
Appendix A

Fixed Points Theorems
(an idiosincratic selection)

In this appendinx I provide some standard and less standard Fixed
poins theorems. These constitute a very partial introduction to the
subject. The choice of the topics if motivated by the needs of the
previous chapters.

A.1 Banach Fixed Point Theorem

Theorem A.1.1 (Fixed point contraction) Given a Banach space
B, a bounded closed set A ⊂ B and a map K : A → B if

i) K(A) ⊂ A,

ii) there exists σ ∈ (0, 1) such that ‖K(v) − K(w)‖ ≤ σ‖v − w‖ for
each v, w ∈ A,

then there exists a unique v∗ ∈ A such that Kv∗ = v∗.

Proof. Since A is bounded supx,y∈A ‖x − y‖ = L < ∞, i.e. it
has a finite diameter. Let a0 ∈ A and consider the sequence of points
defined recursively by an+1 = K(an) and the sequence of sets A0 = A
and An+1 = K(An) ⊂ A. Let dn := supx,y∈An

‖x− y‖ be the diameter
of An. Then if x, y ∈ An, we have

‖K(y)−K(x)‖ ≤ σ‖x− y‖ ≤ σdn.

That is dn+1 ≤ σdn ≤ σnL. This means that, for each n, m ∈ N,
an, a0 ∈ A and am, an+m ∈ Am, hence ‖an+m − am‖ ≤ σmL. That is
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218 APPENDIX A. FIXED POINTS THEOREMS

{an} ⊂ A is a Cauchy sequence and, being B a Banach space, it must
have an accumulation point v∗ ∈ B. Moreover since A is closed it must
be v∗ ∈ A. Clearly

‖Kv∗ − v∗‖ = lim
n→∞

‖Kv∗ − an‖ = lim
n→∞

‖Kv∗ −Kan−1‖

≤ lim
n→∞

σ‖v∗ − an−1‖ = 0.

Hence, v∗ is a fixed point. Next, suppose there exist u ∈ A, such that
Ku = u. Then

‖u− v∗‖ = ‖K(u− v∗)‖ ≤ σ‖u− v ∗ ‖

implies u = v∗. !

Corollary A.1.2 Given a Banach space B and a map K : B → B with
the property that there exists σ ∈ (0, 1) such that ‖K(v) − K(w)‖ ≤
σ‖v−w‖ for each v, w ∈ B, then there exists a unique v∗ ∈ B such that
Kv∗ = v∗.

Proof. To prove the theorem, for each L ∈ R+ consider the sets
BL := {v ∈ B : ‖v‖ ≤ L}. Then ‖K(v)‖ ≤ ‖K(v)−K(0)‖+ ‖K(0)‖ ≤
σ‖v‖+‖K(0)‖ ≤ σL+‖K(0)‖. Thus, for each L ≥ (1−σ)−1‖K(0)‖ we
have that K(BL) ⊂ BL. The existence follows by applying Theorem
A.1.1. The uniqueness follows by the same argument used at end of
the proof of Theorem A.1.1. !

A.2 Hilbert metric and Birkhoff theorem

In this section we will see that the Banach fixed point theorem can pro-
duce unexpected results if used with respect to an appropriate metric:
projective metric.

Projective metrics are widely used in geometry, not to mention the
importance of their generalizations (e.g. Kobayashi metrics) for the
study of complex manifolds [IK00]. It is quite surprising that they
play a major rôle also in our situation, [Liv95].

Here we limit ourselves to a few word on the Hilbert metric, a quite
important tool in hyperbolic geometry.
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A.2.1 Projective metrics

Let C ∈ Rn be a strictly convex compact set. For each two point
x, y ∈ C consider the line " = {λx + (1− λy) | λ ∈ R} passing through
x and y. Let {u, v} = ∂C ∩ " and define1

Θ(x, y) =
∣∣∣∣ln

‖x− u‖‖y − v‖
‖x− v‖‖y − v‖

∣∣∣∣

(the logarithm of the cross ratio). By remembering that the cross ratio
is a projective invariant and looking at Figure A.1 it is easy to check
that Θ is indeed a metric. Moreover the distance of an inner point from
the boundary is always infinite. One can also check that if the convex
set is a disc then the disc with the Hilbert metric is nothing else than
the Poincaré disc.
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Figure A.1: Hilbert metric

The object that we will use in our subsequent discussion are not
1Remark that u, v can also be ∞.
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convex sets but rather convex cones, yet their projectivization is a con-
vex set and one can define the Hilbert metric on it (whereby obtaining
a semi-metric for the original cone). It turns out that there exists a
more algebraic way of defining such a metric, which is easier to use
in our context. Moreover, there exists a simple connection between
vector spaces with a convex cone and vector lattices (in a vector lat-
tice one can always consider the positive cone). This justifies the next
digression in lattice theory.2

Consider a topological vector space V with a partial ordering “+,”
that is a vector lattice.3 We require the partial order to be “continu-
ous,” i.e. given {fn} ∈ V lim

n→∞
fn = f , if fn , g for each n, then f , g.

We call such vector lattices “integrally closed.” 4

We define the closed convex cone 5 C = {f ∈ V | f -= 0, f , 0}
(hereafter, the term “closed cone” C will mean that C ∪ {0} is closed),
and the equivalence relation “∼”: f ∼ g iff there exists λ ∈ R+\{0}
such that f = λg. If we call C̃ the quotient of C with respect to ∼, then
C̃ is a closed convex set. Conversely, given a closed convex cone C ⊂ V,
enjoying the property C ∩ −C = ∅, we can define an order relation by

f + g ⇐⇒ g − f ∈ C ∪ {0}.

Henceforth, each time that we specify a convex cone we will assume the
corresponding order relation and vice versa. The reader must therefore
be advised that “+” will mean different things in different contexts.

It is then possible to define a projective metric Θ (Hilbert metric),6

2For more details see [Bir57], and [Nus88] for an overview of the field.
3We are assuming the partial order to be well behaved with respect to the alge-

braic structure: for each f, g ∈ V f # g ⇐⇒ f − g # 0; for each f ∈ V, λ ∈ R+\{0}
f # 0 =⇒ λf # 0; for each f ∈ V f # 0 and f ' 0 imply f = 0 (antisymmetry of
the order relation).

4To be precise, in the literature “integrally closed” is used in a weaker sense.
First, V does not need a topology. Second, it suffices that for {αn} ∈ R, αn → α;
f, g ∈ V, if αnf # g, then αf # g. Here we will ignore these and other subtleties:
our task is limited to a brief account of the results relevant to the present context.

5Here, by “cone,” we mean any set such that, if f belongs to the set, then λf
belongs to it as well, for each λ > 0.

6In fact, we define a semi–metric, since f ∼ g ⇒ Θ(f, g) = 0. The metric that

we describe corresponds to the conventional Hilbert metric on eC.
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in C, by the construction:

α(f, g) = sup{λ ∈ R+ | λf + g}
β(f, g) = inf{µ ∈ R+ | g + µf}

Θ(f, g) = log
[
β(f, g)
α(f, g)

]

where we take α = 0 and β = ∞ if the corresponding sets are empty.
The relevance of the above metric in our coontex is due to the

following Theorem by Garrett Birkhoff.

Theorem A.2.1 Let V1, and V2 be two integrally closed vector lat-
tices; L : V1 → V2 a linear map such that L(C1) ⊂ C2, for two
closed convex cones C1 ⊂ V1 and C2 ⊂ V2 with Ci ∩ −Ci = ∅. Let
Θi be the Hilbert metric corresponding to the cone Ci. Setting ∆ =

sup
f, g∈T (C1)

Θ2(f, g) we have

Θ2(Lf, Lg) ≤ tanh
(

∆
4

)
Θ1(f, g) ∀f, g ∈ C1

(tanh(∞) ≡ 1).

Proof. The proof is provided for the reader convenience.
Let f, g ∈ C1, on the one hand if α = 0 or β = ∞, then the

inequality is obviously satisfied. On the other hand, if α -= 0 and
β -= ∞, then

Θ1(f, g) = ln
β

α

where αf + g and βf , g, since V1 is integrally closed. Notice that
α ≥ 0, and β ≥ 0 since f , 0, g , 0. If ∆ = ∞, then the result follows
from αLf + Lg and βLf , Lg. If ∆ < ∞, then, by hypothesis,

Θ2 (L(g − αf), L(βf − g)) ≤ ∆

which means that there exist λ, µ ≥ 0 such that

λL(g − αf) + L(βf − g)
µL(g − αf) , L(βf − g)
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with ln µ
λ ≤ ∆. The previous inequalities imply

β + λα

1 + λ
Lf , Lg

µα + β

1 + µ
Lf + Lg.

Accordingly,

Θ2(Lf, Lg) ≤ ln
(β + λα)(1 + µ)
(1 + λ)(µα + β)

= ln
eΘ1(f, g) + λ

eΘ1(f, g) + µ
− ln

1 + λ

1 + µ

=
∫ Θ1(f, g)

0

(µ− λ)eξ

(eξ + λ)(eξ + µ)
dξ ≤ Θ1(f, g)

1− λ
µ(

1 +
√

λ
µ

)2

≤ tanh
(

∆
4

)
Θ1(f, g).

!

Remark A.2.2 If L(C1) ⊂ C2, then it follows that Θ2(Lf, Lg) ≤
Θ1(f, g). However, a uniform rate of contraction depends on the di-
ameter of the image being finite.

In particular, if an operator maps a convex cone strictly inside
itself (in the sense that the diameter of the image is finite), then it
is a contraction in the Hilbert metric. This implies the existence of a
“positive” eigenfunction (provided the cone is complete with respect
to the Hilbert metric), and, with some additional work, the existence
of a gap in the spectrum of L (see [Bir79] for details). The relevance
of this theorem for the study of invariant measures and their ergodic
properties is obvious.

It is natural to wonder about the strength of the Hilbert metric
compared to other, more usual, metrics. While, in general, the answer
depends on the cone, it is nevertheless possible to state an interesting
result.

Lemma A.2.3 Let ‖·‖ be a norm on the vector lattice V, and suppose
that, for each f, g ∈ V,

−f + g + f =⇒ ‖f‖ ≥ ‖g‖.
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Then, given f, g ∈ C ⊂ V for which ‖f‖ = ‖g‖,

‖f − g‖ ≤
(
eΘ(f, g) − 1

)
‖f‖.

Proof. We know that Θ(f, g) = ln β
α , where αf + g, βf , g.

This implies that −g + 0 + αf + g, i.e. ‖g‖ ≥ α‖f‖, or α ≤ 1. In the
same manner it follows that β ≥ 1. Hence,

g − f +(β − 1)f + (β − α)f
g − f ,(α− 1)f , −(β − α)f

which implies

‖g − f‖ ≤ (β − α)‖f‖ ≤ β − α

α
‖f‖ =

(
eΘ(f, g) − 1

)
‖f‖.

!

Many normed vector lattices satisfy the hypothesis of Lemma 1.3
(e.g. Banach lattices7); nevertheless, we will see that some important
examples treated in this paper do not.

A.2.2 An application: Perron-Frobenius

Consider a matrix L : Rn → Rn of all strictly positive elements:
Lij ≥ γ > 0. The Perron-Frobenius theorem states that there exists a
unique eigenvector v+ such that v+

i > 0, in addition the corresponding
eigenvalue λ is simple, maximal and positive. There quite a few proofs
of this theorem a possible one is based on Birkhoff theorem. Consider
the cone C+ = {v ∈ R2 | vi ≥ 0}, then obviously LC+ ⊂ C+. Moreover
an explicit computation (see

Problem A.1 shows that

Θ(v, w) = ln sup
ij

viwj

vjwi
. (A.2.1)

7A Banach lattice V is a vector lattice equipped with a norm satisfying the
property ‖ |f | ‖ = ‖f‖ for each f ∈ V, where |f | is the least upper bound of f and
−f . For this definition to make sense it is necessary to require that V is “directed,”
i.e. any two elements have an upper bound.
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Then, setting M = maxij Lij , it follows that

Θ(Lv, Lw) ≤ 2 ln
M

γ
:= ∆ < ∞.

We have then a contraction in the Hilbert metric and the result follows
from usual fixed points theorems. Note that, since Θ(v, λv) = 0, for all
λ ∈ R+, the fixed point v+ ∈ Rn is only projective, that is Lv+ = λv+

for some λ ∈ R; in other words, we have an eigenvalue.
Remark that L∗ satisfies the same conditions as L, thus there

exists w+ ∈ C+, µ ∈ R+, such that L∗w+ = µw+. Next, define
ρ1(v) = |〈w+, v〉| and ρ2(v) = ‖v‖. It is easy to check that they are
two homogeneous forms of degree one adapted to the cone.

In addition, if ρ1(v) = ρ2(v), then ρ1(Lnv) = ρ1(Lnw). Hence, by
Lemma A.2.3

‖Lnv − Lnw‖ ≤
(
eΘ(Lnv,Lnw) − 1

)
min{‖Lnv‖, ‖Lnw‖}

≤ KΛn min{‖Lnv‖, ‖Lnw‖},
(A.2.2)

for some constant K depending only on v, w. The estimate A.2.2 means
that all the vectors in the cone grow at the same rate. In fact, for all
v ∈ intC,

‖λ−nLnv − λ−nLnw‖ ≤ KΛn.

Hence, limn→∞ λ−nLnv = v+.
Finally, consider V1 = {v ∈ V | 〈w+, v〉 = 0}. Clearly LV1 ⊂ V1

and V1 ⊕ span{v+} = V. Let w ∈ V1, clearly there exists α ∈ R+ such
that αv+ + w ∈ C,8 thus

‖Lnw‖ ≤ ‖Ln(αv+ + w)− αLnv+‖ ≤ LΛnλn.

This immediately implies that L restricted to the subspace V1 has spec-
tral radius less that λΛ. In other words, λ is the maximal eigenvalue, it
is simple and any other eigenvalue must be smaller than λΛ. We have
thus obtained an estimate of the spectral gap between the first and the
second eigenvalue.

8this is a special case of the general fat that any vector can be written as the
linear combination of two vectors belonging to the cone.
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Notes

For more details on Hilbert metrics see [Bir79], and [Nus88] for an
overview of the field.


