase space M is naturally foliated in the level curves of H, on
which the motion must take place. This allows us to obtain a fairly
accurate picture of the motions of the unperturbed pendulum. In fact,
the level curves are given by the equations

p2

2l2m
�mgl cos ✓ = E

where E is the energy of the motion. It is easy to see that E = �mgl
corresponds to the stable fixed point (✓, p) = (0, 0); �mgl < E <

mgl corresponds to oscillations of amplitude arccos
h

E
mgl

i

; E > mgl

corresponds to rotatory motions of the pendulum. The last case E =
mgl is of particular interest to us: obviously it corresponds to the
unstable fixed point (⇡, 0), yet there are other two solution that travel
on the two curves

p = ±ml
p

2lg(1 + cos ✓).

This two curves are the ones that separate the oscillatory motions
from the rotatory ones and, for this reasons, are called separatrices.
It is very important to understand the motion along such trajectories,
luckily the two di↵erential equations

✓̇ = ±
r

2
g

l
(1 + cos ✓). (5.2.6)
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⇢⇡
�⇠

�⇡ ⇡

Figure 5.2: Unperturbed pendulum (phase portrait)

can be integrated explicitly (see Problem 5.5) yielding, for ✓(0) = 0,

✓(t) = 4 arctan e±!
p

t � ⇡. (5.2.7)

This orbits are asymptotic to the unstable fixed point both at t !
+1 and at �1 and, for |t| large, agree with the linear behaviour of
section 5.2.1. This situation is somewhat atypical as we will see briefly.

5.3 The perturbed case

5.3.1 Reduction to a map

The motion of the above system takes place on the cylinder M =
S1 ⇥ R. By the theorem of existence and uniqueness for the solutions
of di↵erential equations follows immediately the possibility to define the
maps �t

" : M ! M associating to the point (✓, p) the point reached
by the solution of (5.1.3) at time t, when starting at time 0 from the
initial condition (✓, p). In such a way we define the flow �t

" associated
to the (5.1.3).

Clearly �0

"(✓, p) = (✓, p), that is the map corresponding at time zero
is the identity. Moreover, if " = 0 the system is autonomous (the vector
field does not depend on the time) hence the flow defines a group: for
each t, s 2 R

�t+s
0

(✓, p) = �t
0

(�s
0

(✓, p)).
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This corresponds to the obvious fact that the motion for a time t + s
can be obtained first as the motion from time 0 to time s, and then
pretending that the time s is the initial time and following the motion
for time t.

Of course, the above fact does not hold anymore when " 6= 0. In
this case, the maps �t

" depend from our choice of the initial time (if we
define them by starting from time 1 instead then time 0, in general we
obtain di↵erent maps). Nevertheless, due to the fact that the external
force is periodic something can be saved of the above nice property.

Let us define the map T" : M ! M by

T" = �
2⇡
!

" ,

then (see Problem 5.3), for each n 2 Z,

Tn
" = �

2n⇡

!

" . (5.3.8)

The interest of (5.3.8) is that, for many purposes, we can study the
map T" instead than the more complex object �t

". Morally, it means
that if we look at the system stroboscopically, that is only at the times
2⇡
! n with n 2 Z, then it behaves like an autonomous (time independent)
system.5 Another interesting fact is that the flow �t

" (and hence also
the map T") is area preserving (see Problem 5.7).6

5.3.2 Perturbed pendulum, " 6= 0

The situation for the case " 6= 0 is more complex and no easy way exists
to study these motions.

As a general strategy, to study the behavior of a system (in our
case the map T") it is a good idea to start by investigating simple cases
and then move on from there. In our systems the simplest motion
consists of the equilibrium solutions. These are the time independent
solutions.7 Because of the special type of perturbation chosen the fixed

5This is a very simple case of a very fruitful an general strategy: to look at the
system only when some special event happens–in our case at each time in which the
suspension point has its maximum height. See 6.2 if you want to know more.

6This also is a special instance of a more general fact: the Hamiltonian nature
of the system, see [Arn99, Gal83] if you want to know more.

7That is, equilibrium solutions for the map T
"

. These are periodic solutions for

the flows of period 2⇡
!

. In fact, T
"

x = x means �
2⇡
! x = x.
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points of the system for the case " = 0 remain unchanged when " 6= 0
(see Problem 5.8 for a brief discussion of a more general case).

Next, we can study the infinitesimal nature of the fixed points. It
is natural to expect that the nature of the two fixed points does not
change if " is small, yet to verify this requires some checking. We will
discuss explicitly only the fixed point (⇡, 0).

The first step is to make precise the sense in which the case " 6= 0
is a perturbation of the case " = 0. This can be achieved by obtaining
an explicit estimate on the size of

R" = "�1(T
0

� T").

Let z(t) = (z
1

(t), z
2

(t)) = �t
0

(x)��t
"(x), then substituting in (5.1.3)

and subtracting the general case to the case " = 0 it yields

|ż
1

|  |z
2

|
ml2

|ż
2

|  mgl|z
1

|+ "m!2l.

In order to get better estimates it is convenient to define the new
variables ⇣

1

= z
1

and ml2!p⇣2 = z
2

. In these new variables the preced-
ing equations read

|⇣̇
1

|  !p|⇣2|

|⇣̇
2

|  !p|⇣1|+ "
!2

!pl
.

(5.3.9)

Which implies k⇣̇k  !pk⇣k+ "m!2l. Taking into account that, in
our situation, ml2!p > 1, it follows (see Problem 5.9)

kRkC0  m!2

l!p
(e2⇡

!

p

! � 1)  69.

Unfortunately, the above norm does not su�ce for our future needs.
We will see quite soon that it is necessary to estimate also the first
derivatives of R, that is the C1 norm.

To do so the easiest way is to use the di↵erentiability with respect to
the initial conditions of the solutions of our di↵erential equation. Fixing
any point x 2 M and calling ⇠"(t) = dx�t

"⇠(0) we readily obtain:8

8The vector ⇠
"

(t) is nothing else than the derivative
d�

t

"

(x+s⇠(0))
ds

|
s=0, the following

equation is then obtained by exchanging the derivative with respect to t with the
derivative with respect to s.
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⇠̇"
1

=
⇠"
2

l2m
⇠̇"
2

= �mgl cos ✓ ⇠"
1

� "m!2l cos!t cos ✓ ⇠"
1

(5.3.10)

One can then estimate the C1 norm of R by estimating k⇠"(2⇡! ) �
⇠0(2⇡! )k, since ⇠"(2⇡! ) = D

(✓,p)T"⇠"(0). Doing so one obtains9

kRkC1  2m!2

l!p
e3⇡

!

p

! := d
1

 690. (5.3.11)

5.4 Infinitesimal behavior (linearization)

As a first application of the above considerations let us study the lin-
earization of T" at xf = (⇡, 0). From (5.3.10) follows (see Problem
5.12)

Dx
f

T
0

=

 

cosh 2⇡!
p

!

sinh

2⇡!

p

!

ml2!
p

ml2!p sinh
2⇡!

p

! cosh 2⇡!
p

!

!

Dx
f

T" = Dx
f

T
0

+O(d
1

") (5.4.12)

The eigenvalues of Dx
f

T" are then �" = e
2⇡!

p

! + O(d
2

"),10 ��1

" ,
where d

2

= 2d
1

!pml2 ' 4400. In addition, calling v", hv", v0i = 1,
the eigenvector associate to �", holds true kv

0

� v"k  d
3

", d
3

=
4��1

0

!2

p!
2l4d

1

' 1200.11

Clearly, if " is su�ciently small, then �" > 1. This means that the
hyperbolic nature of the unstable fixed point remains unchanged under

9The following bounds are not sharp, working more one can obtain better esti-
mates but this would not make much of a di↵erence in the sequel.

10In this chapter we will adopt the strict convention that O(x) means a quantity
bounded, in absolute value, by x.

11This follows by the fact that the eigenvalues of D
x

f

T0 are e±
2⇡!

p

! ' (23)±1, a
simple perturbation theory of matrices (see Problems 5.10, 5.11) and the already
mentioned fact that the map T

"

is area preserving, thus the determinant of its
derivative must be one.
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small perturbations (see Problem 5.13 for a case when the perturbation
is not so small).12

If one does a similar analysis at the fixed point (0, 0) one finds that
the eigenvalues have modulus one: that is the infinitesimal motion is a
rotation around the fixed point, exactly as in the " = 0 case.

Hence the comments made at the end of subsection 5.2.1 for the
unperturbed pendulum hold for the perturbed pendulum as well. Only
now the is no longer an integral of motion (the energy) that controls
globally the behavior of the system.

Imagining that the map is linear (which is clearly false but, as we
will see, qualitatively not so wrong) this would mean that the distance
between two trajectories can be expanded by almost a factor 23 in a
second. Initial conditions that are � close at time zero will be about
23� far apart after 1 second. If such a state of a↵air could persist
(and we will see it may) after one minute the two configurations would
di↵er roughly by a factor 1080�, which means that not even knowing
the initial condition plus or minus a quark could we predict the final
one. This is certainly a rather worrisome perspective but much more
work it is needed to decide if this may be indeed the case.

5.5 Local behavior (Hadamard-Perron Theo-
rem)

The next step is to try to go from the above infinitesimal analysis to a
local picture in a small neighborhood of the fixed points.

It is natural to expects that the two fixed points are still stable and
unstable respectively, yet this is a far from trivial fact.

The stability of the point (0, 0) can be proven by invoking the so
called KAM Theorem (this exceeds the scope of the present book and
we will not discuss such matters, see [Gal83] for such a discussion).13

12As we will see later in detail, hyperbolicity means that there is a direction in
which the maps expands (the eigenvector vu

"

associated to the eigenvalue �
"

) and a
direction in which the map contracts (the eigenvector vs

"

associated to the eigenvalue
��1
"

)
13In some sense this implies that we can indeed predict the motion for an extremely

long time if we consider only oscillations close to the configuration (0, 0), so in that
case the assumption that the pendulum is isolated is legitimate. Yet, this depends
on the precision we are interested in and tends to degenerate if the amplitude of
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The study of the local behavior around the point xf is instead
a bit easier and can be performed by applying the Hadamard-Perron
Theorem 2.4.2 to conclude that, in a neighborhood of (⇡, 0), there exists
two curves xu" (s) = (✓u" (s), p

u
" (s)), x

s
"(s) that are invariant with respect

to the map T". Namely, there exists �" > 0 such that T"xs"([��", �"]) ⇢
xs"([��", �"]) and T�1

" xu" ([��", �"]) ⇢ xu" ([��", �"]); this are called the
local stable and unstable manifold of zero, respectively. Essentially
�" is determined by the requirement that the non-linear part of T" be
smaller than the linear part.

Clearly, for " = 0 xs
0

= xu
0

= x
0

and it coincides with the homoclinic
orbit of the unperturbed pendulum. In addition, by Hadarmd-Perron
and the estimates of the previous section, we can choose �" such that

kxu" � x
0

k  2d
3

"kx
0

k. (5.5.13)

and the analogous for the stable manifold. We have so obtained a local
picture of the behavior of the map T", yet this does not su�ce to answer
to our original question. To do so we need to follow the motion for at
least a full oscillation: this requires really a global information.

To gain a more global knowledge we can try to construct larger
invariant set for the map T". A natural way to do so is to iterate: define
W u = [1

n=0

Tn
" x

u([��", �"]). Since T"xu([��", �"]) � xu([��", �"]), it is
clear that each time we iterate we get a longer and longer curve. The
set W u is then clearly a manifold and it is called the global unstable
manifold.14

The global manifold, as the name clearly states, it is a global object:
it carries information on the dynamics for arbitrarily long times. Yet,
the procedure by which it has been defined is far from constructive
and the truth is that, besides the sketchy considerations above, at the
moment we know very little of it. The next step is to gain some more
detailed understanding of a large portion of W u.

the oscillations is rather large. A complete analysis would be a very complicated
matter but we will have an idea of the type of problems that can arise by considering
extremely large oscillations, close to a full rotation of the pendulum.

14Applying the above procedure to the unperturbed problem yields the full sepa-
ratrix.
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5.6 A more global understanding (the Melnikov
method)

From the above considerations follows that the stable and unstable
manifolds (✓s"(s), p

s
"(s)), (✓

u
" (s), p

u
" (s)), |s|  �", of T" at 0, are " close

to the homoclinic orbit of the unperturbed pendulum, (✓
0

(t), p
0

(t)),
✓
0

(0) = 0.
Note, however, that while x

0

= (✓
0

, p
0

) is invariant under the un-
perturbed flow, the same does not apply to (✓s,u" (s), ps,u" (s)) under �t

".
Indeed the invariant object is the time-space surface (⌧, xs,u" (s, ⌧)) :=
(⌧,�⌧

" (✓
s
"(s), p

s
"(s))) where (s, ⌧) 2 [��", �"] ⇥ [0, 2⇡! ] and and ⌧ = t

mod 2⇡
! .15

Clearly, we can choose freely the parameterization of our curves in
such a surface and some are more convenient than others. The separa-
trix of the unperturbed pendulum is most conveniently parametrized
by time, hence �t(✓

0

(s), p
0

(s)) = (✓
0

(s + t), p
0

(s + t)). We wish to
parameterize the perturbed manifold in a convenient way, one simple
possibility could be to impose ✓u" (�s) = ✓

0

(�s), ✓s"(s) = ✓
0

(s), yet
this happens to be not very helpful for our goals. To find a more con-
venient parameterization it is necessary to do first some preliminary
considerations.

To grow the above manifolds, as explained in the previous section,
we can start from some remote time �Sn := 2⇡!�1n, n 2 N, (Sn for the
stable) and then iterate forward the unstable manifold and backward
the stable. This is better done by using the flow and the equations
of motion. To this end, it turns out to be specially smart to first use
global coordinates similar to the ones used to simplify equation (5.3.9)
and then to consider local coordinates adapted to the separatrix of the
unperturbed pendulum. Namely, let us introduce p =: ml2!pp̃, ✓ =: ✓̃.
Note that such a change of coordinate is not symplectic, hence we have
to compute the resulting Hamiltonian in the new coordinates. It is

15A standard way to bring the present non-autonomous setting in the more famil-
iar autonomous one is to introduce the fake variables (', ⌘) 2 S1 ⇥ R and the new,
time independent, Hamiltonian H̄

"

(✓, p,', ⌘) := H
"

(✓, p,') + 2⇡
!

⌘. The Hamilton
equations yield '(t) = 2⇡

!

t+'(0) and hence the equations for ✓, p reduce to (5.1.3).
Since H̄

"

is now conserved under the motion we can restrict the system to the three
dimensional manifold H̄

"

= 0. In such a manifold we have the weak stable and
unstable manifolds (now flow invariant) (xs,u

"

(s,'),',� 2⇡
!

H
"

((xs,u

"

(s,'),')).



5.6. MELNIKOV METHOD 109

easy to verify that the Hamiltonian becomes

H̃" :=
!p

2
p̃2 � !p cos ✓̃ � "

!2

l!p
cos!t cos ✓̃ =: H

0

+ "H
1

(5.6.14)

which yields the corrects equations of motion.

˙̃✓ = !pp̃

˙̃p = �!p sin ✓̃ � "
!2

l!p
cos!t sin ✓̃

(5.6.15)

We will use the vector notation x := (✓̃, p̃).16 In such coordinates we
consider the stable and unstable manifolds xs"(s), x

u
" (s) for the per-

turbed pendulum and the separatrix x
0

(s) for the unperturbed pendu-
lum and we define

xs,u" (s, t) = �t
"x

s,u
" (s). (5.6.16)

If we call �t
" the flow started at the time �Sn (Sn, respectively),17 and

we consider t = Sm (t = �Sm), m < n, we obtain new curves that are
much longer than the original ones and still describe the unstable and
stable manifolds (albeit with a di↵erent parameterization). Next, we
define the vectors

⌘
1

(s) :=
ẋ
0

(s)

kẋ
0

(s)k =
Jrx0(s)H0

krx0(s)H0

k and ⌘
2

(s) :=
rx0(s)H0

krx0(s)H0

k .

This form an orthonormal basis of R2 (see Problem 5.14). We can
then consider the map F (a, b) := x

0

(a) + b⌘
2

(a). One can check that
detDF

(a,0) 6= 0, hence F defines a change of coordinates in a neigh-
borhood of x

0

. Note that in the new coordinates the unperturbed
separatrix x

0

reads {(a, 0)}.
In analogy with a standard approach to the Hadamard-Perron The-

orem (see 2.4.2) it seems natural to have our curves parametrized so

16Using such a notation equations (5.6.15) take the more compact form

ẋ = Jr
x

H̃
"

; J =

✓
0 1
�1 0

◆
.

17Remember that the flow started at such times is exactly the same than the flow
started at time zero, see subsection 5.3.1.
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that, in the new coordinates, they have the same first component. This
means that we would like to have hxu" (s)�x

0

(s), ⌘
1

(s)i = 0. We can ob-
viously arrange such a property for the original curve at the tine �Sn,
but can we keep it thruought the growth process? A simple possibility
is to flow di↵erent points for di↵erent times as to maintain the wanted
property. That is to look for a ⌧ such that,18

G(s, t, ⌧) := hxu" (s, t+ ⌧)� x
0

(s+ t), ⌘
1

(s+ t)i = 0. (5.6.17)

Since, by construction, G(s, 0, 0) = 0 we can apply the implicit function
theorem, to prove the existence of the wanted function ⌧(s, t). The
necessary condition to do so is a lower bound on |@⌧G|. Next, setting
xu" (s, t+ ⌧) =: x

0

(s+ t) + "xu
1

(s, t, ⌧),

@⌧G(s, t, ⌧) = hJrxu

"

(s,t+⌧)H̃", ⌘1(s+ t)i
= krxu

0 (s+t)H0

k+ "O(kD2H̃"k kxu
1

k+ krxu

0
H

1

k).
(5.6.18)

By (5.5.13) we have kxu" (s)�x
0

(s)k kx
0

(s)k�1  2d
3

", for s  �Tn0 . In

addition, from (5.2.7) and Problem 5.6 follows sin ✓̃
0

(t) = 2 sinh!
p

t
(cosh!

p

t)2
'

2e!p

t, for t ⌧ 0. Moreover p̃
0

=
q

2(1 + cos ✓̃
0

) = 2(cosh!pt)�1. Then

krx0(t)H0

k � !
pp
2

e�!
p

|t|.
Accordingly, remembering equations(5.5.13) and (5.6.18) we can

apply the Implicit Function Theorem provided kxu
1

(s, t, ⌧)k  4d
3

e�!
p

|s+t|

and "  (8d
3

)�1 ' 10�4. Hence the wanted function ⌧(s, t) is well de-
fined and19

@⌧

@t
= � @tG

@⌧G
= O(64d

3

"). (5.6.19)

It is then convenient to define

�u(s, t) = "�1hxu" (s, t, ⌧)� x
0

(s, t), rx0(s+t)H0

i = kxu
1

k krx0H0

k.

Using (5.1.3) we can di↵erentiate �u with respect to t and since

18Note that, in so doing, we will construct an object di↵erent from the starting
one associated to a fixed Poincarè section.

19Indeed, @
t

G = hJr
x

u

"

H̃
"

�Jr
x0H0, ⌘1i+ "hxu

1 , ⌘̇1i = "O(3!
p

kxu

1k+ kr
x0H1k).
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Jrxu

"

H" = Jrx0H" + "JD2

x0
H"xu

1

+O( "
2

2

kD3H
0

k |xu
1

|2), we have

d�u

dt
(s, t) = "�1hJrxu

"

H"(1 + ⌧̇),rx0Hi+ hxu
1

, D2

x0
H

0

Jrx0H0

i

=
n

hJrx0H1

, Jrx0H0

i+O(2"!pd3e
!
p

(t+s)|�u
1

|)
o

(1 + |⌧̇ |1)

+O(|⌧̇ |1|�u
1

|!p).

(5.6.20)

We can thus integrate the Gronwald type inequality (5.6.20), (if in
doubt, see Problem 5.9), and, assuming 256!pd3" < 1 (roughly " 
10�5),

|�u(s, t)|  8!2

l!p
e2!p

(t+s).

Hence, kxu
1

k  24!2e!p

(t+s)

l!2
p

< 4d
3

e�!
p

|t+s|, provided it holds true t+s 
(2!p)�1 ln

h

d3l!2
p

6!2

i

=: t
0

' 0.6.

To gain complete control on the stable manifold we need only to
discuss the issue of the time shift. On the one hand, all is needed is to
change t+ ⌧(s, t) to zero ( mod 2⇡

! ). On the other hand if ⇢ 2 [0, 2⇡! ],
then ⇣(⇢) := �⇢

"(x)��⇢
0

(y) can be estimated, slightly refining (5.3.9), by

integrating k⇣̇k  (!p + " !2

!
p

l )k⇣k+ " !2

!
p

l |✓0(t+ s+ ⇢)|. This shows that
we can extend the unstable manifold till a neighborhood of x

0

(�S
2

)
and still keep the an inequality of the type kxu" � x

0

k  3d
3

kx
0

k.
Finally, substituting the above estimate in (5.6.20), yields

d�u

dt
(s, t) = hJrx0H1

, Jrx0H0

i+O
⇣

544 · l�1!2d
3

"e2!p

(t+s)
⌘

.

Integrating from 0 to Sm, m 2 N for s+ Sm  t
0

, yields

�u(s, Sm) =

Z S
m

0

{H
1

(·, t
1

), H}x0(s+t1)dt1 +�
u(s, 0) +O

⇣

"d
4

e2!p

(s+S
m

)

⌘

=

Z

0

�S
m

{H
1

(·, t
1

), H}x0(s+S
n

+t1)dt1 +�
u(s, 0) +O

⇣

"d
4

e2!p

(s+S
m

)

⌘

(5.6.21)

where d
4

:= 272 · !2

!
p

ld3 ' 4 · 106 and the curly brackets stand for the

so called Poisson brackets ({f, g}x = hJrxf, rxgi).
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The stable manifold can be studied similarly, yet it is faster to de-
fine the transformation  (✓, p) = (�✓, p), and note that ��t

" ( (x)) =
 (�t

"(x)). Accordingly, xs"(s,�t) =  (xu" (�s, t)). Also, one easily
checks that, calling ⌧ s(s, t) the time shift arising from the analogous of
(5.6.17), ⌧ s(s,�t) = ⌧(�s, t). In addition, |⌧(s, Sm)|  65d

3

"Sm.
Setting �(�) := �u(�s� Sm, Sm) ��s(s+ Sm,�Sm), for all � 2

[�t
0

, t
0

], we finally have

kxu" (�� � Sm, Sm)� xs"(Sm � �, Sm)k  64
4⇡! � p

!
d
3

"Sm +�(�)

�(�) =

Z 1

�1
{H

1

, H}x0(t+�)dt+O
⇣

"2d
4

e2!p

|�|
⌘

,

(5.6.22)

provided m > 2. The integral in (5.6.22) is called Melnikov integral and
provides an expression, at first order in ", of the distance between the
stable and the unstable manifold. All we are left with is to compute
the integrals in (5.6.22). This turns out to be an exercise in complex
analysis and it is left to the reader (see Problem 5.15), the result is:20

Z 1

�1
{H

1

(·, t), H}x0(t+�)dt = 8⇡ml
!4e

� ⇡!

2!
p

!2

p(e
⇡!

!

p � 1)
sin!�.

We have thus gained a very sharp control on the shape of the above
manifolds.21 In particular, �(±1/4) ' ±76 +O(4 · 107") 6= 0 provided

20A simple computation yields:

{H1, H}
x0(t+s) = �!2

l
p(t+ s) cos!t sin ✓(t+ s).

Then, by using (5.2.7) and looking at Problem 5.6, one readily obtains:

{H1, H}
x0(t) = 4

!2

l

cos!(t� s) sinh!
p

t

(cosh!
p

t)3
.

Finally, use Problem 5.15.
21Note that " must be exponentially small with respect to !. In many concrete

problems (notably the so called Arnold di↵usion [?]) it happens that this it is not
the case. One can try to solve such an obstacle by computing the next terms of the
" expansion of �. In fact, it turns out that it is possible to express � as a power
series in " with all the terms exponentially small in ! [?]. Yet this is a quite complex
task far beyond our scopes.
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"  1.5 · 10�6, that is the two manifolds intersect. To understand a bit
better such an intersection (we would like to know that in the region
� 2 [�1/4, 1/4] there is only one transversal intersection) its su�ces to
notice that (5.6.20) provides a control on the angle between xu" and x

0

.
This intersections are called homoclinic intersection and their very

existence is responsible for extremely interesting phenomena as can be
readily seen by trying to draw the stable and unstable manifolds (see
Figure 5.3 for an approximate first idea); we will discuss this issue in
detail shortly.22

⇢⇡
�⇠

�⇡ ⇡

Figure 5.3: Perturbed pendulum

We have gained much more global information on the map T", yet it
does not su�ce to answer to our question. The next section is devoted
to obtaining a really global picture. Up to now we have used mainly
analytic tools. Next, geometry will play a much more significant rôle.23

5.7 Global behavior (an horseshoe)

We want to explicitly construct trajectories with special properties. A
standard way to do so is to start by studying the evolution of appro-
priate regions and to use judiciously the knowledge so gained. Let us

22Note that the intersection corresponds to an homoclinic orbit for the map T
"

(that is, an orbit which approaches the fixed point x
f

both in the future and in the
past). This is what it is left of the homoclinic orbit of the unperturbed pendulum.

23What comes next is the first example in this book of what is loosely called a

dynamical argument.
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see what this does mean in practice.
The starting point is to note that we understand the shape of the

invariant manifold but not very well the dynamics on them, this is our
next task. Since points on the unstable manifolds are pulled apart by
the dynamics, the estimate must be done with a bit of care. In fact, we
will use a way of arguing which it typical when instabilities are present,
we will see many other instances of this type of strategy in the sequel.

For each x in the unstable manifold (zero included) let us call
Du

xT" := DxT"vu(x), where vu(0) = vu and if x = xu" (t) then vu(x) =
kẋu" (t)k�1ẋu" (t), that is the derivative of the map computed along the
unstable manifold. A useful idea in the following is the concept of fun-
damental domain. Define ↵ : R

+

! R
+

by xu" (t) = xu" (↵(t)). Then
[t,↵(t)] is a fundamental domain and has the property that, setting
ti := ↵i(t), the sets ↵i[t

0

, t
1

] intersect only at the boundary.

Lemma 5.7.1 (Distortion) For each x, y in the same fundamental
domain of the unstable manifold, �

0

> 0, and n 2 N such that kTn
" xk 

�
0

, holds24

e��0C2 
�

�

�

�

Du
xT

n
"

Du
yT

n
"

�

�

�

�

 e�0C2 ,

where C
2

= supt0

�

�

�

↵̈(t)
↵̇(t)

�

�

�

.

Proof. The proof is a direct application of the chain rule:

�

�

�

�

Du
xT

n
"

Du
yT

n
"

�

�

�

�

=
n
Y

i=1

�

�

�

�

�

Du
T ix

T"

Du
T iy

T"

�

�

�

�

�

 Exp

"

n
X

i=1

| log(|Du
T ixT")� log(|Du

T iyT"|)|
#

 Exp

"

n
X

i=1

C
2

kT ix� T iyk
#

= Exp

"

n
X

i=1

C
2

kxu" (ti)� xu" (ti�1

)k
#

 eC2�0 .

The other inequality is obtained by exchanging the rôle of x and y. ⇤

Next we would like to consider the evolution of a small box con-
structed around the fix point.

24This quantity is commonly called Distortion because it measures how much the
map di↵ers from a linear one (notice that if T is linear then D

x

T

D

y

T

= 1). Although

apparently an innocent quantity, it is hard to overstate its importance in the study
of hyperbolic dynamics.
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Consider the following small parallelogram: Q� := {⇠ 2 R2 | ⇠ =
avu + bvs for some a, b 2 [� �

2

, �
2

]}, � ⌧ �
0

. Next consider the first
n 2 N such that Tn

" Q� \ {✓ = 0} 6= ;. Our first task is to understand
the shape of Tn

" Q� near {✓ = 0}. Since a fundamental domain in the
latter region is of order one, while at the boundary of Q" is of order �,
Lemma 5.7.1 implies that the expansion is proportional to C��1. By
the area preserving of the map it follows that Tn

" Q� must be contained
din a C�2 neighborhood of the unstable manifold, see Figure 5.4.

@
@
@

�
�
�

�
�
�

@
@
@ Q�

TnQ�

Figure 5.4: The evolution of the small box Q�

By the previous section considerations on the shape of the invariant
manifolds TnQ� \ TnQ� 6= ;, moreover they intersect transversally.25

This is all is needed to construct an horseshoe (see section ???).
In particular, in our case it means that T 2n0Q� \ Q� 6= ;, in fact the
intersection are transversal and consist of three strips almost parallel
to the unstable sides. One contains zero, and it is the lest interesting
for us, the other two cross above and below the unstable manifold
respectively. The with of such strip is about ��3. We will discuss in
the next chapters all the implications of this situation, here it su�ces
to notice that if we have two initial conditions in T�2n0Q� \ Q� at

25The meaning of transversally is the following: the square Q
�

has two sides
parallel to vu (the unstable direction), which we will call unstable sides, and two
sides parallel to vs (the stable direction), which we will call stable sides. Then the
intersection is transversal if it consists of a region with again four sides: two made
of the image of the unstable sides and two made of images of stable sides of Q

�

.
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Figure 5.5: Horseshoe construction

a distance h, after 2n
0

iterations the two points will be in Q� again
but at a distance h"�1. Since to decide if after that there will be
a rotation or an oscillation we need to know the final position with
a precision of order �, we need to know the initial position with a
precision O(�") = O(�3).

Note that in the above construction we have lost almost all the
points, only the ones that come back to Q� at time 2n

0

are under con-
trol. Nevertheless, we can consider the set ⇤ := [k2Z

T

T 2kn0
" Q�. This

is clearly a measure zero set, yet it is far from empty (it contains un-
countably many points) and it is made of points that at times multiple
of 2n

0

are always in Q�. When they arrive in Q� they will rotate if they
are above the separatrices and oscillate otherwise. Let us call this two
subset of Q� R and O. Given a point ⇠ 2 Q� we can associate to it the
doubly infinite sequence � 2 {0, 1}Z by the rule �i = 1 i↵ T 2n0i⇠ 2 R.
The reader can check that the correspondence is onto.

5.8 Conclusion–an answer

If " = 10�6 and � is a millimeter then we need to know the initial
condition with a precision of 10�9 meters if we want to decide if the
point will come back or rotate when it will get almost vertical again
(this will happen in about 6 seconds). By the same token if we want to
answer the same question, but for the second time the pendulum get
close to the unstable position, we need to know the initial condition
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with a precision of the order 10�15 meters, and this just to predict the
motion for about 12 seconds.26

We can finally answer to our original question:

Answer: NO!

Nevertheless, as we mentioned at the beginning, the above answer
it is not the end of the story. In fact, there exists many other very
relevant questions that can be answered.27 The rest of the book deals
with a particular type of question: can we meaningfully talk about the
statistical behavior of a system?

Problems

5.1. Derive the Lagrangian, Hamiltonian and equations of motions
for a pendulum attached to a point vibrating with frequency !
and amplitude ". (Hint: see [LL76, Gal83] on how to do such
things. Remember that two Lagrangian that di↵er by a total
time derivative give rise to the same equation of motions and are
thus equivalent.)

5.2. Consider the systems of di↵erential equations ẋ = f(x), x 2 Rn

and f smooth and bounded. Prove that the associated flow form a
group. (Hint: use the uniqueness of the solutions of the ordinary
di↵erential equation)

5.3. Consider the systems of di↵erential equations ẋ = f(x, t), x 2 Rn

and f smooth, bounded and periodic in t of period ⌧ . Let �t be
the associated flow. Define T = �⌧ , prove that Tn = �n⌧ .

26Remark that it is not just a matter of precision on the initial condition, it is
also a matter of how one actually does the prediction. If the method is to integrate
numerically the equation of motion, then one has to insure that the precision of
the algorithm is of the order of 10�15. This maybe achieved by working in double
precision but if one wants to make predictions of the order of one minute it is quite
clear that the numerical problem becomes very quickly intractable.

27For example: which type of motions are possible? This is a qualitative question.
Such type of questions give rise to the qualitative theory of Dynamical Systems
[PT93, HK95], an extremely important part of the theory of dynamical systems,
although not the focus here.
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5.4. Show that the Hamiltonian is a constant of motion for the pen-
dulum. (Hint: Compute the time derivative)

5.5. Prove (5.2.7). (Hint: Write (5.2.6) in the integral form

t =

Z t

0

✓̇(s)
q

2g
l (1 + cos ✓(s))

ds.

Using some trigonometry and changing variable obtain

t =

Z ✓(t)

0

1

2!p cos
✓
2

d✓.

and compute it.)

5.6. If ✓(t) is the motion obtained in the previous problem, show that

sin ✓(t) = 2
sinh!pt

(cosh!pt)2
; cos ✓(t) =

2

(cosh!pt)2
� 1;

cos2
✓(t) + ⇡

4
=

1

1 + e2!p

t
.

5.7. Consider the systems of di↵erential equations ẋ = f(x, t), x 2 Rn

and f smooth. Suppose further that divf = 0 (that is
Pn

i=1

@f
i

@x
i

=
0). Show that the associated flow preserves the volume. (Hint:
note that this is equivalent to saying that | det d�t| = 1, moreover
by the group property and the chain rule for di↵erentiating it
su�ces to check the property for small t. See that d�t = 1+Dft+
O(t2) = eDft+O(t2). Finally, remember the formula det eA =
eTrA.)

5.8. Let T, T
1

: R2 ! R2 be a smooth maps such that T0 = 0 and
det(1 � D

0

T ) 6= 0. Consider the map T" = T + "T
1

and show
that, for " small enough, there exists points x" 2 R2 such that
T"x" = x". (Hint: Consider the function F (x, ") = x � T"x and
apply the Implicit Function Theorem to F = 0.)

5.9. Let x(t) 2 Rn be a smooth curve satisfying kẋ(t)k  a(t)kx(t)k+
b(t), x(0) = x

0

, a, b 2 C0(R,R
+

), prove that

kx(t)� x
0

k 
Z t

0

e
R
t

s

a(⌧)d⌧ [a(s)kx
0

k+ b(s)] ds.
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(Hint: Note that kx(t)� x
0

k  R t
0

kẋ(s)kds. Transform then the
di↵erential inequality into an integral inequality. Show that if
z(t)  0 and z(t)  R t

0

z(s)ds, then z(t)  0 for each t. Use the
last fact to compare a function satisfying the obtained integral
inequality with the solution of the associated integral equation.)

5.10. Given two by two matrices A,B such that A has eigenvalues
� 6= µ, show that the matrix A" = A+"B, for " small enough, has
eigenvalues �", µ" analytic as functions of ". Show that the same
holds for the eigenvectors. (Hint:28 consider z in the resolvent
of A, that is (z � A)�1 exists. Then (z � A") = (z � A)(1 �
"(z � A)�1B). Accordingly, if " is small enough, (z � A")�1 =
�

P1
n=0

"n
⇥

(z �A)�1B
⇤n 

(z � A)�1. Finally, if �, �0 are curves
on the complex plane containing � and µ, respectively, verify that

⇧" :=
1

2⇡i

Z

�
(z �A")

�1dz ⇧0
" :=

1

2⇡i

Z

�0
(z �A")

�1dz

are commuting projectors and A" = �"⇧" + µ"⇧0
". Finally verify

that

�"⇧" :=
1

2⇡i

Z

�
z(z �A")

�1dz µ"⇧
0
" :=

1

2⇡i

Z

�0
z(z �A")

�1dz.

The statement follows then from the fact that the right hand side
of the above equalities is written as a power series in ".29)

5.11. Given two by two matrices A,B such that A has eigenvalues
� 6= µ, show that the matrix A" = A+ "B has eigenvalues �", µ"

such that |�" � �|  C"kBk and |µ" � µ|  C"kBk . Compute
C. (Hint: By Problem 5.10 we know that �", µ" are di↵erentiable
function of " and the same holds for the corresponding eigenvector
v", ṽ". Let us discuss �" since the other eigenvalues can be treated
in the same way. One possibility is to use the above formula for
�"⇧" to obtain the wanted estimates.

28Of course for matrices one could argue more directly by looking at the char-
acteristic polynomial. Yet the strategy below has the advantage to work even in
infinitely many dimensions (that is, for operators over Banach spaces).

29This is a very simple case of the very general problem of perturbation of point
spectrum, see [Kat66] if you want to know more.
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In alternative, let v, w, hw, vi = 1 and kvk = 1, be the eigen-
vectors of A, with eigenvalue � and of A⇤, with eigenvalue �̄,
respectively. Hence ⇧

0

= v ⌦ w and k⇧
0

k = kwk. Normalize
v" such that hv", wi = 1. Di↵erentiate then the above constraint
and the defining equation (A+"B)v" = �"v" obtaining (the prime
refers to the derivative with respect to ")

Av0" +Bv" + "Bv0" = �0
"v" + �"v

0
"

hv0", wi = 0.

Multiplying the first for w yields �0
" = hw,Bv"i+ "hw,Bv0"i. Set-

ting Ã := A� �⇧
0

we have

v0" = (�� Ã)�1

⇥

Bv" + "Bv0" � �0
"v" � (�� �")v

0
"

⇤

.

Next, consider "
0

such that, for " < "
0

holds

kv0"k  4k(�� Ã)�1k kBk kwk = 4k(�� Ã)�1k kBk k⇧
0

k =: C
0

,
(5.8.23)

then kv"�vk  "C
0

and |�0
"|  kBk kwk(1+2"C

0

). If 4"
0

C
0

< 1,
then, indeed, (5.8.23) holds true. )

5.12. Compute D
0

T . (Hint: solve (5.3.10) for " = 0, ✓ = ⇡, p = 0 and
t = 2⇡

! .)

5.13. Compute D
0

T" and see that, if ! is su�ciently large, the eigen-
values have modulus one (the unstable point becomes stable!).

(Hint: setting ⇠ := ⇠
1

equation (5.3.10) yields ⇠̈ = !2

p⇠+"!
2

l cos!t⇠.

It is then convenient to write ⇠ := ⇠̄+"⌘+"2⇣ where ¨̄⇠ = !2

p ⇠̄ and

⌘̈ = !2

p⌘ + !2

l cos!t ⇠̄. One can look for a solution of the latter
equation of the form

⌘̄ = Ae!p

t cos!t+Be!p

t sin!t+ Ce�!
p

t cos!t+De�!
p

t sin!t.

This allows to compute D
0

T"(↵,�) = (⇠
1

(2⇡! ), ⇠
2

(2⇡! )) + O("2),
where (⇠

1

(0), ⇠
2

(0)) = (↵,�). Finally one can verify that, for "
small and ! large enough the eigenvalues of D

0

T" are imaginary,
hence the equilibrium is linearly stable. )

5.14. Given an Hamiltonian H : R2 ! R, for each solution x(t) of the
associated equations of motion show that hrx(t)H, ẋ(t)i = 0.
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5.15. Compute the following integrals (5.6.22):

Z

R
eiat(cosh t)�n sinh t dt,

a 2 R and n 2 N, n > 1.30 (Hint: By a change of variable one
can consider only the case a > 0. Consider the integral on the
complex plane, show that the integral on the half circle Rei�,
� 2 [0,⇡], goes to zero as R ! 1, then check that the poles of
the integrand, on the complex plane, lie on the imaginary axis,
finally use the residue theorem to compute the integrals.)

5.16. Do the same analysis carried out for the pendulum with a vi-
brating suspension point in the case of a pendulum subject to an
external force " cos!t and in presence of a small friction �"2�✓̇.

Notes

As already mentioned in the text, the first to realize that the motions
arising from di↵erential equations can be very complex was probably
Poincaré [Poi87]. At the time the main problem in celestial mechanics
(the famous n-body problem) was to find all the integral of motion.
Dirichlet and Weierstrass worked on this problem, but Poincaré was
the first to rise serious doubt on the existence of such integrals (which
would have implied regular motions). For more historical remarks see
[Mos01]. In fact, all the content of this chapter is inspired by the more
sophisticated, but more qualitative, analysis in [Mos01].

30The result, for a > 0, is:

Z

R
eiat(cosh t)�n sinh t = 2⇡i

1X

k=0

�
(n�1)
n,k

(i 2k+1
2 ⇡)

(n� 1)!
,

where

�
n,k

(z) = eiza sinh z

 
z � i 2k+1

2 ⇡

cosh z

!
n

.

For n = 3 the above formula yields
Z

R
eiat(cosh t)�3 sinh t = ⇡a2e�

⇡

2 a(1� e�⇡a)�1.


