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Abstract. We prove the existence of a unique SRB measure for a wide range
of multidimensional weakly coupled map lattices. These include piecewise
expanding maps with diffusive coupling.

1. Introduction

The field of expanding coupled map lattices has witnessed an impressive series
of results since the late 1980’s. Starting with [7] numerous authors contributed to
the exploration of ergodic and statistical properties of invariant measures for such
systems, see e.g. [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 29, 31, 32,
34, 35]. In all these publications the single site maps are hyperbolic or expanding
(local) diffeomorphisms of a smooth manifold, and the coupling is modeled by a
“diffeomorphism” of the infinite-dimensional state space. Only a few publications
used a different approach which allows to treat also piecewise expanding maps and
such a common coupling like the diffusive nearest neighbour coupling [21,22,23,24,
27, 28, 25, 26, 33].

Yet, the state of the field it is still far from satisfactory. One of the outstand-
ing open problems is to substantiate rigorously the numerical picture of a phase
transition given in [30]. The model considered in the aforementioned paper is a Z

2

lattice of expanding Lasota-Yorke like maps, coupled by a diffusive nearest neigh-
bour interaction. As the coupling parameter increases from zero the authors notice
the transition from a situation in which only one invariant measure describes the
statistical properties of the system to one in which two relevant invariant measures
appear (a phase transition, indeed). After more than ten years no aspect of such a
picture has been rigorously proven. In the present paper we prove the first (easier)
part of the picture: the existence of only one “relevant” (that is SRB) measure for
small coupling.

The proof is surprisingly elementary. It combines the following key ideas:

(i) The starting point is a Lasota-Yorke type inequality for coupled systems (cf.
[24, 28]).

(ii) The transfer operator of the uncoupled system is interpreted as a tensor prod-
uct operator of the single site transfer operators (cf. [33]). This allows to make
optimal use of the strong mixing properties of the single site systems.
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(iii) A “site-by-site” decoupling procedure allows to reduce the dynamics of the
coupled system “locally” to dynamics of tensor-product type at the cost of
only small errors (cf. [25, 26]).

(iv) The aforementioned small errors are not controlled in the original system but
in a huge extension of that system. This is the essential new idea of this paper.
We believe that it has applications far beyond the present model; indeed, we
expect it to be useful for all kinds of weakly coupled systems where the local
dynamics can be described by linear operators with an isolated simple leading
eigenvalue. Typical examples are high temperature stochastic Ising models or
weakly coupled uniformly contractive iterated function systems.

The plan of the paper is as follows: Section 2 details the model and describes
the basic result obtained in the paper. Section 3 describes the already mentioned
extension of the system and how to use it to get the main estimate of the paper.
Secion 4 contains the proof of the main theorem based on the results of Section 3.
Finally, Section 5 contains the proof for the case of more general coupling, but with
an extra simplifying assumption on the single site map.

2. The model and the result

Given a compact interval I ⊂ R we will consider the phase space Ω := IΛ, where
either Λ = Z

d or Λ is a box in Z
d.1 In the following we always assume I = [0, 1]

and 0 = (0, . . . , 0) ∈ Λ, as this can be done without loss of generality.2

We will have a single site dynamics given by the map τ : I → I . We assume τ to
be a piecewise C2 map from I to I with singularities at ζ1, . . . , ζN−1 ∈ (0, 1) in the
sense that τ is monotone and C2 on each component of I\{ζ0 = 0, ζ1, . . . , ζN−1, ζN =
1}. We assume that τ ′′/(τ ′)2 is bounded and that inf |τ ′| > 2.3

Next, we define the unperturbed dynamics T0 : Ω → Ω by [T0(x)]p := τ(xp).
To define the perturbed dynamics we introduce couplings Φε : Ω → Ω of the

form Φε(x) := x + Aε(x). We call Φε a (a1, a2)-coupling, if there are operators
A′, A′′ : `1(Λ) → `1(Λ) with a1 = ‖A′‖1, a2 = ‖A′′‖1 (maximal column sum norm)
such that for all k,p, q ∈ Λ

(2.1) |(Aε)p| ≤ 2|ε|, |(DAε)qp| ≤ 2|ε|A′
qp, |∂k(DAε)qp| ≤ 2|ε|A′′

qp .

Here ∂k denotes the partial derivative with respect to xk. In addition, we say
that Φε has finite coupling range w > 0, if ∂pΦε,q = 0 whenever |p − q| > w. So
A′

qp = A′′
qp = 0 when |p − q| > w. We say that a coupling has short range if

it is not of finite range and there exist constants L > 0 and γ ∈ (0, 1) such that
A′

qp+A
′′
qp ≤ Lγ|p−q|. Similarly, we say that a coupling has long range if it is neither

finite range nor short range and there exists c′ > 0 such that A′
qp+A

′′
qp ≤ L|p−q|c′ .

The diffusive nearest neighbor coupling used in [30], and in much of the numerical

1By box here, and in the following, we mean a hypercube. Of course much more general shapes
can be considered by the same arguments, yet for shapes with too large a boundary problems may
arise. To avoid all the related technicalities we confine ourselves to the above mentioned case.

2The reader should be aware that there is nothing special about Zd, any other lattice (or
graph) can be treated similarly, provided the number of different sites that can be reached from
a given site along a path of length n grows at most subexponentially in n.

3Under mild additional assumptions on τ also maps with 1 < inf |τ ′| ≤ 2 can be treated. The
complications, which arise in the proof of a Lasota-Yorke type inequality, were overcome in [28],
see also the discussions of this point in [22] and in [26, Footnote 14].
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literature, is defined by

(2.2) [Φε(x)]p = xp +
ε

2d

∑

|p−q|=1

(xq − xp) (p ∈ Λ) ,

and it is an example of a (1, 0)-coupling with range w = 1.4

The dynamics Tε : Ω → Ω that we wish to investigate is then defined as

Tε := Φε ◦ T0 ,

and, more precisely, we wish to investigate its invariant measures in some appro-
priate class. Let M(Ω) be the set of signed Borel measures on Ω.5 To state the
main result of the paper we need to introduce the concept of measures of bounded
variation. Let I be the set of all boxes Λ1 ⊂ Λ. For each Λ1 ∈ I we define 6

Varµ := sup
p∈Λ

sup
|ϕ|C0(Ω)≤1

µ(∂pϕ)

VarΛ1 µ := sup
p∈Λ1

sup
|ϕ|

C0(IΛ1 )
≤1

µ(∂pϕ) .
(2.3)

It is easy to prove that the set B(Ω) := {µ ∈ M(Ω) : Varµ < ∞} consists of
measures whose finite dimensional marginals are absolutely continuous with respect
to Lebesgue and the density is a function of bounded variation [25]. In addition,
such measures have finite entropy density with respect to Lebesgue [26, Corollary
5]. In fact, “Var” is a norm and, with this norm, B(Ω) is a Banach space.7

It is also useful to introduce the usual total variation norm on signed measures:

(2.4) |µ| := sup
|ϕ|C0(Ω)≤1

µ(ϕ) .

Just like in [25, Sect. 3.3] one checks easily that

(2.5) |µ| ≤ 1

2
Varµ .

As we are interested in studying observable invariant measures, we must restrict
to a subclass of the class of all measures in order to make relevant statements.
Clearly, M(Ω) is too large for our purposes, but on the other hand, in the case
in which Λ is infinite, B(Ω) is quite small. As usual in thermodynamics, it makes
sense to require some condition on the growth of the relevant quantity with respect
to the volume. Let Mv(Ω) be the closure of the set

{µ ∈ M(Ω) : ∀η > 0 sup
Λ1∈I

e−η|Λ1|
1
d VarΛ1 µ <∞} ,

with respect to the norm | · |. Clearly, Mv(Ω) consists of measures that can be
uniformly approximated by measures with absolutely continuous finite dimensional
marginals whose densities are functions of bounded variation with the variation
growing less than exponentially in the size of the boxes.

4Of course, if Λ 6= Zd, then the sum in (2.2) can involve sites not in Λ. To properly define the
dynamics it is then necessary to supply some boundary conditions, that is to specify some fixed
value for xq, q 6∈ Λ.

5The topology that we use on Ω is the product one.
6Here, and in the following, we will consider C0(IΛ1 ) as a subspace of C0(Ω) by the obvious

inclusion. Also the sup is restricted to functions derivable with respect to xp.
7See [26] for a careful discussion of bounded variation in the present context and the relevant

associated properties.
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The results of this paper can be summarized, a bit loosely, as follow.

Theorem 2.1. For each (a1, a2)-coupling of finite range w, there exists ε0 > 0
such that, for each |ε| < ε0, the dynamical system (Ω, Tε) has a unique invariant
measure µε in Mv(Ω).8 In addition, µε belongs to B(Ω), is exponentially mixing
both in time and in space, and it is the SRB measure of the system.

The proof, which also makes precise the statement, can be found in Section 4.
To obtain such a result we consider the dynamics acting directly on the measures

via the linear operator T ∗
ε µ(A) := µ(T−1

ε A) (for each measurable set A). The basic
facts concerning the operator T ∗

ε are detailed in the following lemma.

Lemma 2.2 (Lasota-Yorke inequality). For each (a1, a2)-coupling, there exist ε1 >
0, λ > 1, and a, b > 0 such that, for each |ε| < ε1, the operator T ∗

ε is well defined
as an operator on B(Ω). In addition, for each µ ∈ B(Ω) holds true

|T ∗
ε µ| ≤ |µ|

Var(T ∗n
ε µ) ≤ aλ−n Varµ+ b|µ| .

This is the special case θ = 1 of Proposition 4 in [26] (see below for the meaning
of θ). Observe that the proof given there for Λ = Z applies (only if θ = 1!) without
changes to Λ ⊆ Z

d.
From preceding experience it is also useful to consider larger Banach spaces: first

define, for each θ ∈ (0, 1], a norm

(2.6) ‖µ‖θ := sup
Λ1∈I

θ|Λ1| VarΛ1 µ

on B(Ω). Then we let B(Ω, θ) be the completion of B(Ω) with respect to this norm.9

Observe that ‖µ‖θ=1 = Varµ.
The key estimate on which Theorem 2.1 relies is given in the following lemma

whose proof is the content of the next section. Let

B0(Ω) := {µ ∈ B(Ω) : µ(1) = 0}.
Lemma 2.3. Recall that Ω = IΛ. For each (a1, a2)-coupling with finite range w,
there exist σ ∈ (0, 1) and C, ε2 > 0 such that, for all |ε| < ε2, µ ∈ B0(Ω), θ ∈ (0, 1),
and n ∈ N holds true

‖T ∗n
ε µ‖θ ≤ Cσn min{|Λ|, |e ln θ|−1}Varµ.

Finally, we wish to emphasize the power of the approach by showing the possi-
bility of extending it to more more general settings. Short range interactions can
be treated in a spirit similar to the one used for the finite range. Nevertheless, the
technical construction becomes inevitably more involved. For the long range case
the situation looks still similar but one cannot expect an exponential convergence
to the invariant measure, so one cannot simply rely on an estimate of the spectral
radius of the covering dynamics and the story is bound to acquire an extra layer of
complexity.

8If the coupling is defined only for nonnegative ε (as it is the case for the diffusive nearest
neighbour coupling on Ω), this has to be understood as “for each ε ∈ [0, ε0) . . . ” here and in the
sequel.

9Note that if |Λ| = ∞ and 0 < θ < 1, then B(Ω, θ) contains objects that are not signed
measures, see [25,26] for details.
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To keep the technicalities to a minimum here we content ourself with the follow-
ing result (proved in Section 5) concerning the short range case with an additional
assumption on the single site map.

Theorem 2.4. If the map τ is Lipschitz, then for each (a1, a2)-coupling of short
range, there exists ε0 > 0 such that, for each |ε| < ε0, the dynamical system (Ω, Tε)
has a unique invariant measure µε in Mv(Ω). In addition, µε belongs to B(Ω), is
exponentially mixing both in time and in space, and it is the SRB measure of the
system.

3. Lifting the system, proof of Lemma 2.3

From now on we will suppress the dependence on Ω in notations like B(Ω).
The basic idea of the present work is to define an extension of the linear system

(T ∗
ε ,B) and to study its spectral properties instead of the ones of T ∗

ε . To do so
define

Bp := {µ ∈ B : ∂pϕ = 0 ⇒ µ(ϕ) = 0} .
Remark that Bp ⊂ B0. We can then define BΛ := Xp∈ΛBp and B0

:= (B0)Λ, these
are Banach spaces with the norm ‖µ̄‖ := supp∈Λ Varµp.

As T ∗
ε (B0) ⊆ B0, the (coupled) dynamics is easily lifted to B0

, namely T ε : B0 →
B0

can be defined as (T εµ̄)p := T ∗
ε µp. However, only in the uncoupled case ε = 0

the operator T 0 leaves the subspace BΛ of B0
invariant. Since the invariance of this

subspace - also under a suitable lift of T ∗
ε when ε 6= 0 - is crucial for our approach,

we need to proceed more carefully in choosing a suitable lift.
To start with, let us consider some total ordering σ : N → Z

d of Z
d with the

property:10

(3.1) c−1i
1
d ≤ |σ(i)| ≤ ci

1
d .

For each p = p + σ(0) and q = p + σ(i) in Z
d one can then define the (partial)

telescoping operators Πp,q acting on test functions,11

Πp,qϕ(x) :=

∫

ϕ(x) dxp · · · dxp+σ(i−1) −
∫

ϕ(x) dxp · · · dxp+σ(i) .

Essentially p ∈ Λ specifies the point from which one starts to telescope and q how
far one is in the telescoping procedure. Note that Πp,qϕ = 0 if ∂qϕ = 0, and that
Πp,qϕ does not depend on the variables contained inside a box of size c−2|q − p|
centered at p.12 We then define the lift Ψ : B0 → BΛ by

Ψ(µ)q := Π∗
0,qµ.

and the projection map P : BΛ → B(θ) by

P (µ̄) :=
∑

p∈Λ

µp

10For example, on a square lattice one can spiral out from zero on larger and larger squares.
11Here ϕ ∈ C0(IZ

d
). This definition suffices in view of the identification already mentioned in

Footnote 6.
12Indeed, if q′ ∈ Λ, |q′−p| < c−2|q−p|, then, by (3.1), σ−1(q′−p) ≤ cd|q′−p|d < c−d|q−p|d ≤

σ−1(q − p). Hence q′ has already been integrated out in Πp,q.
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which is well defined for θ ∈ (0, 1) even if Λ is infinite.13 In fact,

(3.2) ‖P‖BΛ→B(θ) ≤ min{|Λ|, |e ln θ|−1} ,

because VarΛ1 µp = 0 if p ∈ Λ\Λ1. Observe also that, for each function ϕ depending
only on finitely many variables and for each µ ∈ B0,

P (Ψ(µ))(ϕ) = µ(ϕ) .

In addition, it is easy to verify that

(3.3) PT ε = T ∗
ε P .

As remarked before, since T εBΛ 6⊂ BΛ, we need some way to go back to the space

BΛ. This is achieved via the (partially defined!) telescoping operator H̄ : B0 → BΛ,

(3.4) (H̄µ)q =
∑

p∈Λ

Π∗
p,qµp .

Indeed, the infinite sum is not always well defined, but as we only consider finite
range couplings, the operators

(3.5) T ε,m := H̄T
m

ε (m ≥ 1)

are always well defined on BΛ, as the next lemma shows.

Lemma 3.1. Let m ≥ 1. The linear operator T ε,m : BΛ → BΛ is well defined, and

(3.6) ‖T ε,mµ̄‖ ≤ C(wm)d sup
p∈Λ

Var(T ∗m
ε µp) .

Proof. Let ϕ ∈ C1(Ω). As noted above, ∂q′(Πp,qϕ) = 0 for all q′ ∈ Λ such that
|q′−p| < c−2|q−p|. Consequently, ∂p ((Πp,qϕ) ◦ Tm

ε ) = 0 provided |q−p| > c2mw.
Therefore, for µp ∈ Bp,

(

Π∗
p,qT

∗m
ε µp

)

(ϕ) = µp ((Πp,qϕ) ◦ Tm
ε ) = 0 if |q− p| > c2mw.

It follows that for µ̄ ∈ BΛ, µ̄ = (µp)p∈Λ,

(3.7) (T ε,mµ̄)q = (H̄T
m

ε µ̄)q =
∑

|q−p|≤c2mw

Π∗
p,qT

∗m
ε µp

is well defined, and

‖T ε,mµ̄‖ = sup
q∈Λ

Var(H̄T
m

ε µ̄)q ≤ 2(2c2mw)d sup
p∈Λ

Var(T ∗m
ε µp) .

�

Recall from (3.3) that PT ε = T ∗
ε P . As PH̄ = P whenever these operators are

well defined, it follows

(3.8) PT ε,m = T ∗m
ε P .

So we can use T ε,m : BΛ → BΛ as a covering dynamics for T ∗m
ε : B0 → B0.

13Note that, on each local test function, the sum reduces to a finite sum.
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In particular, for each n ≥ 1, we have the commuting diagram

(3.9)

BΛ

T
n

ε,m−−−−→ BΛ

Ψ

x









y
P

B0 −−−−→
T∗mn

ε

B(θ)

which makes sense since, by Lemma 3.1, T ε,m is a bounded operator on BΛ.

To conclude we need to have a closer look at the operator T ε,m. Recall that the
sum in (3.7) is a finite sum as the interaction has finite range.

Next, writing m = m1 +m2, for each µ̄ ∈ BΛ and each p ∈ Λ, holds

(3.10) Var(T ∗m
ε µp) ≤ a′λ−m1 Varµp + b|T ∗m2

ε µp|
with a′ = a(a+ 1

2b), see Lemma 2.2 and eq. (2.5). In order to profit from the strong
mixing properties of the single site operator we use a decoupling trick originally
introduced in a similar context in [33]: approximate Φε by Φp

ε , where site p is
decoupled from all other sites. To this end we introduce the following notation: let
ῑp : IΛ → IΛ be the map (ῑp(x))q = xq if q 6= p and (ῑp(x))p = 0. Then define
Φp

ε : IΛ → IΛ,

(3.11) (Φp
ε (x))q =

{

xp if q = p

(Φε(ῑp(x)))q if q 6= p

Note that

(3.12) (DΦp
ε )qp = δqp .

This implies

(3.13) (Φp
ε )

∗(Bp) ⊆ Bp .

It is then natural to define the decoupled dynamics Tε,p := Φp
ε ◦ T0. Observe that

(Tm
ε,p x)p = τm(xp).
Here is a basic estimate for comparing different couplings. It is a variant of [26,

Proposition 5], and we give its proof in the appendix.

Lemma 3.2. The lemma consists of two parts:

a) Let F, F̃ : Ω → Ω be two Lipschitz maps14 with Lipschitz constant L > 0 that
are close in the following sense: There are constants K0,K1,K2 > 0 such that

(i)
∑

q∈Λ supx |F̃q(x) − Fq(x)| ≤ K0,

(ii)
∑

q∈Λ supp∈Λ supx 6=p

∫

I |∂pF̃q(x 6=p, ξ) − ∂pFq(x 6=p, ξ)|dξ ≤ K1, and

(iii) sup{Var(F ∗
t ν) : 0 ≤ t ≤ 1, ν ∈ B(Ω),Var ν ≤ 1} ≤ K2; Ft =

(

tF̃ + (1 − t)F
)

.

Then, for each ν ∈ B,

(3.14) |F̃ ∗ν − F ∗ν| ≤ K2 (K0 +K1) Var ν .

b) For use in Section 5 we provide a variant of the above estimate: if assumptions
(i) and (ii) are replaced by

(iv)
∑

q∈Λ supx |F̃q(x) − Fq(x)| 12 ≤ K3 for some K3 > 0,

14F : Ω → Ω is a “Lipschitz map”, if all Fq(x) are Lipschitz with respect to each coordinate xp

with uniformly bounded Lipschitz constants. This means in particular that all partial derivatives of
all Fq exist Lebesgue-a.e., are uniformly bounded and that Fq(x+sep)−Fq(x) =

R s

0 ∂pFq(x+ξep)dξ.
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then, for each ν ∈ B,

(3.15) |F̃ ∗ν − F ∗ν| ≤ 2K
1
2
2 K3 Var ν .

As in [26, Lemma 8] one shows that the assumptions of part a) of this lemma

are satisfied for F = Φε and F̃ = Φp
ε . Hence one can compute

(3.16) |Φ∗
εµ− (Φp

ε )
∗µ| ≤ |ε|(8a1 + 2a2 + 4) Varµ

provided |ε| < min{ 1
6a1

, 2
9a2

}. Using Lemma 2.2 it is then straightforward to show

(compare the proof of [26, Theorem 6])

(3.17) |T ∗m2
ε µ− T ∗m2

ε,p µ| ≤ Cm2|ε|Varµ.

We are finally at the punch-line: let h be the invariant probability density of the

single site map τ . As ψ(x) :=
∫ 1

0 h(ξ)ϕ((Tm2
ε,p x) 6=p, τ

m2ξ) dξ does not depend on
xp, we have µp(ψ) = 0, so that

T ∗m2
ε,p µp(ϕ) = µp(ϕ ◦ Tm2

ε,p ) = µp

(

d

dxp

∫ 1

0

(χ[0,xp](ξ) − xph(ξ))ϕ((Tm2
ε,p x) 6=p, τ

m2ξ)dξ

)

= µp

(

d

dxp

∫ 1

0

Lm2(χ[0,xp] − xph)(ξ)ϕ((Tm2
ε,p x) 6=p, ξ)dξ

)

where L is the transfer operator of the single site map. This means that, calling σ0

the mixing rate for the single site map,

|T ∗m2
ε,p µp| ≤ Cσm2

0 Varµp .

Combining this equation with (3.10) and (3.17) yields

Var(T ∗m
ε µp) ≤ a′λ−m1 Varµp + bCm2|ε|Varµp + bCσm2

0 Varµp .

Setting σ1 := max{λ−1, σ0}
1
4 < 1 and m1 = m2, there is, for m large enough,

ε(m) > 0 such that for |ε| < ε(m) holds

(3.18) Var(T ∗m
ε µp) ≤ σm

1 Varµp .

In view of Lemma 3.1 we conclude that, for each µ̄ ∈ BΛ,

‖T ε,mµ̄‖ ≤ C(mw)dσm
1 ‖µ̄‖ .

At this point we can choose m large enough so that
[

C(mw)d
]

1
m σ1 =: σ < 1,

whereby obtaining

(3.19) ‖T ε,mµ̄‖ ≤ σm‖µ̄‖ .

We now conclude the argument by using equation (3.2) and (3.9)

‖T ∗pm
ε µ‖θ = ‖PT p

ε,mΨ(µ)‖θ ≤ 2 min{|Λ|, |e ln θ|−1}σpm Varµ.

By the usual trick of writing n = pm+ q, q < m and Lemma 2.2 we finally have

(3.20) ‖T ∗n
ε µ‖θ ≤ Cmin{|Λ|, |e ln θ|−1}σn Varµ,

for each µ ∈ B0 and θ ∈ (0, 1). This finishes the proof of Lemma 2.3.
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4. Proof of Theorem 2.1

Having obtained the exponential estimate (3.20), the assertions of Theorem 2.1
can be proved along well known lines. For our convenience we follow once more [26].

The existence of a Tε-invariant probability measure µε ∈ B follows from a weak
compactness argument as in [26, Theorem 4]. The uniqueness of such a measure µε

in B is an immediate consequence of (3.20).
Uniqueness in Mv(Ω) follows by a standard approximation argument. Assume

there exists an invariant measure µ̃ ∈ Mv(Ω). By definition, given δ, η > 0, µ̃ can be

approximated by a measure µδ,η such that |µ̃−µδ,η| ≤ δ and VarΛ′ µδ ≤ Cδ,ηe
η|Λ′|

1
d

for any Λ′ ∈ I.
Let ϕ be a function depending only on the variables belonging to a box Λ0 ∈ I,

so that ϕ ◦ T n
ε depends only on the variables in the nw-neighborhood Λn of Λ0.

Then

(4.1) µ̃(ϕ) = T ∗n
ε (µ̃− µδ,η)(ϕ) + T ∗n

ε (µδ,η − µε)(ϕ) + µε(ϕ)

We must prove that µ̃(ϕ) = µε(ϕ). As |T ∗n
ε (µ̃ − µδ,η)| ≤ |µ̃ − µδ,η| ≤ δ with an

arbitrary δ > 0, it just remains to show that the second term can be made as small
as we like by choosing η and n appropriate.

Given a measure µ let µΛn
be its marginal with respect to the box Λn. Given a

measure µ on IΛn it is convenient to extend it to a measure µ′ on all IΛ by simply
tensoring it with the Lebesgue measure on the complement of Λn; note that such
an extension does not increase the bounded variation of the measure. With these
conventions,

(4.2) T ∗n
ε (µδ,η − µε)(ϕ) = T ∗n

ε ([µδ,η,Λn
]′ − [µε,Λn

]′)(ϕ)

Hence, by (3.20),

(4.3) |T ∗n
ε (µδ,η − µε)(ϕ)| ≤ Cθ θ

−|Λ0|σn(1 + Cδ,ηe
η|Λn|

1
d )

As |Λn| ≤ |Λ0|+(|Λ0|
1
d +2nw)d it follows that, for 2wη < | lnσ|, one can make this

term arbitrarily small by choosing n large. Hence µ̃ = µε.
Since in the case |Λ| <∞ one has Mv(Ω) = M(Ω), it follows that finite systems

have only one measure absolutely continuous with respect to Lebesgue.
If |Λ| = ∞ and Λ′ ∈ I, let Φε,Λ′(x∈Λ′ ) := Φε(x∈Λ′ , 0 6∈Λ′). Then Φε,Λ′ is still an

(a1, a2)-coupling with finite range w for the configuration space IΛ′

and Tε,Λ′ :=

Φε,Λ′ ◦ T0 gives a dynamics to which all our results apply. Calling µΛ′

ε its unique
invariant measure absolutely continuous to Lebesgue one can prove, with essentially
the same argument as before that, for each ϕ ∈ C0(Ω),

(4.4) lim
Λ′→Λ

|µε(ϕ) − [µΛ′

ε ]′(ϕ)| = 0.

The exponential mixing in space and time can be obtained exactly as in [26].
Finally, our use of the term SRB for the measure µε is justified by the fact that

µ enjoys the law of large number with respect to a vast class of initial measures
related to Lebesgue and, in addition, is stable under smooth random perturbations,
that is the random perturbations have a unique invariant measure that converges
to µε, see [26].

Normally, for finite systems, the criteria for defining the SRB measure are three
(e.g., see [36]), the absolutely continuity of the measure along the unstable mani-
folds, the law of large numbers with respect to Lebesgue for smooth observables,
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the stability with respect to random perturbations. In the infinite case the sit-
uation is a bit more subtle since measures tend to be not absolutely continuous
one with respect to the other and, in our case, [15] shows that a lot of invariant
measures can have marginals absolutely continuous with respect to Lebesgue. Yet,
we have shown that, if some moderate regularity is required, then only one invari-
ant measure with absolutely continuous marginals exists, moreover this is the limit
obtained by truncating the system to a finite size as (4.4) shows. This together
with the fulfillment of the other two requirements is, in our opinion, sufficient to
attribute to µε the qualification of SRB.

5. Short range

Since now the range is infinite it is necessary to decompose the interaction accord-
ing to space scales, the point being that the interaction on larger scales is smaller
and smaller in the weak norm but no control is available on its variation, hence it
is necessary to wait longer and longer times for the dynamics to act effectively on
it. This forces a more complex book keeping mechanism which is reflected in the
necessity of a larger covering Banach space that, with a slight abuse of notation,
we will still call BΛ.

Let S be a positive integer to be fixed later. We define the Banach spaces

BΛ := {µ̄ := (µq,t,l) : q ∈ Λ; t ∈ NS := N \ {1, . . . , S}; l ∈ {0, . . . , t}, µq,t,l ∈ Bq} ;

together with the norm

(5.1) ‖µ̄‖ := sup
q∈Λ

sup
t∈NS

l∈{0,...,t}

(

ρtαl Varµq,t,l + ρ−tαl−t|µq,t,l|
)

,

for some constants α, ρ ∈ (0, 1) to be fixed later. Pictorially, one can imagine the
above space as a collection of towers at each site q ∈ Λ, where the tower t has hight
t and the the index l denotes the l-th floor in this tower. We can now define the
lifted linear dynamics

(5.2) (T µ̄)q,t,l :=

{

µq,t,l−1 if l > 0
∑

{(p,s):τ(q−p,s)=t} Π∗
p,qT

∗m(s+1)
ε µp,s,s if l = 0

where

τ(q − p, s) :=

{

0 if |q − p| ≤ s2 + S

|q − p| if |q − p| > s2 + S .

Roughly speaking, within each tower s at site p the operator T pushes each measure
one floor up, except for the measure at the top level, which is first transformed
according to the dynamics of the whole tower and then distributed (by means of
the telescoping operators Π∗

p,q) to the ground levels of towers at sites q in the

following way: If q is close to p (in the sense |q − p| ≤ s2 + S) the corresponding
measure is mapped to the tower of height t = 0, whereas if q is farther away from
p, it is mapped to the tower of height |q − p|.

To relate the dynamics of the linear system (T ,BΛ) with that of the operator T ∗m
ε

(for an integer m to be fixed later) we introduce the space Bw(θ) as the completion
of B with respect to the weak norm

|µ|θ := sup
Λ1∈I

sup
|ϕ|

C0(IΛ1 )
≤1

θ|Λ1||µ(ϕ)| .
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Then we define

Ψ : B0 → BΛ, (Ψµ)q,t,l =

{

Π∗
0,qµ if t = l = 0

0 otherwise ,

and

P : BΛ → Bw(θ), P µ̄ =
∑

q,t,l

T ∗ml
ε µq,t,l .

It is easy to check that PT
n

= T ∗mn
ε P , and hence PT

n
Ψ = T ∗mn

ε , for each n ∈ N,
so that the linear system (T ,BΛ) is indeed an extension of T ∗m

ε : B0 → Bw(θ).15

The following lemma is the main result of this section.

Lemma 5.1. If τ is Lipschitz and Φε is a short range coupling (see Section 2 for
this terminology), then there exist σ ∈ (0, 1) and C, ε2 > 0 such that, for all |ε| < ε2,
µ ∈ B0(Ω), θ ∈ (0, 1), and n ∈ N holds true

(5.3) |T ∗n
ε µ|θ ≤ Cσn min{|Λ|, |e ln θ|−1}Varµ.

Proof. As in the case of a finite coupling range, estimate (5.3) follows from the fact
that T is a strict contraction on BΛ. Namely, we will show that there are m ∈ N,
σ ∈ (0, 1), and ε2 > 0 such that for all µ̄ ∈ BΛ holds

(5.4) ‖Tµ̄‖ = sup
q,t,l

|(Tµ̄)q,t,l|t,l ≤ σm‖µ̄‖

where |µ|t,l := ρtαl Varµ+ ρ−tαl−t|µ|, see (5.1).
The case l 6= 0 is easy: for all q and t we have

(5.5) |(Tµ̄)q,t,l|t,l = |µq,t,l−1|t,l = α|µq,t,l−1|t,l−1 ≤ α‖µ̄‖ ≤ σm‖µ̄‖ ,

where m > 0 and σ ∈ (α
1
m , 1) will be determined in the course of the proof.

So we assume from now on that l = 0 and start with the case t = 0. (Tµ̄)q,0,0

is given by the sum in (5.2) that ranges over indices p and s. We begin with the
contributions for s = 0. Without loss of generality we may assume that m is even.
By C we denote any constant that may depend on the “ingredients” of the system
(like a, b, λ, etc.) but which is independent of any constant that is to be fixed during
the proof (i.e. S, α, ρ,m, σ, ε1. A crucial choice will be m = δS for some δ > 0 to
be fixed later.) Then

|Π∗
p,qT

∗m
ε µp,0,0|0,0

= Var(Π∗
p,qT

∗m
ε µp,0,0) + |Π∗

p,qT
∗m
ε µp,0,0|

≤ 2 Var(T ∗m
ε µp,0,0) + 2|T ∗m

ε µp,0,0|

≤ 2aλ−
m
2 Var(T

∗m
2

ε µp,0,0) + 2(b+ 1)|T ∗m
2

ε µp,0,0|

≤ Cλ−
m
2 Var(µp,0,0) + C|ε|mVar(µp,0,0) + Cσ

m
2

0 Var(µp,0,0)

≤ σm
1 Var(µp,0,0)

≤ σm
1 ‖µ̄‖ (σ1 := max{λ−1, σ0}

1
4 )

15Observe that, since
P

s∈NS,0≤l≤s ρ−sα−l does not converge, it is not true that P µ̄ ∈ B(θ)

for each µ̄ ∈ BΛ, while ‖P‖
BΛ→Bw(θ) ≤ (1 − ρ)−1(1 − α)−1 |e ln θ|−1.
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for sufficiently largem and |ε| < ε(m), where we used essentially the same arguments
that lead already to (3.18). Summing this over all p for which τ(q − p, 0) = t = 0
means that one has to sum over all p for which |q− p| ≤ S:

(5.6)

∣

∣

∣

∣

∑

{p:τ(q−p,0)=0}
Π∗

p,qT
∗m
ε µp,0,0

∣

∣

∣

∣

0,0

≤ CSdσm
1 ‖µ̄‖ ≤ σm

2
‖µ̄‖

for a suitable σ ∈ (σ1, 1), provided m = δS is sufficiently large.
Next we estimate the contributions for s 6= 0 to the sum in (5.2) when l = 0 and

t = 0. In this case

|Π∗
p,qT

∗m(s+1)
ε µp,s,s|0,0 = Var(Π∗

p,qT
∗m(s+1)µp,s,s) + |Π∗

p,qT
∗m(s+1)µp,s,s|

≤ 2 Var(T ∗m(s+1)µp,s,s) + 2|T ∗m(s+1)µp,s,s|
≤ 2aλ−m(s+1) Var(µp,s,s) + 2(1 + b)|µp,s,s|
≤ [2aλ−m(s+1)ρ−sα−s + 2(1 + b)ρs]|µp,s,s|s,s .

As s > S and |q− p| ≤ s2 + S in the case under consideration, we conclude
∣

∣

∣

∣

∑

{(p,s):s∈NS\{0},τ(q−p,s)=0}
Π∗

p,qT
∗m(s+1)
ε µp,s,s

∣

∣

∣

∣

0,0

≤ C

∞
∑

s=S+1

(s2 + S)d[2aλ−m(s+1)ρ−sα−s + 2(1 + b)ρs]‖µ̄‖

≤ CσS
2 ‖µ̄‖ ≤ σm

2
‖µ̄‖

(5.7)

for suitable σ2 ∈ (ρ, 1) and σ ∈ (σ
δ/2
2 , 1), provided λ−m < αρ2 and m = δS is

sufficiently large.
We finally turn to the case l = 0 and t 6= 0. For this we will need the following

estimate: There are β ∈ (0, 1) and δ > 0 such that

(5.8) |Π∗
p,qT

∗m(s+1)
ε µp,s,s| ≤ Cmβ

|q−p| Var(µp,s,s)

provided m(s+ 1) < δ|q − p|. The proof will be given below.
Now, since t 6= 0, the condition τ(q − p, s) = t in the summation in (5.2) means

that t = |q−p| > s2 +S. In particular, as m = δS, we have m(s+1) = δS(s+1) <
δ(s2 + S) < δ|q − p| so that (5.8) is applicable. Therefore

|Π∗
p,qT

∗m
ε µp,s,s|t,0

= ρt Var(Π∗
p,qT

∗m(s+1)
ε µp,s,s) + ρ−tα−t|Π∗

p,qT
∗m(s+1)
ε µp,s,s|

≤ 2aρtλ−m(s+1) Var(µp,s,s) + 2bρt|µp,s,s| + ρ−tα−tCmβ
|q−p| Var(µp,s,s)

≤
(

2aρt(ραλm)−s + 2bρsρt + (ρα)−s−tCmβ
|q−p|

)

|µp,s,s|s,s .

Hence, observing that t = |q − p| > S and s <
√
t,

∣

∣

∣

∣

∑

{(p,s):τ(q−p,s)=t}
Π∗

p,qT
∗m
ε µp,s,s

∣

∣

∣

∣

t,0

≤
√

t
∑

s=0

Ctd
(

ρt(ραλm)−s + ρsρt + (ρα)−s−tCmβ
t
)

‖µ̄‖

≤ CσS
3 ‖µ̄‖ ≤ σm‖µ̄‖,

(5.9)
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for suitable σ3 ∈ (ρ, 1) and σ ∈ (σ
1
2δ

3 , 1), provided αρ2 > β and S = δ−1m is
sufficiently large.

Putting together (5.5), (5.6), (5.7), and (5.9) yields

‖Tµ̄‖ ≤ σm‖µ̄‖
for some m > 0 and σ ∈ (0, 1). This concludes the proof of Lemma 5.1. �

Proof of estimate (5.8). The basic idea of the proof is to approximate T
m(s+1)
ε by

a map T̃s = T̃ε,p,q,m(s+1) with the property that ∂p((T̃s)q′) = 0 if |q′ − p| ≥ |q− p|.
To this end recall the map ῑp : IΛ → IΛ from Section 3, (ῑp(x))q′ = xq′ if q′ 6= p

and (ῑp(x))q′ = 0 if q′ = p. Then define

(T̃s(x))q′ =

{

(T
m(s+1)
ε (x))q′ if |q′ − p| < c−2|q − p|

(T
m(s+1)
ε (ῑp(x)))q′ if |q′ − p| ≥ c−2|q − p| .

Note first that (Πp,qϕ)(T̃s(x)) is constant as a function of xp because c ≥ 1. It
follows that

Π∗
p,qT̃

∗
s µ = 0 if µ ∈ Bp.

Hence, recalling that µp,s,s ∈ Bp, we see that

|Π∗
p,qT

∗m(s+1)
ε µp,s,s| = |Π∗

p,q(T
∗m(s+1)
ε − T̃ ∗

s )µp,s,s| ≤ 2|(T ∗m(s+1)
ε − T̃ ∗

s )µp,s,s| .
The latter quantity can be bounded using Lemma 3.2b. To this end let us check
the hypotheses of that lemma.

|(T̃s(x) − Tm(s+1)
ε (x))q′ | ≤

{

0 if |q′ − p| < c−2|q − p|
|(DTm(s+1)

ε )q′p|∞ if |q′ − p| ≥ c−2|q − p|

To estimate the derivative notice that 0 ≤ |(DΦε)q′p| ≤ δq′p + 2L|ε|γ|q′−p| so that

0 ≤ |(DΦε)q′p|
1
2 ≤ δq′p +

√

2L|ε|γ 1
2 |q

′−p| =: (Id +
√

2L|ε|B)q′p. Hence, setting
λ+ := |τ ′|∞, by the triangular inequality

|(DTn
ε )q′p| ≤ λn

+{([Id +
√

2L|ε|B]n)q′p}2 .

Using a Cramér type estimate as in [27] this leads to the following bound for K3:
let n = m(s+ 1) and r = |q − p| so that n < δr. Then, for any t > 0,

∑

q′

|(T̃s(x) − Tm(s+1)
ε (x))q′ | 12

≤
∑

|q′−p|≥c−2r

λ
n
2
+ ([Id +

√

2L|ε|B]n)q′p

≤
∑

|q′−p|≥c−2r

λ
1
2 δr
+ ([Id +

√

2L|ε|B]δr)q′pe
t|q′−p|−tc−2r

≤ (λ
δ
2
+e

−tc−2

)r
∑

q′∈Zd

([Id +
√

2L|ε|B]δr)q′0e
t|q′|

≤ (λ
δ
2
+ψ(t)δe−tc−2

)r =: βr = β|q−p|

(5.10)

where ψ(t) :=
∑

q′∈Zd(δq′0 +
√

2L|ε|γ 1
2 |q

′|)et|q′|. Clearly, |ψ(t)| < ∞ for t ∈
(0, 1

2 | ln γ|). Hence, if we fix such a t and choose δ > 0 sufficiently small, then
β ∈ (0, 1). (These choices are uniform for ε in a neighbourhood of 0.)
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The proof that K2 can be taken to be some fixed constant (depending on m but
not on p and q) is completely standard and it is left to the reader. Accordingly,
Lemma 3.2 yields

|Π∗
p,qT

∗m(s+1)
ε µp,s,s| ≤ Cmβ

|p−q| Var(µp,s,s)

and that is (5.8). �

Lemma 5.1 and (5.3) are the equivalent of Lemma 2.3 and (3.19) which where
the basic ingredients to prove Theorem 2.1 in the finite range case. These results
can be used now in a similar way to obtain the corresponding result in the short
range case.

Proof of Theorem 2.4. The proof follows the one of Theorem 2.1, let us outline the
main points.

The uniqueness of the invariant measure in BΛ follows trivially from Lemma 5.1.
On the other hand, the approximation argument is now more subtle since one can
no longer use the finite range property in (4.2). Nevertheless, using large deviation
type estimates like in the proof of equation (5.8) one can show that (4.2) continues
to hold if modulo another small error term.

The same remarks apply to obtaining the spatial decay of correlation out of the
temporal ones: again one has to treat explicitly very long range effect by showing
that they produce a very small contribution.

Finally, the reasons to call the above invariant measure SRB remain unchanged
from the short range case. �

6. Appendix

Proof of Lemma 3.2. It suffices to estimate (F̃ ∗ν − F ∗ν)(ϕ) for a test function ϕ
with |ϕ|C0(Ω) ≤ 1:

(F̃ ∗ν − F ∗ν)(ϕ) =

∫

Ω

ϕ(F̃x) − ϕ(Fx) dν(x) =

∫

Ω

∫ 1

0

∂

∂t
(ϕ(Ftx)) dt dν(x)

=

∫ 1

0

∫

Ω

∑

q∈Λ

∂qϕ(Ftx)
∂

∂t
Ft,q(x) dν(x) dt =

∫ 1

0

∑

q∈Λ

F ∗
t

(

(F̃q − Fq) · ν
)

(∂qϕ) dt

so that

|F̃ ∗ν − F ∗ν| ≤
∑

q∈Λ

K2 Var
(

(F̃q − Fq) · ν
)

≤ K2

∑

q∈Λ

(

|F̃q − Fq|∞ + sup
p∈Λ

sup
x 6=p

∫

I

|∂pF̃q(x 6=p, ξ) − ∂pFq(x 6=p, ξ)|dξ
)

Var ν

≤ K2(K0 +K1) Var ν .

This proves part a) of the lemma.
The above estimate is, in some sense, too good for our needs in Section 5 where

it may be hard to verify that K1 < ∞. It is then convenient to have a rougher
estimate. To this end let us define the function R ∈ C0(RΛ,Ω) by

R(x)q =











0 if xq < 0

xq if xq ∈ [0, 1]

1 it xq > 1.
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and let ϕ̄ := ϕ ◦ R. Next, define κ, κη : R → [0,∞), κ(y) := max{1 − |y|, 0} and
κη(y) := η−1κ(η−1y). For each Λ1 ∈ I, we introduce, for each η̄ = (ηq)q∈Λ, the
convolution operators Qη̄,Λ1 on C0(Ω):

(Qη̄,Λ1ϕ)(x) :=

∫

RΛ1

∏

p∈Λ1

κηp
(xp − yp)ϕ̄(x 6∈Λ1 ,y) dy ν(dx) .

Not surprisingly, it holds the estimate

(6.1) |Q∗
η̄,Λ1

ν − ν| ≤ 1

3

∑

q∈Λ1

ηq Var ν .

In fact,

ν(Qη̄,Λ1ϕ− ϕ) =

∫

Ω

∫

RΛ1

∏

p∈Λ1

κηp
(xp − yp)[ϕ̄(x 6∈Λ1 ,y) − ϕ̄(x)]dy ν(dx)

=

∫ 1

0

dt

∫

Ω

∫

RΛ1

∏

p∈Λ1

κηp
(xp − yp)

d

dt
ϕ̄(x 6∈Λ1 ,x∈Λ1 + t(y− x∈Λ1))dy ν(dx)

=

∫ 1

0

dt

∫

Ω

∫

RΛ1

∏

p∈Λ1

κηp
(zp)

∑

q∈Λ1

∂qϕ̄(x 6∈Λ1 ,x∈Λ1 + tz)zq dz ν(dx)

=

∫ 1

0

dt

∫

RΛ1

dz
∑

q∈Λ1

zq
∏

p∈Λ1

κηp
(zp)ν(∂qϕ̄t,z)

where ϕt,z(x) := ϕ̄(x 6∈Λ1 ,x∈Λ1 +tz). From the above formula estimate (6.1) follows,
because

∫

R
|z|κη(z) dz = η

3 .
Accordingly, if

∑

q∈Λ ηq <∞ we can define

Qη̄ϕ := lim
Λ1→Λ

Qη̄,Λ1ϕ .

Then

|F ∗ν − F̃ ∗ν| ≤ 2

3
K2

∑

q∈Λ

ηq Var ν + sup
|ϕ|≤1

ν((Qη̄ϕ) ◦ F − (Qη̄ϕ) ◦ F̃ )

≤ 2

3
K2

∑

q

ηq Var ν + |ν|
∑

q

η−1
q |Fq − F̃q|∞.

Now, for all the q for which |Fq − F̃q|∞ 6= 0, choose ηq = K
− 1

2
2 |Fq − F̃q|

1
2∞ to get

|F ∗ν − F̃ ∗ν| ≤ 2K
1
2
2 Var ν

∑

q

|Fq − F̃q|
1
2∞ ≤ 2K

1
2
2 K3 Var ν .

This finishes the proof of part b) of the lemma. �
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