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Many of us have learned and taught the following

“derivation” of the heat equation:

Imagine that the heat (temperature) u is a fluid, then it

must satisfy

∂tu = divj

where j is the current.

Now assume (Fourier Law) j = k∇u, then

∂tu = div(k∇u)
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But

Ludwig Eduard Boltzmann
(1844 –1906)

Has explained that heat is not a fluid and, anyway,

why should the Fourier Law hold?

3



Statistical Mechanics states that heat is the average local

Kinetic energy per particle in a body.

To obtain a rigorous (classical) derivation of the heat

equation one should then write the Newton equations of

motion for the N particles of a body, solve them and show

that the local energy density satisfies the heat equation,

with N ∼ 1024 !
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Jules Henri Poincaré (1854 – 1912)

Recognized the phenomenon

of instability even in systems

with few degree of freedoms

(3-dimensional flows)

predictions with 1024 is hopeless.
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Andrey Nikolaevich Kolmogorov (1903–1987)

Explained the role of probability:

Do statistical predictions or

Look at evolution of measures,

not of points.

6



First rigorous attempt: Rieder, Lebowitz, and Lieb (1967)

studied harmonic crystals (no chaos!)

Found anomalous conductivity in d < 3 (No Fourier Law!).

Absurd? Maybe not (carbon nanotubes).

Not much progress till this century.
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Yet, much has happened extremely relevant to our story:

Hydrodynamics limits (Varadhan, ....)

Relation between Non-equilibrium Statistical Mechanics and

Dynamical Systems (Sinai, Ruelle, Gallavotti, .....)

Kinetic limit and Boltzmann equation (Lanford, .....)

Enormous amount of numerical simulations

(Fermi-Pasta-Ulam, .....)

Prompting a new wave of attempts.
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Let me mention a few

Dynamical Systems point of view: Eckmann-Young (2004)

Kinetic Limit point of view: Spohn et al. (2006), Bricmont

-Kupiainen (2007)

Systems with small random noise: Olla et al. (2005).

All very interesting ideas that will be part of our journey.
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I have a dream (destination).

1

Obstacles gray, particles black.

ergodicity? no!

no interaction ⇒ energy cons.

Perturbation Theory? How?

What to do ?

Toy Models
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Itinerary and some amusing stops:

Toys 1) Non interacting models with a conserved quantity

(a) Random model (discrete time)

(b) Deterministic models (discrete time)

Toys 2) Interacting models in the weak interaction regime

(a) Random models (continuous time)

(b) Deterministic models (discrete time)

Toys 3) Weakly interacting hyperbolic flows (destination)
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Toys 1

I be the state space of the single site system.

Ω = IZd × RZd

+ the state space of the full system (body)

(xi(n), Ei(n)) ∈ Ω be the state at time n ∈ N.

The xi evolve independently from the Ei, while

Ei(n+ 1) = [1− επ0(x(n))]Ei(n) +
ε

2d

∑
|z|=1

πz(x(n))Ei+z(n)

• 1 ≥ πz ≥ 0, energy is positive

• 1
2d

∑
|z|=1 πz = π0, total energy is conserved.

12



If
∑

i∈Zd Ei(0) <∞, we can renormalize the variables so

that
∑

i∈Zd Ei(0) = 1 then
∑

i∈Zd Ei(n) = 1 for all n ∈ N.

IDEA:

Think of the Ei(n) as the probability of having an imaginary

particle at site i at time n. Then the particle performs a

random walk in random environment
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Fact Energy RWRE

Ei(0) = δi,0 all energy at 0 start walk at 0

E(ELx(L
2)) ∼ Ze−σx

2
heat equation in averaged HL annealed CLT

ELx(L
2) ∼ Ze−σx

2 P-a.s. a.s. heat equation in HL quenched CLT

Random: xi(n) independent (or weakly coupled) Markov

chains [Dolgopyat-Keller-L. (2007)] true in all dimensions

Deterministic: xi(n+ 1) = Txi, T : I → I piecewise

expanding (chaotic) maps [Dolgopyat-L. (2008)] true in all

dimensions
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Quenched CLT

The map F : IZd → IZd
, (F (θ))i := T (xi), i ∈ Zd, has a

unique natural invariant measure µe.

Theorem 1 (Dolgopyat-L.) There exists ε0 > 0: for all

ε < ε0, d ∈ N∗ and for µe almost all {xi(0)}i∈Zd ,

(a) 1
N
XN → v Pθ a.s.;

(b) XN−vN√
N
⇒ N (0,Σ2) under Pθ.
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Toys 2

Consider Λ ⊂ Zd and the Hamiltonian

HΛ
ε :=

∑
i∈Λ

1

2
‖pi‖2 +

∑
i∈Λ

U(qi) + ε
∑
|i−j|=1

V (qi − qj),

where U(0) = U ′(0) = 0 and c Id ≤ U ′′(x) ≤ C Id.
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In addition, consider a random force preserving single sites

kinetic energies (i.e. independent diffusions on the spheres

‖pi‖2 = cost). We define the diffusion be the generator

S =
∑
i∈Λ

d∑
r,h

X2
i;r,h

where Xi;r,h‖pi‖2 = 0 (e.g. Xi;r,h := pi,r∂pi,h
− pi,h∂pi,r

).

The full generator is thus given by

Lε,Λ := {HΛ
ε , ·}+ σ2S

17



The single particles energies are the random variables

ei(t) =
1

2
‖pi(t)‖2 + U(qi(t)).

We look at the kinetic limit

ẽi(t) = lim
ε→0

ei(ε
−2t).

The limit is in distribution.
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Theorem 2 (Olla, L.) The limiting process ẽi is well

defined and satisfies the mesoscopic differential stochastic

equation

dẽi =
∑
|i−k|=1

α(ẽi, ẽk)dt+
∑
|i−k|=1

σγ(ẽi, ẽk)dB{i,k}

where

σ2(∂ẽi
− ∂ẽk

)γ2(ẽi, ẽk) = α(ẽi, ẽk)

and B{i,k} = −B{k,i} are independent random walks.

All the measures
∏

i βe
−βẽi are invariant.
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The next step is to take the hydrodynamic limit:

• Let Λ ⊂ Rd and ΛL := {i ∈ Zd : L−1i ∈ Λ}

• {ẽLi (t)}ΛL
be the solution of the mesoscopic equation

with initial condition ẽi(0) = g(L−1i), g ∈ C∞(Λ,R).

• u(x, t) is the HL of ẽLi if, ∀ ϕ ∈ C∞0 (Rd),

lim
L→∞

1

|Λ|Ld
∑
i∈ΛL

ẽLi (L2t)ϕ(L−1i) =

∫
Λ

u(x, t)ϕ(x)dx
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{ẽLi (t)}ΛL
converges to the heat equation if

• the hydrodynamic limit u exists.

• u satisfies ∂tu = div(k∇u).

The weak interaction (kinetic) limit for choatic systems

should yield the same mesoscopic equation

........Work in progress ........
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Toys 3: Things to come

Deterministic case in which the local dynamics is symplectic.

Very hard but maybe possible by twisting present technology.
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Avoid the two limit step and obtain heat equation taking

immediately the Hydrodynamic limit: at the moment is

. . . . . . . . . . . . . . . . . . . . . .science fiction. . . . . . . . . . . . . . . . . . . . . .
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