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Abstract. In this brief note we present a very simple strategy to investigate

dynamical determinants for uniformly hyperbolic systems. The construction

builds on the recent introduction of suitable functional spaces which allow to
transform simple heuristic arguments in rigorous ones. Although the results

so obtained are not exactly optimal the straightforwardness of the argument

makes it noticeable.

1. introduction

The goal of the paper is to investigate the properties of the dynamical Fredholm
determinants of uniformly hyperbolic systems and to relate them to the statistical
properties of such systems. This subject has been widely investigated and there
exists a large literature where many partial results are obtained. We refer the
reader to [1] for references and an introduction to the subject, to [8, 3] for a more
recent account of the situation and to [4] for an in depth discussion of the physical
relevance of these issues.

The basic idea presented in this paper is to study the action of the dynamics on
an appropriate singular functional kernel, as suggested in Dmitry Dolgopyat’s thesis
(Princeton 1997), to obtain results on the radius of convergence of the dynamical
Fredholm determinant, its relation to the spectral properties of the transfer operator
and the Ruelle resonances. The new ingredient allowing to carry out such a program
is the possibility, after [6] and [2], to introduce spaces in which such singular kernels
are legal object. To clarify matters we start with a folklore explanation.

Let X be a d-dimensional Cr+1 Riemannian manifold and T : X → X a Cr+1

diffeomorphism which satisfies some hyperbolicity condition. (We assume at least
that all the periodic points of T are hyperbolic.) For each g ∈ Cr(X, C) we define
the Ruelle transfer operator Tg : Cr(X, C) → Cr(X, C) by

(1.1) Tgh := g · h ◦ T.

The dynamical Fredholm determinant of this operator Tg is formally defined by1

(1.2) d[
T,g(z) = exp

−∑
n≥1

zn

n

∑
x∈Fix T n

gn(x)
|det(Id−DTn(x))|

 ,
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where gn(x) :=
∏n−1

i=0 g(T i(x)).
Let us first note that this can be heuristically regarded as the determinant

det(Id− z · Tg). Indeed, let δ be the distribution on X2 = X ×X defined by

δ(h) =
∫

X

h(x, x)dx.

Then the “kernel” of the operator Tn
g is given by (Id ⊗ Tg)(δ).2 Thus, as in the

case of operators with smooth kernel, it would be natural to define

TrTg = 〈δ, (Id⊗ Tg)(δ)〉.

Though the product of two distribution is not defined in general, we will be able
to give an appropriate meaning to the right hand side above since the singular
supports (in Cr sense) of δ and (Id⊗ Tg)(δ) do not intersect. We find 3

〈δ, (Id⊗ Tg)n(δ)〉 =
∑

x∈Fix T n

gn(x)
|det(Id−DTn(x))|

.

The definition (1.2) of the dynamical Fredholm determinant follows then via the
formal relation det(Id− zA) = exp(−

∑∞
n=1(z

nTrAn)/n).
It is thus natural to expect that the properties of the dynamical Fredholm de-

terminant as holomorphic function are closely related to the spectral properties of
the operator Tg. In this paper, we present an argument providing exactly such a
relation, although in a slightly more restrictive setting. The argument is rigorous,
yet it follows the above simple ideas very closely.

Let T : X → X be an Anosov diffeomorphism, i.e. there exists a DT -invariant
decomposition TM = Eu ⊕ Es and constants λ ∈ (0, 1) and C > 0 such that:

‖DTn|Es‖ ≤ Cλn, ‖DT−n|Eu‖ ≤ Cλn for all n ≥ 0.

In [6] and [2], Banach spaces B of distributions on X are defined so that the operator
Tg extends to a bounded operator Tg : B → B whose essential spectral radius is
bounded by ‖g‖L∞ ·λαr , where αr := min{[r/2], r− [r/2]}, [a] ∈ N being the closest
integer to a ∈ R.4 In addition, it is shown that the eigenvalues outside the essential
spectral radius have a well defined dynamical meaning (Ruelle resonances). Let
ρ∗ = ‖g‖L∞ · λαr/2. Our result is as follows:

Theorem 1. d[
T,g(z) extends holomorphically to D(ρ−1

∗ ) = {|z| < ρ−1
∗ } and the

zeros of such an extension are in one-one correspondence, with multiplicity, to the
inverse of the eigenvalues of Tg : B → B in the region {|z| > ρ∗}.

This result is not new nor optimal. Kitaev [7] has given a stronger result for the
extendibility part of the former claim,5 while the spectral interpretation, albeit for a
smaller radius, appeared already in [8] and, more recently, in [3] it has been obtained

2Formally, δ is δ(x− y) (where now δ is the physicists delta function) and the kernel is given
by g(x)δ(Tgx − y). As we shall see later, the action of Id ⊗ Tg can in fact be extended to an

operator on the space of distributions.
3One can easily guess this formula by approximating δ by a sequence of C∞ functions, see [1]

or [8] if details are really needed.
4Actually, [2] allows the better bound αr = r/2. Also, [6] deals explicitly only with the adjoint

of Tg in the case g ≡ 1 (SRB measures), yet the extension to the present setting is straightforward.
5Essentially, instead of the bound ρ−1

∗ , Kitaev has the more natural bound (‖g‖L∞ ·λr/2)−1 ∼
(‖g‖L∞ · λαr )−1, that is the inverse of the bound for the essential spectral radius of Tg : B → B.
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for a domain corresponding to the result of Kitaev. Nevertheless, the proofs yielding
such sharper results are far more complex than the present argument.

The non-optimality of the above theorem is the price for considering, in the fol-
lowing, the operator T ∗

g ⊗ Tg instead of the operator Id⊗ Tg used in the previous
heuristic argument. Unfortunately, we do not know how to treat the transfer oper-
ator Id⊗ Tg directly as the mapping Id× T is not hyperbolic and the extension of
the results in [6], [2] to the partially hyperbolic setting is far from trivial (if possible
at all).

2. Basic definitions

For g ∈ Cr(X, C) we define the transfer operator Tg : Cr(X, C) → Cr(X, C) by

Tgh := g · (h ◦ T ).

Its formal adjoint (in fact, dual) T ∗
g : Cr(X, C) 	 is given by the transfer operator

T ∗
g f = |detDT−1| · (g · f) ◦ T−1.

That is, 〈Tgh, f〉L2(X) = 〈h̄, T ∗
g f〉L2(X).

Let D′
r(X) be the space of distribution on X of order r.6 Using the above

formal relation, we can extends the operators Tg and T ∗
g to continuous operators

Tg : D′
r(X) → D′

r(X) and T ∗
g : D′

r(X) → D′
r(X), respectively.

Next we define T ∗
g ⊗ Tg : Cr(X2, C) → Cr(X2, C) as the unique extension of

T ∗
g ⊗ Tg : Cr(X, C)⊗ Cr(X, C) 	. The latter operator reads

(2.1) T ∗
g ⊗ Tg(ϕ)(x, y) := g(T−1x) · |detDxT−1| · g(y) · ϕ(T−1x, Ty).

So it can be interpreted as the transfer operator associated to the hyperbolic map-
ping T−1×T with the weight g̃(x, y) = g(T−1x) · |det DxT−1| · g(y). Note that the
formal adjoint of T ∗

g ⊗ Tg is Tg ⊗ T ∗
g . As above, we can extend these operators to

(2.2) Tg ⊗ T ∗
g (ϕ) : D′

r(X
2) → D′

r(X
2) and T ∗

g ⊗ Tg(ϕ) : D′
r(X

2) → D′
r(X

2).

3. The Banach spaces of distribution

The spaces of distributions on which we have defined the transfer operators are
not appropriate for a study of the dynamics. Many recent works (e.g. [6, 2, 5])
have focussed on the problem of finding adapted functional spaces and different
choices have different advantages. Accordingly, it may better not to focus on a
particular choice but to enlightened which are the properties needed to carry out
the study of the Zeta functions. We will list the properties of the function spaces
that suffice for our argument. Yet, for definiteness of exposition we will comment
explicitly the Banach spaces introduced in [6] and remark that they indeed satisfy
such properties.

In [6], S.Gouëzel and the first-named-author introduced a scale of Banach spaces
Bp,q with q ∈ R+, p ∈ N and p + q < r adapted to Cr+1 Anosov diffeomorphisms

6Here, by D′r(X) we mean the dual of the space Cr(X) defined as follows. For r ≥ 0, let
brc be its integer part. We denote by C̄r the set of functions which are brc times continuously

differentiable, and whose brc-th derivative is Hölder continuous of exponent r − brc if r is not an
integer. To fix notation, in this paper we choose, for each r ∈ R+, a norm on C̄r functions so that

|ϕ1ϕ2|Cr ≤ |ϕ1|Cr |ϕ2|Cr . We will denote by Cr the closure in C̄r of the set of C∞ functions. It

coincides with C̄r if r is an integer, but is strictly included in it otherwise. In any case, it contains

C̄r′ for all r′ > r.
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T : X → X. The parameters p and q will be fixed at the end of the argument. We
denote B = Bp,q and set

ρ = ρp,q = λmin{p,q}‖g‖L∞ , ρ̃ = ρ‖g‖L∞ .

The basic properties of B are the following (see [6] for a proof):
(P1) Cr(X) is continuously embedded in B and its image is a dense subset.
(P2) B is continuously embedded in D′

r(X).
(P3) Tg : B → B is a bounded operator with essential spectral radius bounded

by ρ.

Remark 3.1. The meaning of (P3) is that we use (P2) to identify B with a sub-
space of D′

r(X) and consider the restriction of Tg to B. With such an identification
the embedding in (P1) is required to be the standard embedding of C∞ in D′

r(X). In
the following we will use the embeddings (P2), (and (P5)) to identify the elements
of B (and B̃) with distributions without making further remarks.

As already noted in (2.1) the operator T ∗
g ⊗Tg is a transfer operator for the Anosov

diffeomorphism T−1 × T : X2 → X2 with the same hyperbolicity constant λ of T .
So, as above, we can introduce a Banach space B̃ with the following properties

(P4) Cr(X2) is continuously embedded in B̃ and its image is a dense subset.
(P5) B̃ is continuously embedded in D′

r(X
2).

(P6) T ∗
g ⊗ Tg : B̃ → B̃ is a bounded operator with essential spectral radius

bounded by ρ̃.
The reader should be aware that usually there is some freedom in the definition of
the Banach spaces. For example, in [6] they depend on a family Σ of admissible leafs,
that is, Cr+1 embedded compact dim Es dimensional submanifolds with boundary
close to local stable manifolds. By taking the family appropriately,7 we can insure
that B̃ enjoys the following extra properties

(P7) (T ∗
g ⊗ Tg)n0(δ) is contained in B̃ for some n0 ∈ N.

(P8) The functional δ̄ : C∞(X2) → C, δ̄(ϕ) = δ(ϕ), extends to a bounded
functional δ̄ : B̃ → C.

Finally, as it should be apparent from the previous heuristic argument, we need
some control on how to approximate singular kernels by smooth ones. Let {(Ui,Ψi :
U → Rn)}k

i=1 be a Cr+1 atlas of X, and let {ρi}k
i=1 be a C∞ partition of unity

subordinated to such an atlas. Next, define the functions jε ∈ C∞(Rd, R+) so that∫
Rd jε = 1 and supp(jε) ⊂ {x ∈ Rd : ‖x‖ ≤ ε}. We then define 8

Jεf(x) :=
∑

i

∫
Rd

ρi ◦Ψ−1
i (y)jε(Ψi(x)− y)f ◦Ψ−1

i (y)dy for f ∈ Cr(X).

Let J∗ε be the formal adjoint of Jε. Clearly these extend to bounded operators

Jε : D′
r(X) → C∞(X) and J∗ε : D′

r(X) → C∞(X) .

We also define
J̃ε : D′

r(X
2) → C∞(X2)

7In the definition of eB, one can take Σ so that the diagonal in X2 is covered by finitely many

elements in Σ. This immediately implies (P8).
8Note that Jε is well defined for ε small enough.
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as the unique extension of Jε ⊗ Jε : Cr(X)⊗ Cr(X) → C∞(X2). Then we have9

(P9) For u ∈ B, J∗ε Jεu → u in B, as ε → +0.
(P10) For u ∈ B̃, we have J̃εu → u in B̃, as ε → +0.

Remark 3.2. From now on we will use only the above properties, regardless of the
way the spaces are actually constructed.

Here are two consequence of properties (P1)-(P10) that show the relevance of
the above objects for the problem at hand.

Lemma 3.3. Let {`i} ⊂ B′ and {ei} ⊂ B. If
∑k

i=1 `i ⊗ ei belongs to B̃, then we
have

δ̄

(
k∑

i=1

`i ⊗ ei

)
=

k∑
i=1

`i(ei).

Proof. Define J ′ε : B′ → C∞ by the duality relation J ′ε`(h) := `(J∗ε h). By (P10),
J̃ε(
∑k

i=1 `i ⊗ ei) =
∑k

i=1 J ′ε(`i)⊗ Jε(ei) ∈ C∞(X2) converges to
∑k

i=1 `i ⊗ ei in B̃,
as ε → +0. Since

δ̄

(
k∑

i=1

J ′ε(`i)⊗ Jε(ei)

)
=

k∑
i=1

〈J ′ε(`i), Jε(ei)〉L2(X) =
k∑

i=1

J ′ε`i(Jε(ei))

=
k∑

i=1

`i(J∗ε Jε(ei))

the claim of the lemma holds by (P8) and (P9). �

Lemma 3.4. Set δT = (T ∗
g ⊗ Id)δ. For each n ≥ n0, we have

δ̄((T ∗
g ⊗ Tg)nδ) =

∑
x∈Fix T 2n

g2n(x)
|det(Id−DT 2n(x))|

δ̄((T ∗
g ⊗ Tg)nδT ) =

∑
x∈Fix T 2n+1

g2n+1(x)
|det(Id−DT 2n+1(x))|

Proof. Let δε = J̃ε((T ∗
g ⊗ Tg)n0δ). By (P6), (P7) and (P10) we have (T ∗

g ⊗
Tg)n−n0δε → (T ∗

g ⊗Tg)nδ in B̃. We leave it to the reader to check that the right hand
side of the first equality above is obtained as the limit limε→+0 δ̄((T ∗

g ⊗Tg)n−n0δε).10

The second equality is obtained in a parallel manner. �

4. The proof

Take σ > max{ρ, ρ̃} arbitrarily. Then properties (P3) and (P6) imply

(4.1) T ∗
g = P + R : B → B, T ∗

g ⊗ Tg = P̃ + R̃ : B̃ → B̃

where P and P̃ are of finite rank, the spectral radius of R and R̃ are bounded by
σ, and PR = RP = 0, P̃ R̃ = R̃P̃ = 0. Notice that, for each h, f ∈ C∞(X), n ∈ N,

((T ∗
g ⊗ Tg)nδ)(h⊗ f) = δ((Tg)nh⊗ (T ∗

g )nf) = 〈(Tg)nh, (T ∗
g )nf〉L2(X)

= 〈h̄, (T ∗
g )2nf〉L2(X) = (T 2n

g h)(f),
(4.2)

9These properties are essentially proven in [6, section 7], or see [8].
10If in trouble, see [8] for details
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where, in the last expression, h is interpreted as an element of D′
r (and hence B) via

the natural embedding. It follows, using the Neumann series for |z| small enough,

(4.3) (Id− z(T ∗
g ⊗ Tg))−1(T ∗

g ⊗ Tg)n0δ(h⊗ f) = ((Id− z(Tg)2)−1T 2n0
g h)(f)

where n0 is the integer in the condition (P7). Note that, from (4.1) and the
arbitrariness of σ, both sides of (4.3) have a meromorphic extensions to an closed
disk {z ∈ C ; |z| ≤ σ−1}, and the equality must holds for those extensions. Since
R2n and R̃n can be written as11

R2n =
1

2πi

∫
|ζ|=σ

zn(z · Id− (Tg)2)−1dz ;

R̃n =
1

2πi

∫
|ζ|=σ

zn(z · Id− (T ∗
g ⊗ Tg))−1dz

we have, for all n > n0 and each h, f ∈ C∞(X),

R̃nδ(h⊗ f) := R̃n−n0(T ∗
g ⊗ Tg)n0δ(h⊗ f) = (R2n(h))(f),

P̃nδ(h⊗ f) := P̃n−n0(T ∗
g ⊗ Tg)n0δ(h⊗ f) = (P 2nh)(f)

(4.4)

Next, write the finite rank operator P 2n as P 2ng =
∑k

i=1 `
(n)
i (g)e(n)

i where
`
(n)
i ∈ B′ and e

(n)
i ∈ B. By (4.4), for each h, f ∈ C∞(X) and n > n0,

P̃nδ(h⊗ f) =
k∑

i=1

`
(n)
i (h) · e(n)

i (f) =
k∑

i=1

`
(n)
i ⊗ e

(n)
i (h⊗ f).

Since C∞(X) ⊗ C∞(X) is dense in Cp(X2) in the Cp topology,12 and since the
elements of B̃ are distributions of order p by hypothesis, it follows, for each n > n0,

(4.5) B̃ 3 P̃nδ =
k∑

i=1

`
(n)
i ⊗ e

(n)
i ∈ B′ × B.

We can thus apply Lemma 3.3 obtaining

δ̄
(
P̃nδ

)
=

k∑
i=1

`
(n)
i (e(n)

i ) = TrP 2n.

In conclusion we have, for n > n0,

δ̄
(
(T ∗

g ⊗ Tg)nδ
)

= δ̄
(
P̃nδ

)
+ δ̄

(
R̃nδ

)
= Tr P 2n +O(σn).

By replacing δ by δT = (T ∗
g ⊗ Id)δ in the argument above, we obtain also

δ̄
(
(T ∗

g ⊗ Tg)nδT

)
= δ̄

(
P̃nδT

)
+ δ̄

(
R̃nδT

)
= Tr P 2n+1 +O(σn).

11Here one has to choose σ so that no eigenvalues belong to the circle {z ∈ C : |z| = σ}.
12This is a direct consequence of Stone-Weierstrass theorem.
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Using Lemma 3.4 we can conclude

d[
T,g(z) : = Exp

(
−

∞∑
n=1

zn

n

∑
x∈Fix T n

gn(x)
|det(Id−DxTn)|

)

= Exp

(
−

∞∑
n=1

zn

n
TrPn + p0(z) +

∞∑
n=1

O(σn/2)zn

)

= det(Id− zP ) Exp

(
−p0(z)−

∞∑
n=1

O(σn/2)zn

)
,

(4.6)

where p0(z) is a polynomial of order 2n0 + 1.
Since the last series is convergent for |z| < σ−1/2, we have that the d[

T,g(z) is
holomorphic in such a disk and the zeroes correspond to the eigenvalues of P , that
is to the eigenvalues of Tg : B → B in the region {|z| > σ1/2}.

Applying the argument above to the case where p = [r/2] and q is arbitrarily
close to r−[r/2] we obtain Theorem 1. Let us conclude by reiterating the generality
of the approach.

Remark 4.1. Given any Banach spaces B and B̃ satisfying the properties (P1-10)
the proof above applies, hence we obtain Theorem 1 with ρ∗ = max{ρ−1, ρ̃−1/2}.
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gata), Via della Ricerca Scientifica, 00133 Roma, Italy.

E-mail address: liverani@mat.uniroma2.it

Masato Tsujii, Department of Mathematics, Hokkaido University, Sapporo, 060-0810,

Japan

E-mail address: tsujii@math.sci.hokudai.ac.jp


