Fisica Matematica I

Esercizi,

Mercoledi, 12-05-2021

Si consideri il moto unidimensionale di un punto materiale di massa m=1 soggetto all'equazione differenziale

$$\ddot{x} + \omega^2 x = -\mu(\dot{x})^3 + \nu \cos(\lambda t) , \qquad (1)$$

con le condizioni iniziali $x(0) = x_0$, $\dot{x}(0) = y_0$, i parametri $\omega, \lambda \in \mathbb{R}$ e $\mu, \nu > 0$.

1. Si studi il caso $\mu = 0$, $\nu = 0$ e si mostri la soluzione di (1) e' data da:

$$x(t) = A\cos(\omega t) + B\sin(\omega t)$$

2. Si studi il caso $\nu = 0$. Al variare dei parametri $A \in B$ ($A \in B$ sono ottenuti col metodo della variazione delle costanti) si mostri che dA/dt < 0, dB/dt < 0 e si determini il $\lim_{t\to\infty} A(t)$, $\lim_{t\to\infty} B(t)$ con l'approssimazione (riprodurre la derivazione):

$$\dot{A} = -\frac{3\mu\omega^2}{8} \left(A^3 + AB^2 \right)$$

$$\dot{B} = -\frac{3\mu\omega^2}{8} \left(B^3 + A^2 B \right)$$

Si verifichi che il comportamento asintotico è tale che $\lim_{t\to\infty} x(t) = 0$.

3. Si studi il caso $\mu = 0$. Al variare dei parametri A e B, si mostri che

$$\dot{A} = -\frac{\nu \cos(\lambda t) \sin(\omega t)}{\lambda t}$$

$$\dot{A} = -\frac{\nu \cos(\lambda t) \sin(\omega t)}{\omega}$$
$$\dot{B} = \frac{\nu \cos(\lambda t) \cos(\omega t)}{\omega}$$

Si discuta $\lim_{t\to\infty} A(t)$, $\lim_{t\to\infty} B(t)$ per i casi $(\omega \neq 0)$: (3a) $\omega \neq \lambda$ e $\omega = \pm \lambda$, (3b). Si trovi la soluzione per il caso triviale $\omega = 0$ (senza A, B).

4. Si studi il caso $\mu=0.1,\,\nu=0.1$ e con $\lambda=\omega=1.$ Si trovino le condizioni iniziali $x_0,\,y_0$ per cui dA/dt, dB/dt = 0.