
Appendix C

Perturbation Theory

(a super-fast introduction)

The following is really super condensate (although self-consistent). If
you want more details see [RS80, Kat66] in which you probably can
find more than you are looking for.

C.1 Bounded operators

In the following we will consider only separable Banach spaces, i.e.
Banach spaces that have a countable dense set.1

Given a Banch space B we can consider the set L(B,B) of the linear
bounded operators from B to itself. We can then introduce the norm
�B� = sup�v�≤1 �Bv�.

Problem C.1 Show that (L(B,B), � · �) is a Banach space. That is
that � · � is really a norm and that the space is complete with respect to
such a norm.

Problem C.2 Show that the n× n matrices form a Banach Algebra.2

1
Recall that a Banach space is a complete normed vector space (in the following

we will consider vector spaces on the field of complex numbers), that is a normed

vector space in which all the Cauchy sequences have a limit in the space. Again, if

you are uncomfortable with Banach spaces, in the following read Rd
instead of B

and matrices instead of operators, but be aware that we have to develop the theory

without the use of the determinant that, in general, is not defined for operators on

Banach spaces.
2
A Banach Algebra A is a Banach space where it is defined the multiplications

between element with the usual properties of an algebra and, in addition, for each

a, b ∈ A holds �ab� ≤ �a� · �b�.
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230 APPENDIX C. PERTURBATION THEORY

Problem C.3 Show that L(B,B) form a Banach algebra.3

To each A ∈ L(B,B) are associated two important subspaces: the
range R(A) = {v ∈ B : ∃ w ∈ B such that v = Aw} and the kernel
N(A) = {v ∈ B : Av = 0}.

Problem C.4 Prove, for each A ∈ L(B,B), that N(A) is a closed
linear subspaces of B. Show that this is not necessarily the case for
R(A) if B is not finite dimensional.

An very special, but very important, class of operators are the
projectors.

Definition C.1.1 An operator Π ∈ L(B,B) is called a projector iff
Π2 = Π.

Note that if Π is a projector, so is 1 − Π. We have the following
interesting fact.

Lemma C.1.2 If Π ∈ L(B,B) is a projector, then N(Π)⊕R(Π) = B.

Proof. If v ∈ B, then v = Πv+(1−Π)v. Notice that R(1−Π) =
N(Π) and R(Π) = N(1−Π). Finally, if v ∈ N(Π)∩R(Π), then v = 0,
which concludes the proof. �

Another, more general, very important class of operators are the
compact ones.

Definition C.1.3 An operator K ∈ L(B,B) is called compact iff for
any bounded set B the closure of K(B) is compact.

Remark C.1.4 Note that not all the linear operator on a Banach
space are bounded. For example consider the derivative acting on C1((0, 1),R).

C.2 Functional calculus

First of all recall that all the Riemannian theory of integration works
verbatim for function f ∈ C0(R,B), where B is a Banach space. We

3
The multiplication is given by the composition.
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can thus talk of integrals of the type
� b
a f(t)dt,4 Next, we can talk of

analytic functions for functions in C0(C,B): a function is analytic in an
open region U ⊂ C iff at each point z0 ∈ U there exists a neighborhood
B � z0 and elements {an} ⊂ B such that

f(z) =
∞�

n=0

an(z − z0)
n ∀z ∈ B. (C.2.1)

Problem C.5 Show that if f ∈ C0(C,B) is analytic in U ⊂ C, then
given any smooth closed curve γ, contained in a sufficiently small disk
in U , holds5 �

γ
f(z)dz = 0 (C.2.2)

Then show that the same hold for any piecewise smooth closed curve
with interior contained in U , provided U is simply connected.

Problem C.6 Show that if f ∈ C0(C,B) is analytic in a simply con-
nected U ⊂ C, then given any smooth closed curve γ, with interior
contained contained in U and having in its interior a point z, hods the
formula

f(z) =
1

2πi

�

γ
(ξ − z)−1f(ξ)dξ. (C.2.3)

Problem C.7 Show that if f ∈ C0(C,B) satisfies (C.2.3) for each
smooth closed curve in a simply connected open set U , then f is analytic
in U .

C.3 Spectrum and resolvent

Given A ∈ L(B,B) we define the resolvent, called ρ(A), as the set of
the z ∈ C such that (z1 − A) is invertible and the inverse belongs to
L(B,B). The spectrum of A, called σ(A) is the complement of ρ(A) in
C.

4
This is special case of the so called Bochner integral [Yos95].

5
Of course, by

�
γ
f(z)dz we mean that we have to consider any smooth

parametrization g : [a, b] → C of γ, g(a) = g(b), and then
�
γ
f(z)dz :=

� b

a
f ◦

g(t)g�(t)dt. Show that the definition does not depend on the parametrization and

that one can use piecewise smooth parametrizations as well.
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Problem C.8 Prove that, for each Banach space B and operator A ∈
L(B,B), if z ∈ ρ(A), then there exists a neighborhood U of z such that
(z1−A)−1 is analytic in U .

From the above exercise follows that ρ(A) is open, hence σ(A) is closed.

Problem C.9 Show that, for each A ∈ L(B,B), σ(A) �= ∅.

Problem C.10 Show that if Π ∈ L(B,B) is a projector, then σ(Π) =
{0, 1}.

Up to now the theory for operators seems very similar to the one
for matrices. Yet, the spectrum for matrices is always given by a finite
number of points while the situation for operators can be very dfferenct.

Problem C.11 Consider the operator L : C0([0, 1],C) → C0([0, 1],C)
defined by

(Lf)(x) = 1

2
f(x/2) +

1

2
f(x/2 + 1/2).

Show that σ(L) = {z ∈ C : |z| ≤ 1}.

Problem C.12 Show that, if A ∈ L(B,B) and p is any polynomial,
then for each n ∈ N and smooth curve γ ⊂ C, with σ(A) in its interior,

p(A) =
1

2πi

�

γ
p(z)(z1−A)−1dz.

Problem C.13 Show that, for each A ∈ L(B,B) the limit

r(A) = lim
n→∞

�An�
1
n

exists.

The above limit is called the spectral radius of A.

Lemma C.3.1 For each A ∈ L(B,B) holds true supz∈σ(A) |z| = r(A).
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Proof. Since we can write

(z1−A)−1 = z−1(1− z−1A)−1 = z−1
∞�

n=0

z−nAn,

and since the series converges if it converges in norm, from the usual
criteria for the convergence of a series follows supz∈σ(A) |z| ≤ r(A).
Suppose now that the inequality is strict, then there exists 0 < η < r(A)
and a curve γ ⊂ {z ∈ C : |z| ≤ η} which contains σ(A) in its interior.
Then applying Problem C.12 yields �An� ≤ Cηn, which contradicts
η < r(A). �

Note that if f(z) =
�∞

n=0 fnz
n is an analytic function in all C (entire),

then we can define

f(A) =
∞�

n=0

fnA
n.

Problem C.14 Show that, if A ∈ L(B,B) and f is an entire function,
then for each smooth curve γ ⊂ C, with σ(A) in its interior,

f(A) =
1

2πi

�

γ
f(z)(z1−A)−1dz.

In view of the above fact, the following definition is natural:

Definition C.3.2 For each A ∈ L(B,B), f analytic in a region U
containing σ(A), then for each smooth curve γ ⊂ U , with σ(A) in its
interior, define

f(A) =
1

2πi

�

γ
f(z)(z1−A)−1dz. (C.3.4)

Problem C.15 Show that the above definition does not depend on the
curve γ.

Problem C.16 For each A ∈ L(B,B) and functions f, g analytic on a
domain D ⊃ σ(A), show that f(A)+g(A) = (f+g)(A) and f(A)g(A) =
(f · g)(A).
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Problem C.17 In the hypotheses of the Definition C.3.2 show that
f(σ(A)) = σ(f(A)) and [f(A), A] = 0.

Problem C.18 Consider f : C → C entire and A ∈ L(B,B). Suppose
that {z ∈ C : f(z) = 0} ∩ σ(A) = ∅. Show that f(A) is invertible and
f(A)−1 = f−1(A).

Problem C.19 Let A ∈ L(B,B). Suppose there exists a semi-line �,
starting from the origin, such that �∩σ(A) = ∅. Prove that it is possible
to define an operator lnA such that elnA = A.

Remark C.3.3 Note that not all the interesting functions can be con-

structed in such a way. In fact, A =

�
0 1
−1 0

�
is such that A2 = −1,

thus it can be interpreted as a square rooth of −1 but it cannot be
obtained directly by a formula of the type (C.3.4).

Problem C.20 Suppose that A ∈ L(B,B) and σ(A) = B∪C, B∩C =
∅, suppose that the smooth closed curve γ ⊂ ρ(A) contains B, but not
C, in its interior, prove that

PB :=
1

2πi

�

γ
(z1−A)−1dz

is a projector that does not depend on γ.

Note that by Problem C.17 easily follows that PBA = APB. Hence,
AR(PB) ⊂ R(PB) and AN(PB) ⊂ N(PB). Thus B = R(PB)⊕N(PB)
provides an invariant decomposition for A.

Problem C.21 In the hypotheses of Problem C.20, prove that A =
PBAPB + (1− PB)A(1− PB).

Problem C.22 In the hypotheses of Problem C.20, prove that σ(PBAPB) =
B ∪ {0}. Moreover, if dim(R(PB)) = D < ∞, then the cardinality of
B is ≤ D.
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C.4 Perturbations

Let us consider A,B ∈ L(B,B) and the family of operators Aν :=
A+ νB.

Lemma C.4.1 For each δ > 0 there exists νδ ∈ R such that, for all
|ν| ≤ νδ, ρ(Aν) ⊃ {z ∈ C : d(z,σ(A)) > δ}.

Proof. Let d(z,σ(A)) > δ, then

(z1−Aν) = (z1−A)
�
1− ν(z1−A)−1B

�
(C.4.5)

Now �(z1−A)−1B� is a continuous function in z outside σ(A), more-
over it is bounded outside a ball of large enough radius, hence there
exists Mδ > 0 such that

�
d(z,σ(A))>δ �(z1− A)−1B� ≤ Mδ. Choosing

νδ = (2Mδ)−1 yields the result. �

Suppose that z̄ ∈ C is an isolated point of σ(A), that is there exists
δ > 0 such that {z ∈ C : |z − z̄| ≤ δ} ∩ (σ(A) \ {z̄}) = ∅, then the
above Lemma shows that, for ν small enough, {z ∈ C : |z − z̄| ≤ δ}
still contains an isolated part of the spectrum of σ(Aν), let us call it
Bν , clearly B0 = {z̄}.

Problem C.23 Let PBν be defined as in Problem C.20. Prove that,
for ν small enough, it is an analytic function of ν.

Problem C.24 If P,Q are two projectors and �P − Q� < 1, then
dim(R(P )) = dim(R(Q)).

The above two exercises imply that the dimension of the eigenspace
R(PBν ) is constant.

Next, we consider the case in which B0 consist of one point and
dim(R(PB0)) = 1, it follows that also Bν must consist of only one
point, let us set Pν := PBν .

Lemma C.4.2 If dim(R(P0)) = 1, then Aν has a unique eigenvalue
zν in a neighborhood of z̄, z0 = z̄. In addition zν is an analytic function
of ν.
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Proof. From the previous exercises it follows that Pν is a rank
one operator which depend analytically on ν. In addition, since Pν

is a rank one projector it must have the form Pνw = vν�ν(w), where
�ν ∈ B�.6 Then zνPν = PνAνPν . Next, setting a(ν) := �0(Pνv0) =
�ν(v0)�0(vν), we have that a is analytic and a(0) = 1. Thus a �= 0 in a
neighborhood of zero and zν = a(ν)−1�0(PνAνPνv0) is analytic in such
a neighborhood. �

Problem C.25 If dim(R(P0)) = 1, then there exists hν ∈ B and �ν ∈
B� such that Pνf = hν�ν(f) for each f ∈ B. Prove that hν , �ν can be
chosen to be analytic functions of ν.

Hence in the case of A ∈ L(B,B) with an isolated simple7 eigenvalue
z̄ we have that the corresponding eigenvalue zν of Aν = A + νB, B ∈
L(B,B), for ν small enough, depend smoothly from ν. In addition,
using the notation of the previous Lemma, we can easily compute the
derivative: differentiating Aνvν = zνvν with respect to ν and then
setting ν = 0, yields

Bv +Av�0 = z�0v + z̄v�0.

But, for all w ∈ B, Pw = v�(w), with �(Aw) = z̄�(w) and �(v) = 1,
thus applying � to both sides of the above equation yields

z�0 = �(Bv).

Problem C.26 Compute v�0.

Problem C.27 What does it happen if the eigenspace associated to z̄
is finite dimensional, but with dimension strictly larger than one?

6
By B�

, the dual space, we mean the set of bounded linear functionals on B.
Verify that is a Banach space with the norm ��� =

�
w∈B

|�(w)|
�w� .

7
That is with the associated eigenprojector of rank one.
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Hints to solving the Problems

C.1. The triangle inequality follows trivially from the triangle inequal-
ity of the norm of B. To verify the completeness suppose that
{Bn} is a Cauchy sequence in L(B,B). Then, for each v ∈ B,
{Bnv} is a Cauchy sequence in B, hence it has a limit, call it
B(v). We have so defined a function from B to teself. Show that
such a function is linear and bounded, hence it defines an element
of L(B,B), which can easily be verified to be the limit of {Bn}.

C.2. Use the norm �A� = supv∈Rn
�Av�
�v� .

C.3. Use the same norm as in Problem C.2.

C.4. The first part is trivial. For the second one can consider the
vector space �2 = {x ∈ RN :

�∞
i=0 x

2
i < ∞}. Equipped with the

norm �x� =
��∞

i=0 x
2
i it is a Banach (actually Hilbert) space.

Consider now the vectors ei ∈ �2 defined by (ei) = δik and the
operator (Ax)k = 1

kxk. Then R(A) = {x ∈ �2 :
�∞

k=0 k
2x2k <

∞}, which is dense in �2 but strictly smaller.

C.5. Check that the same argument used in the well known case B = C
works also here.

C.6. Check that the same argument used in the well known case B = C
works also here.

C.7. Check that the same argument used in the well known case B = C
works also here.

C.8. Note that

(ζ1−A) = (z1−A−(z−ζ)1) = (z1−A)
�
1− (z − ζ)(z1−A)−1

�

and that if �(z − ζ)(z1−A)−1� < 1 then the inverse of 1− (z −
ζ)(z1 − A)−1 is given by

�∞
n=0(z − ζ)n[(z1 − A)−1]n (the Von

Neumann series–which really is just the geometric series).

C.9. If σ(A) = ∅, then (z1−A)−1 is an entire function, then the Von
Neumann series shows that (z1−A)−1 = z−1(1− z−1A)−1 goes
to zero for large z, and then (C.2.3) shows that (z1 − A)−1 = 0
which is impossible.
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C.10. Verify that (z1−Π)−1 = z−1
�
1− (z − 1)−1Π

�
.

C.11. The idea is to look for eigenvalues by using Fourier series. Let
f =

�
k∈Z fke

2πikx and consider the equation Lf = zf ,

�

k∈Z
fk

1

2

�
eπikx + eπikx+πik

�
= z

�

k∈Z
fke

2πikx.

Let us then restrict to the case in which f2k+1 = 0, then

�

k∈Z
f2ke

2πikx = z
�

k∈Z
fke

2πikx.

Thus we have a solution provided f2k = zfk, such conditions are
satisfied by any sequence of the type

fk =

�
zj if k = 2jm, j ∈ N
0 otherwise

for m ∈ N. It remains to verify that
�∞

j=0 z
je2πi2

jx belong to

C0. This is the case if the series is uniformly convergent, which
happens for z| < 1. Thus all the points in {z ∈ C : |z| < 1}
are point spectrum of infinite multiplicity. Since the spectrum is
closed the statement of the Problem follows.

C.12. Let p(z) = zn, then

1

2πi

�

γ
zn(z1−A)−1dz = An +

1

2πi

�

γ
(zn −An)(z1−A)−1dz

= An +
n−1�

k=0

1

2πi

�

γ
zkAn−kdz = An.

The statement for general polynomial follows trivially.

C.14. Approximate by polynomials.

C.15. For z �∈ f(σ(A)) it is well defined

K(z) :=
1

2πi

�

γ
(z − f(ζ))−1(ζ1−A)−1 dζ,
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with γ containing σ(A) in its interior. By direct computation,
using definition C.3.2, one can verify that (z1 − f(A))K(z) =
1, thus σ(f(A)) ⊂ f(σ(A)). On the other hand if, if f is not
constant, then for each z ∈ C f(z) − f(ξ) = (z − ξ)g(ξ). Hence,
applying Definition C.3.2 and Problem C.16 it follows f(z)1 −
f(A) = (z − A)g(A) which shows that if z ∈ σ(A), then f(z) ∈
σ(A) (otherwise (z −A)

�
g(A)(f(z)1− f(A))−1

�
= 1).

C.17. Since one can define the logarithm on C\�, one can use Definition
C.3.2 to define lnA. It suffices to prove that if f : U → C and
g : V → C, with σ(A) ⊂ U , f(U) ⊂ V , then g(f(A)) = g ◦ f(A).
Whereby showing that the definition C.3.2 is a reasonable one.
Indeed, rememebring Problems C.17, C.18,

g(f(A)) =
1

2πi

�

γ
g(z)(z1− f(A))−1dz

=
1

(2πi)2

�

γ1

�

γ

g(z)

z − f(ξ)
(ξ1−A)−1dzdξ

=
1

2πi

�

γ1

g(f(ξ))(ξ1−A)−1dξ = f ◦ g(A).

From this imediately follows elnA = A.

C.18. The non dependence on γ is obvious. A projector is characterized
by the property P 2 = P . Thus

P 2
B :=

1

(2πi)2

�

γ1

�

γ2

(z1−A)−1(ζ1−A)−1dzdζ

=
1

(2πi)2

�

γ1

dz

�

γ2

dζ(z − ζ)−1
�
(z1−A)−1 − (ζ1−A)−1

�
.

If we have chosen γ1 in the interior of γ2, then (z−ζ)−1(ζ1−A)−1

is analytic in the interior of γ1, hence the corresponding integral
gives zero. The other integral gives PB, as announced.

C.19. Use the above decomposition and the fact that (1 − PB) is a
projector.

C.20. The first part follows from the previous decomposition. Indeed,
for z large (by Neumann series)

(z1−A)−1 = (z1− PBAPB)
−1 + (z1− (1− PB)A(1− PB))

−1.
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Since the above functions are analytic in the respective resolvent
sets it follows that σ(A) ⊂ σ(PBAPB) ∪ σ((1− PB)A(1− PB)).
Next, for z �∈ B, define the operator

K(z) :=
1

2πi

�

γ
(z − ξ)−1(ξ1−A)−1 dξ,

where γ contains B, but no other part of the spectrum, in its
interior. By direct computation (using Fubini and the standard
facts about residues and integration of analytic functions) verify
that

(z1− PBAPB)K(z) = PB.

This implies that, for z �= 0, (z1 − PBAPB)(K(z) + z−1(1 −
PB)) = 1, that is (z1−PBAPB)−1 = K(z)+z−1(1−PB). Hence
σ(PBAPB) ⊂ B ∪ {0}. Since PB has a kernel, zero must be in
the spectrum. On the other hand the same argument applied to
1−PB yields σ((1−PB)A)1−PB)) ⊂ C∪{0}, hence σ(PBAPB) =
B ∪ {0}.

The second property follows from the fact that PBAPB, when
restricted to the space R(PB) is described by a D×D matrix AB

and the equation det(z1−AB) = 0 is a polynomial of degree D in
z and hence has exactly D solutions (counted with multiplicity).8

C.21. Use the representation in Problem C.20 and formula (C.4.5).

C.22. Note that Q(1 + P − Q) = QP , then Q = (1 − (Q − P ))−1QP ,
hence dim(R(P )) ≥ dim(R(Q)), exchanging the role of P and Q
the result follows.

8
This is the real reason why spectral theory is done over the complex rather than

the real. You should be well aquatinted with the fact that a polynomial p of degree

D has D root over C but, in case you have forgotten, consider the following: first

a polynomial of degree larger than zero must have at least a root, otherwise
1

p(z)
would be an entire function and hence

1

p(z)
= lim

r→∞

1

2π

� 2π

0

dθ
1

p(z + reiθ)
= 0.

Let z1 be a root. By the Taylor expansion in z1 follows the decomposition p(z) =
(z − z1)p1(z) where p1 has degree D − 1. The result follows by induction.
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C.25. Note that �ν(hν) = 1 since Pν is a projector, hence they are
unique apart from a noralization factor. Then we can chose the
normalization �ν(h0) = 1 for all ν small enough. Thus Pνf =
hν , that is hν is analytic. Hence, for each g ∈ B and ν small,
�ν(g)�0(hν) = �0(Pνg), which implies �ν analytic for ν small.

C.25. Think hard.9

9
A good idea is to start by considering concrete examples, for instance

�
1 0

0 1

�
+ µ

�
0 1

1 0

�
;

�
1 1

0 1

�
+ µ

�
0 1

1 0

�
.


