
Appendix B

Implicit function theorem
(a quantitative version)

In this appendix we recall the implicit function Theorem. We
provide an explicit proof because we use in the text a quantitative
version of the theorem so it is important to keep track of the various
constants.

B.1 The theorem

Let n,m ∈ N and F ∈ C1(Rm+n,Rm) and let (x0, λ0) ∈ Rn × Rm

such that F (x0, λ0) = 0. For each δ > 0 let Vδ = {(x, λ) ∈ Rn+m :
‖x− x0‖ ≤ δ, ‖λ− λ0‖ ≤ δ}.

Theorem B.1.1 Assume that ∂xF (x0, λ0) is invertible and choose δ >
0 such that sup(x,λ)∈Vδ

‖1− [∂xF (x0, λ0)]−1∂xF (x, λ)‖ ≤ 1
2}. Let Bδ =

sup(x,λ)∈Vδ
‖∂λF (x, λ)‖ and M = ‖∂xF (x0, λ0)−1‖. Set δ1 = (2MBδ)−1δ

and Λδ1 := {λ ∈ Rm : ‖λ − λ‖ < δ1}. Then there exists g ∈
C1(Λδ1 ,Rm) such that all the solutions of the equation F (x, λ) = 0 in
the set {(x, λ) ∈ B1 × B2 : ‖λ− λ0‖ < δ1, ‖x− x0‖ < δ} are given by
(g(λ), λ). In addition,

∂λg(λ) = −(∂xF (g(λ), λ))−1∂λF (g(λ), λ).

We will do the proof in several steps.
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B.1.1 Existence of the solution

Let A(x, λ) = ∂xF (x, λ), M = ‖A(x0, λ0)−1‖.
We want to solve the equation F (x, λ) = 0, various approaches are

possible. Here we will use a simplification of Newton method, made
possible by the fact that we already know a good approximation of the
zero we are looking for. Let λ be such that ‖λ−λ0‖ < δ1 ≤ δ. Consider
Uδ = {x ∈ Rn : ‖x− x0‖ ≤ δ} and the function Θλ : Uδ → Rn defined
by1

Θλ(x) = x−A(x0, λ0)−1F (x, λ). (B.1.1)

Problem B.1 Prove that, for x ∈ U(λ), F (x, λ) = 0 is equivalent to
x = Θλ(x).

Next,
‖Θλ(x0)−Θλ0(x0)‖ ≤M‖F (x0, λ)‖ ≤MBδδ1.

In addition, ‖∂xΘλ‖ = ‖1−A(x0, λ0)−1A(x, λ)‖ ≤ 1
2 . Thus,

‖Θλ(x)−x0‖ ≤
1
2
‖x−x0‖+ ‖Θλ(x0)−x0‖ ≤

1
2
‖x−x0‖+MBδδ1 ≤ δ.

The existence of x ∈ Uδ such that Θλ(x) = x follows then by the
standard fixed point Theorem A.1.1. We have so obtained a function
g : {λ : ‖λ − λ0‖ ≤ δ1} = Λδ1 → Rn such that F (g(λ), λ) = 0. it
remains the question of the regularity.

B.1.2 Lipschitz continuity and Differentiability

Let λ, λ′ ∈ Λδ1 . By (B.1.1)

‖g(λ)− g(λ′)‖ ≤ 1
2
‖g(λ)− g(λ′)‖+MBδ|λ− λ′|

This yields the Lipschitz continuity of the function g. To obtain the
differentiability we note that, by the differentiability of F and the above
Lipschitz continuity of g, for h ∈ Rm small enough,

‖F (g(λ+h), λ+h)−F (g(λ), λ)+∂xF [g(λ+h)−g(λ)]+∂λFh‖ = o(‖h‖).
1The Newton method would consist in finding a fixed point for the function

x−A(x, λ)−1F (x, λ). This gives a much faster convergence and hence is preferable
in applications, yet here it would make the estimates a bit more complicated.
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Since F (g(λ+ h), λ+ h) = F (g(λ), λ) = 0, we have that

lim
h→0
‖h‖−1‖g(λ+ h)− g(λ) + [∂xF ]−1∂λFh‖ = 0

which concludes the proof of the Theorem, the continuity of the deriva-
tive being obvious be the obtained explicit formula.

B.2 Generalization

First of all note that the above theorem implies the inverse function
theorem. Indeed if f : Rn → Rn is a function such that ∂xf is invertible
at some point x0, then one can consider the function F (x, y) = f(x)−y.
Applying the implicit function theorem to the equation F (x, y) = 0 it
follows that y = f(x) are the only solution, hence the function is locally
invertible.

The above theorem can be generalized in several ways.

Problem B.2 Show that if F in Theorem B.1.1 is Cr, then also g is
Cr.

Problem B.3 Verify that if B1,B2 are two Banach spaces and in The-
orem B.1.1 we have B1 instead of Rn and B2 instead of Rm the Theorem
remains true and the proof remains exactly the same.

As I mentioned the statement of Theorem B.1.1 is suitable for quan-
titative applications.

Problem B.4 Suppose that in Theorem B.1.1 we have F ∈ C2, then
show that we can chose

δ = [2‖D∂xF‖∞]−1 .


