
A VERY GENERAL COVERING PROPERTY

PAOLO LIPPARINI

Abstract. We introduce a general notion of covering property, of
which many classical definitions are particular instances. Notions
of closure under various sorts of convergence, or, more generally,
under taking kinds of accumulation points, are shown to be equiv-
alent to a covering property in the sense considered here (Theorem
3.9). Conversely, every covering property is equivalent to the ex-
istence of appropriate kinds of accumulation points for arbitrary
sequences on some fixed index set (Corollary 3.5).

We discuss corresponding notions related to sequential compact-
ness, and to pseudocompactness, or, more generally, properties
connected with the existence of limit points of sequences of sub-
sets. In spite of the great generality of our treatment, many results
here appear to be new even in very special cases, such as D-com-
pactness and D-pseudocompactness, for D an ultrafilter, and weak
(quasi) M -(pseudo)-compactness, for M a set of ultrafilters, as well
as for [β, α]-compactness, with β and α ordinals.

1. Introduction

“Covering property” in the title refers to a property of the form
“every open cover has a subcover by a tractable class of elements”.
The most general and easiest form of establishing what “tractable” is
to be intended simply amounts to enumerate those sets which are to be
considered tractable. We are thus led to the following definition, where
P(A) denotes the set of all subsets of the set A.

Definition 1.1. [19, Definition 7.7] If A is a set, and B ⊆ P(A), we say
that a topological space X is [B,A]-compact if and only if, whenever
(Oa)a∈A is a sequence of open sets of X such that

⋃
a∈AOa = X, then

there is H ∈ B such that
⋃
a∈H Oa = X.
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Of course, (full) compactness is the particular case when A is infinite
and arbitrarily large, and B is the set of all finite subsets of A. If in
the above sentence we replace finite by countable, we get Lindelöfness.
On the other hand, if we instead restrict only to countable A, we get
countable compactness. More general examples of cardinal (and ordi-
nal) notions reducible to [B,A]-compactness shall be presented below.

We first show how to produce counterexamples to [B,A]-compact-
ness in a standard way.

Example 1.2. Suppose that A is a set, B ⊆ P(A), B is nonempty, and
A 6∈ B (the assumption A 6∈ B is necessary by Fact 2.2(1) below).

(a) As a typical counterexample to [B,A]-compactness, we can ex-
hibit B itself, with the topology a subbase of which consists of the sets
a≮ = {H ∈ B | a 6∈ H}, a varying in A.

With the above topology, B is not [B,A]-compact, as the a≮s them-
selves witness. Indeed, the a≮s are a cover of B, since A 6∈ B. However,
for every H ∈ B, (a≮)a∈H is not a cover of B, since H belongs to no
a≮, for a ∈ H.

We believe that, in a sense still to be made precise, B with the
above topology is the typical example of a non [B,A]-compact topo-
logical space. This is suggested by particular cases concerning ordinal
compactness, see [19, Theorems 5.4 and 5.7].

Notice that B, with the above topology, is T0, but, in general, not
even T1. However, the example can be turned into a Tychonoff topo-
logical space by introducing a finer topology as in (b) below.

Observe that P(A) is in a bijective correspondence, via characteristic
functions, with A{0, 1}, the set of all functions from A to {0, 1}, hence
with the product of A-many copies of {0, 1}. Via the above identifica-
tions, if we give to {0, 1} the topology in which {0} is open, but {1} is
not open, then the topology described above is the subspace topology
induced on B by the (Tychonoff) product topology on A{0, 1}.

(b) If we instead give to {0, 1} the discrete topology, then the subset
topology induced on B by the topology on A{0, 1}makes B a Tychonoff
topological space, which is still a counterexample to [B,A]-compact-
ness. This latter topology, too, admits an explicit description: it is the
topology a subbase of which consists of the sets which have either the
form a≮ = {H ∈ B | a 6∈ H}, or a< = {H ∈ B | a ∈ H}, for some
a ∈ A.

If B is closed under symmetrical difference, then, with this topology,
B inherits from A{0, 1} the structure of a topological group. If B is
closed both under finite unions and finite intersections, then B inherits
from A{0, 1} the structure of a topological lattice.
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We now consider some more specific instances of Definition 1.1.
The most general form of a covering notion involving cardinality as

a measure of “tractability” is [µ, λ]-compactness, where µ and λ are
cardinals. It is the particular case of Definition 1.1 when A = λ and
B = Pµ(λ) is the set of all subsets of λ of cardinality < µ. The notion
of [µ, λ]-compactness originated in the 20’s in the past century [1], and
thus has a very long history. See, e. g., [8, 14, 22, 23, 25, 26, 27, 28] for
results and references.

In [19] we generalized cardinal compactness to ordinals, that is, we
considered the particular case of Definition 1.1 in which A is an or-
dinal (or, anyway, a well-ordered set), and the “tractability” of some
subset H of A is measured by considering the order type of H. In
more detail, for α and β ordinals, [β, α]-compactness is obtained from
Definition 1.1 by letting A = α, and letting B equal to the set of all
subsets of α having order type < β. The notion is interesting, since
one can prove many non trivial results of the form “every [β, α]-com-
pact space is [β′, α′]-compact”, for various ordinals, while only trivial
results of this kind hold, when restricted to cardinals. Moreover, there
are examples of spaces satisfying exactly the same [µ, λ]-compactness
(cardinal) properties, but which behave in a very different way as far as
(ordinal) [β, α]-compactness is concerned. Just to present the simplest
possible example, if κ is a regular uncountable cardinal, then κ, with
the order topology, is [κ+ κ, κ+ κ]-compact, but the disjoint union of
two copies of κ is not [κ + κ, κ + κ]-compact (here + denotes ordinal
sum). Furthermore, there are many rather deep connections among
[β, α]-compactness, cardinalities and separation properties of spaces.
In [19] we also introduced an ordinal version of the Lindelöf number of
a topological space, and showed that this ordinal version gives much
more informations about the space than the cardinal version.

So far, we have not yet provided really strong motivations in favor of
the great generality of Definition 1.1. Indeed, at first sight, the ordinal
version of compactness, that is, [β, α]-compactness, appears to be a
quite very sensitive and fine notion, well suited for exactly measuring
the covering properties enjoyed by some topological space. However,
other interesting properties naturally insert themselves into the general
framework given by Definition 1.1. In fact, besides considering [β, α]-
compactness, we reached the notion of [B,A]-compactness after a care-
ful look at the proposition below, which characterizes D-compactness.

Recall that if D is an ultrafilter, say over some set I, then a topo-
logical space X is said to be D-compact if and only if every sequence
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(xi)i∈I of elements of X D-converges to some point of x, where a se-
quence (xi)i∈I is said to D-converge to some point x ∈ X if and only
if {i ∈ I | xi ∈ U} ∈ D, for every neighborhood U of x in X.

In [18, Corollary 34] we proved the following proposition, which is
also a particular case of Theorem 3.9 below (see Remark 3.12).

Proposition 1.3. Let D be an ultrafilter over I. A topological space
X is D-compact if and only if, for every open cover (OZ)Z∈D of X,
there is some i ∈ I such that (OZ)i∈Z is a cover of X.

Thus alsoD-compactness is equivalent to a covering property, namely,
the particular case of Definition 1.1 in which A is D itself, and B =
{i< | i ∈ I}, where, for i ∈ I, we put i< = {Z ∈ D | i ∈ Z}. In words,
B is the set of all the intersections of D with some principal ultrafilter.
Hence, in the sense of D-compactness, being “tractable” means (having
indices) lying in the intersection of D with some principal ultrafilter.

Reflecting on the above example, we soon realized that many other
conditions asking closure under appropriate types of convergence are
equivalent to covering properties. Furthermore, this is the case also
for the existence of kinds of accumulation points, as we shall show in
Section 3. Historically, the interplay between covering properties and
accumulation properties has been a central theme in topology, starting
from [1], if not earlier. In this respect, see also the discussion in Remark
2.5.

Also a generalization of D-compactness, weak M -compactness, in-
volving a set M of ultrafilters, is equivalent to a covering property, as
will be shown in Corollary 3.14. See Corollary 5.15 for a characteriza-
tion of a further related notion: quasi M -compactness.

If in Definition 1.1 we take B = P(A)\{A}, then a counterexample to
[B,A]-compactness is what is usually called an irreducible (or minimal)
cover. Irreducible covers, as well as spaces in which every cover can
be refined to a (possibly finite) irreducible cover have been the object
of some study. See [2, 15] and further references there. In a sense, an
infinite irreducible cover produces a maximal form of incompactness.
Indeed, e. g. by Fact 2.2(2)(6) below in contrapositive form, if some
topological space X has an irreducible cover of cardinality λ, then X
is not [B,A]-compact, for every set A such that |A| ≤ λ, and every
B ⊆ P(A) such that A 6∈ B.

If X is a T1 topological space which is not countably compact, then
any open cover witnessing countable incompactness can be refined to
an irreducible countably infinite open cover. This follows, for example,
from the proof of [19, Lemma 6.4]. Compare also with [2, Theorem
2.1]. Thus we get the following Proposition.
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Proposition 1.4. For a T1 topological space X, the following condi-
tions are equivalent

(1) X is not countably compact.
(2) X is not [P(A)\{A}, A]-compact, for every countable nonempty

set A.
(3) X is not [B,A]-compact, for some countably infinite set A, and

some B ⊆ P(A) such that B contains all finite subsets of A.

The above equivalences do not generalize to uncountable cardinals.
The space κ, with the order topology, is not [κ, κ]-compact, but it is [κ+
ω, κ + ω]-compact [18, Example 3.2(3)] (here + denotes ordinal sum).
Moreover the hypothesis that X is T1 is necessary, by [18, Example
3.2(2)].

Though simple, Definition 1.1 unifies many disparate situations, and
allows for the possibility of proving some interesting and non trivial
results, which sometimes are new and useful even in very particular
cases.

When restricted to (cardinal) [µ, λ]-compactness, some of the results
presented in this note might be seen as a revisitation of known results.
They are new in the case of (ordinal) [β, α]-compactness. Actually, the
study of properties of [β, α]-compactness has been the leading motiva-
tion for the present research. Restricted to this particular case, this
note may be seen as a continuation of [19]. As soon as we realized
that the results naturally fit into a more general setting, with no es-
sential further technical complication, we decided to present them in
their more general form.

As far as D-compactness, and other notions of convergence are con-
cerned, the results presented here can improve shedding new light into
the subject. In particular, they hopefully provide a new point of view
about the relationship between convergence, accumulation and cover-
ing properties.

It might be of some interest the fact that there is also a version for
notions related to pseudocompactness. As well known, for Tychonoff
spaces, there is an equivalent formulation of pseudocompactness which
involves open covers: a Tychonoff space is pseudocompact if and only
if every countable open cover has a subset with dense union. Here
the premise is the same as in countable compactness, with a weakened
conclusion. Definition 1.1, too, can be modified in the same way (Defi-
nition 4.1), and essentially all the results we prove for [B,A]-compact-
ness have a version for this pseudocompact-like notion. The notion of
convergence (or accumulation) of a sequence of points shall be replaced
with notions of limit points of a sequence of subsets.
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Furthermore, in Section 5, we present variations which include cov-
ering properties equivalent to sequential compactness, sequential pseu-
docompactness, quasi M -compactness, the Menger property and the
Rothberger property. Many other notions can be obtained as partic-
ular cases of Definition 5.7. Definition 5.7 probably deserves further
study.

We assume no separation axiom, unless otherwise specified.

2. Equivalents of a covering property

In this section we show that, for every B and A as in Definition
1.1, there are many equivalent formulations of [B,A]-compactness. In
particular, it can be characterized by a sort of accumulation property,
in a sense which shall be explicitly described in the next section. Parts
of the results presented in this section are known for [µ, λ]-compactness,
hence, in particular, for countable compactness, Lindelöfness etc. They
are new for (ordinal) [β, α]-compactness, and for other general notions
of compactness.

We begin with a trivial but useful fact.

Fact 2.1. A topological space is [B,A]-compact if and only if, for every
sequence (Ca)a∈A of closed sets, if

⋂
a∈H Ca 6= ∅, for every H ∈ B, then⋂

a∈ACa 6= ∅.
Proof. Immediate from the definition of [B,A]-compactness, in contra-
positive form, and by taking complements. �

We now state some other easy facts about [B,A]-compactness.

Fact 2.2. Suppose that X is a topological space, A is a set, and B,B′ ⊆
P(A).

(1) If A ∈ B, then every topological space is [B,A]-compact. In
particular, every topological space is [{A}, A]-compact.

(2) If B ⊆ B′, and X is [B,A]-compact, then X is [B′, A]-compact.
(3) More generally, if, for every H ∈ B, there is H ′ ∈ B′ such that

H ⊆ H ′, then every [B,A]-compact topological space is [B′, A]-
compact.

(4) If X is [B,A]-compact, and A′ ⊆ A, then X is [B|A′ , A′]-com-
pact, where B|A′ = {H ∩ A′ | H ∈ B}.

(5) Suppose that, for every H ∈ B, DH ⊆ P(H), and let D =⋃
H∈BDH . If X is [B,A]-compact, and [DH , H]-compact, for

every H ∈ B, then X is [D,A]-compact.
(6) If C is a set, f : C → A is a surjective function, and D =
{f−1(H) | H ∈ B}, then every [B,A]-compact topological space
is [D,C]-compact.
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Fact (5) above is a broad generalization of standard arguments, e. g.,
the argument showing that Lindelöfness and countable compactness
imply compactness.

Fact (6) follows immediately from the fact that a union of open sets
is still open. Indeed, if (Oc)c∈C is an open cover of X, then (Qa)a∈A
is an open cover of X, where Qa =

⋃
f(c)=aOc, for a ∈ A (using the

assumption that f is surjective).

Remark 2.3. Let us say that B ⊆ P(A) is closed under subsets if and
only if, whenever H ′ ∈ B and H ⊆ H ′, then H ∈ B. Notice that, by
(2) and (3) above, if B′ ⊆ P(A) and B is the smallest subset of P(A)
which contains B′ and is closed under subsets, then a topological space
X is [B,A]-compact if and only if it is [B′, A]-compact. Thus, in the
definition of [B,A]-compactness, it is no loss of generality to consider
only those B which are closed under subsets.

If X is a topological space, and P ⊆ X, we denote by P the closure
of P in X, and by P ◦ its interior. The topological space in which we
are taking closure and interior shall always be clear from the context.

If B ⊆ P(A) and a ∈ A, we let a<B = {H ∈ B | a ∈ H}.
Theorem 2.4. Suppose that A is a set, B ⊆ P(A), and X is a topo-
logical space. Then the following conditions are equivalent.

(1) X is [B,A]-compact.
(2) For every sequence (Pa)a∈A of subsets of X, if, for every H ∈ B,⋂

a∈H Pa 6= ∅, then
⋂
a∈A P a 6= ∅.

(3) Same as (2), with the further assumption that |Pa| ≤ |a<B|, for
every a ∈ A.

(4) For every sequence {xH | H ∈ B} of elements of X, it happens

that
⋂
a∈A {xH | H ∈ a<B} 6= ∅.

(5) For every sequence {xH | H ∈ B} of elements of X, there is
x ∈ X such that, for every neighborhood U of x in X, and for
every a ∈ A, there is H ∈ B such that a ∈ H and xH ∈ U .

(6) For every sequence {YH | H ∈ B} of nonempty subsets of X, it

happens that
⋂
a∈A

⋃
{YH | H ∈ a<B} 6= ∅.

(7) For every sequence {DH | H ∈ B} of nonempty closed subsets

of X,
⋂
a∈A

⋃
{DH | H ∈ a<B} 6= ∅.

(8) For every sequence {OH | H ∈ B} of open proper subsets of
X, if, for every a ∈ A, we put Qa = (

⋂
{OH | H ∈ a<B})

◦, then
(Qa)a∈A is not a cover of X.

Proof. (1) ⇒ (2) Just take Ca = P a, for a ∈ A, and use the equivalent
formulation of [B,A]-compactness in terms of closed sets, as given in
Fact 2.1.
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(2) ⇒ (3) is trivial.
(3) ⇒ (4) For a ∈ A, put Pa = {xH | H ∈ a<B}. Thus |Pa| ≤ |a<B|.

Moreover, if a ∈ H ∈ B, then xH ∈ Pa, hence xH ∈
⋂
a∈H Pa, thus⋂

a∈H Pa 6= ∅. By applying (3),
⋂
a∈A Pa =

⋂
a∈A {xH | H ∈ a<B} 6= ∅.

(5) is clearly a reformulation of (4), hence they are equivalent.
(4) trivially implies (6), since if, for every H ∈ B, we choose xH ∈

YH 6= ∅, then
⋂
a∈A

⋃
{YH | H ∈ a<B} ⊇

⋂
a∈A {xH | H ∈ a<B}, and this

latter set is nonempty by (4).
(6) ⇒ (7) is trivial, since (7) is a particular case of (6).
(7)⇒ (1) We shall use the equivalent formulation of [B,A]-compact-

ness given by Fact 2.1. Suppose that (Ca)a∈A are closed subsets of X
such that

⋂
a∈H Ca 6= ∅, for every H ∈ B. For each H ∈ B, put DH =⋂

a∈H Ca, thus Ca ⊇ DH , whenever a ∈ H, hence, for every a ∈ A,

Ca ⊇
⋃
{DH | H ∈ a<B}. By (7),

⋂
a∈ACa ⊇

⋂
a∈A

⋃
{DH | H ∈ a<B} 6=

∅.
(8) ⇔ (7) is immediate by taking complements. �

Notice that Conditions (6) and (7) can be reformulated in a way
similar to the reformulation (5) of (4). As we shall explain in detail in
Section 3, Condition (5) can be seen as a statement that asserts the
existence of some kind of accumulation point for the sequence {xH |
H ∈ B}.

Remark 2.5. Some particular cases of Theorem 2.4 are known, some-
times being classical results.

As we mentioned in the introduction, countable compactness is the
particular case of Definition 1.1 when A is countable (without loss of
generality we can take A = ω), and B is the set of all finite subsets of ω.
It is easy to see that we can equivalently take B = {[0, n) | n ∈ ω}; this
follows, for example, from Remark 2.3. In a different context, a similar
argument has been exploited in [18]; see in particular Remark 24 there.
Remark 2.3 (and Fact 2.2(2)(3)) have further interesting applications
which shall be presented elsewhere.

Recall that, for an infinite cardinal λ, a topological space X satisfies
CAPλ if and only if every subset Y ⊆ X with |Y | = λ has a complete
accumulation point x, that is, a point x such that |U ∩ Y | = λ, for
every neighborhood U of x.

For the above choice of A = ω and B = {[0, n) | n ∈ ω}, the equiva-
lence of (1) and (5) in Theorem 2.4 shows that countable compactness
is equivalent to CAPω. This is because a sequence (xH)H∈B can be
thought as a sequence (xn)n∈ω, via the obvious correspondence between
B and ω. The astute reader will notice that the above argument (and
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Theorem 2.4, in general) deals with sequences, while the definition of
CAPω deals with subsets; that is, in the former case, repetitions are
allowed, while in the latter case they are not allowed. However, it is
easy to see that, in the particular case at hand, the difference produces
no substantial effect. See Remark 3.3 below and [17, Section 3] for
further details.

Arguments similar to the above ones can be carried over, with no
essential change, for every regular cardinal λ. In this case, we get
that [λ, λ]-compactness is equivalent to CAPλ. These results are very
classical, and, indeed, are immediate consequences of [1, Section 9].
For λ singular, the characterization of [λ, λ]-compactness is not that
neat. The point is that, for λ regular, a subset of λ cofinal in λ has
necessarily cardinality λ; this is false when λ is singular.

We have discussed in some detail the equivalence between CAPλ and
[λ, λ]-compactness, for λ regular, since it might be seen as a prototype
of all the results proved in the present paper. In fact, we establish an
interplay between notions of compactness, on one hand, and satisfac-
tion of accumulation properties, on the other hand. Such an interplay
holds in very general situations, sometimes rather far removed from
the above particular and nowadays standard example.

Turning to the more general notion of [µ, λ]-compactness, the special
case of the equivalence of (1) and (2) in Theorem 2.4 appears in [8, The-
orem 1.1]. See [26, Lemma 5(b)]. For [µ, λ]-compactness, Conditions
(1)-(4) in Theorem 2.4 are the particular case of [18, Proposition 32
(1)-(4)], taking F to be the set of all singletons of X. In the particular
case µ = ω, [ω, λ]-compactness is usually called initial λ-compactness.
In this case there are many more characterizations: see [23, Section
2] and [26]. Some equivalences hold also for µ > ω, under additional
assumptions. See [26, Theorem 2].

The equivalences in Theorem 2.4 have been inspired by results from
Caicedo [4, Section 3], who implicitly uses similar methods in order to
deal with [µ, λ]-compactness. In our opinion, Caicedo [4] has provided
an essentially new point of view about [µ, λ]-compactness. Apart from
[4], it is difficult to track back which parts of Theorem 2.4, in this
particular case, have appeared in some form or another in the literature.
This is due to the hidden assumption, used by many authors, of the
regularity of some of the cardinals involved, or of some forms of the
generalized continuum hypothesis. See [26].

Theorem 2.4 is new in the particular case of [β, α]-compactness, for β
and α ordinals. Since it was our leading motivation for working on such
matters, we state explicitly the equivalence of (1) and (4) in Theorem
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2.4 for this special case. We let Pβ(α) denote the set of all subsets of
α having order type < β. Notice that this notation is consistent with
the case introduced before when α and β are cardinals.

Corollary 2.6. Suppose that X is a topological space and α and β are
ordinals. Then the following conditions are equivalent.

(1) X is [β, α]-compact.
(2) For every sequence {xz | z ∈ Pβ(α)} of elements of X, if,

for γ ∈ α, we put Pγ = {xz | z ∈ Pβ(α) and γ ∈ z}, then⋂
γ∈α P γ 6= ∅.

As we mentioned in the introduction, also D-compactness turns out
to be equivalent to a covering property in the sense of Definition 1.1.
More generally, many notions of being closed under convergence, or
under taking particular kinds of accumulation points are equivalent to
a covering property, as we shall show in the next section. Theorem 2.4
applies in each of the above cases.

As a final remark in this section, let us mention that Condition (5)
in Theorem 2.4 suggests the following relativized notion of a cluster
point of a net.

Definition 2.7. Suppose that (Σ,≤) is a directed set, and (xσ)σ∈Σ is a
net in a topological space X. If T ⊆ Σ, we say that x ∈ X is a cluster
point restricted to T of the net (xσ)σ∈Σ if and only if for every τ ∈ T
and every neighborhood U of x, there is σ ∈ Σ such that σ ≥ τ and
xσ ∈ U .

In fact, if Σ = B ⊆ P(A), ≤ is inclusion, and we suppose that B
contains all singletons of P(A), then, in the terminology of Definition
2.7, Condition 2.4(5) asserts that every Σ-indexed net (xσ)σ∈Σ has some
cluster point restricted to the set of all singletons of P(A).

This might explain the difficulties in finding an equivalent formula-
tion of [µ, λ]-compactness in terms of cluster points of nets [26]. The
condition in Definition 2.7 is generally weaker than the request for a
cluster point: the definition of a cluster point of a net is obtained from
2.7 in the particular case when T = Σ (or, more generally, when T is
cofinal in Σ, that is, T is such that, for every σ ∈ Σ, there is σ′ ∈ T
such that σ ≤ σ′).

3. Every notion of accumulation (and more) is a covering
property

An uncompromising way of defining a general notion of “accumula-
tion point” is simply to fix some index set I, and to prescribe exactly
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which subsets of I are allowed to be the (index sets of) elements con-
tained in the neighborhoods of some x— supposed to be an accumula-
tion point of some I-indexed sequence.

Just to present the simplest nontrivial example, if I is infinite, and
we allow all subsets of I with cardinality |I|, we get the notion of a
complete accumulation point (for sequences all whose points are dis-
tinct).

To state it precisely, let us give the following definition.

Definition 3.1. Let I be a set, E be a subset of P(I), and x = (xi)i∈I
be an I-indexed sequence of elements of some topological space X.

If U ⊆ X, let Ix,U = {i ∈ I | xi ∈ U}. We say that a point
x ∈ X is an accumulation point in the sense of E, or simply an E-
accumulation point, of the sequence x if and only if Ix,U ∈ E, for every
open neighborhood U of x.

We say that X satisfies the E-accumulation property if and only if
every I-indexed sequence of elements of X has some (not necessarily
unique) accumulation point in the sense of E.

Remark 3.2. Trivially, if E = P(I), then every space satisfies the E-ac-
cumulation property. Under certain assumptions, we can get a smaller
“minimal” E.

For every I-indexed sequence x of elements of X, and every x ∈ X,
there is a smallest set E ⊆ P(I) such that x is an E-accumulation point
of x: just take E = Ex,x = {Ix,U |U an open neighborhood of x}. No-
tice that Ex,x is closed under finite intersections and arbitrary unions.

More generally, if Σ is a set of I-indexed sequences of elements of
X and, for every x ∈ Σ, Yx is a subset of X, then E =

⋃
{Ex,x | x ∈

Σ, x ∈ Yx} is the smallest set E such that x is an E-accumulation point
of x, for every x ∈ Σ and x ∈ Yx. In other words, if we fix in advance
some abstract relation of being an accumulation point of a sequence,
then there is a minimal E which realizes this relation (of course, in
general, E will realize many more instances of accumulation).

Remark 3.3. As we hinted before Definition 3.1, if I is infinite, and E
is the set of all subsets of I of cardinality |I|, then the notion of an
E-accumulation point corresponds to that of a complete accumulation
point. There is a technical difference that should be mentioned: here
we are dealing with sequences, rather than subsets. In order to get
the standard definition of a complete accumulation point, we should
require that all the elements of the sequence are distinct, otherwise
some differences might occur. However, if |I| is a regular cardinal,
then a topological space satisfies CAP|I| if and only if it satisfies the
E-accumulation property, for the above E.
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The whole matter has been discussed in detail in [17, Section 3], see
in particular Remark 3.2 and Proposition 3.3 there, taking F to be the
set of all singletons of X. We believe that, in general, dealing with
sequences is the most natural way; for sure, it is the best way for our
purposes here.

Remark 3.4. Definition 3.1 has some resemblance with the notion of
filter convergence. However, we are not asking E to be necessarily a
filter. This is because we want to include notions of accumulation and
since, for example, in the case of complete accumulation points the
corresponding E is not closed under intersection. Indeed, the intersec-
tion of two subsets of I of cardinality |I| may have cardinality strictly
smaller than |I|.

Of course, given some fixed sequence (xi)i∈I and some fixed element
x ∈ X, the topological relations between (xi)i∈I and x are completely
determined by the (possibly improper) filter F generated by the sets
{i ∈ I | xi ∈ U}, U varying among the neighborhoods of x in X.
However, as the example of complete accumulation points shows, if we
allow x vary, we get a more general (and useful) notion by considering
an arbitrary subset E, rather than just a filter.

In this connection, however, see also Remark 5.4.

Definition 3.1 incorporates essentially all possible notions of “accu-
mulation”. It captures also many notions of convergence. For example,
a sequence (xn)n∈ω converges to x if and only if, for every neighbor-
hood U of X, the set ω \ {n ∈ ω | xn ∈ U} is finite. In this case,
I = ω and E consists of the cofinite subsets of ω. In a similar way,
we can deal with convergence of transfinite sequences. Actually, even
net convergence is a particular case of Definition 3.1. If (Σ,≤) is the
directed set on which the net is built, then the net converges to x if
and only if x is an E-accumulation point in the sense of Definition 3.1
for the following choice of E. Take I = Σ and let E be the set of all
subsets of I which contain at least one set of the form σ<, where, for
σ ∈ Σ, we put σ< = {σ′ ∈ Σ | σ ≤ σ′}. Of course, this is the usual
argument showing that net convergence can be seen as an instance of
filter convergence.

Definition 3.1 is more general. If, for a net as above, we take E
to be the set of all subsets of Σ which are cofinal in Σ, then an E-
accumulation point corresponds to a cluster point of the net. Also the
notion of a restricted cluster point, as introduced in Definition 2.7, can
be expressed in terms of E-accumulation, for some appropriate E.

If E = D is an ultrafilter over I, then the existence of an E-
accumulation point corresponds exactly to D-convergence.
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It is rather astonishing that such a bunch of disparate notions turn
out to be each equivalent to some covering property in the sense of
Definition 1.1, as we shall show in Corollary 3.10 below.

Before embarking in the proof, we notice that also the converse holds,
that is, every covering property is equivalent to some accumulation
property. This is simply a reformulation, in terms of E-accumulation,
of the equivalence (1) ⇔ (5) in Theorem 2.4.

Corollary 3.5. Suppose that X is a topological space, A is a set, B ⊆
P(A), and put I = B and E = {Z ⊆ B | for every a ∈ A there is H ∈
Z such that a ∈ H} = {Z ⊆ B |

⋃
Z = A}. Then the following

conditions are equivalent.

(1) X is [B,A]-compact.
(2) X satisfies the E-accumulation property.

Example 3.6. As in Remark 2.5, if A = λ is a regular infinite cardinal,
and B = {[0, α) | α < λ}, then the E given by Corollary 3.5 consists of
all subsets of B of cardinality λ. In this particular case, Corollary 3.5
amounts exactly to the equivalence of [λ, λ]-compactness and CAPλ.

Example 3.7. As another simple example, suppose that A is any set,
and let B = {A \ {a} | a ∈ A}. For this choice of B, a topological
space X is [B,A]-compact if and only if X has no irreducible cover
of cardinality |A|. The E given by Corollary 3.5 in this situation is
the set of all subsets of B which contain at least two elements from
B. In this case, the failure of the E-accumulation property means that
there exists an |A|-indexed sequence of elements of X such that every
element of X has a neighborhood intersecting at most one element
from the sequence. If X is T1, this is equivalent to saying that X has
a discrete closed subset of cardinality |A|.

In conclusion, in this particular case, Corollary 3.5 shows that a T1

topological space has an irreducible cover of cardinality λ if and only
if it has a discrete closed subset of cardinality λ. This is a classical
result, implicit in the proof of [2, Theorem 2.1].

Now we are going to prove the promised converse of Corollary 3.5,
namely, that every E-accumulation property in the sense of Defini-
tion 3.1 is equivalent to some covering property, under the reasonable
hypothesis that E is closed under taking supersets.

Definition 3.8. If I is a set, and E ⊆ P(I), we let E+ = {a ⊆ I |
a ∩ e 6= ∅, for every e ∈ E}.

We say that E ⊆ P(I) is closed under supersets if and only if, when-
ever e ∈ E and e ⊆ f ⊆ I, then f ∈ E (this is half the definition of a
filter : if E is also closed under finite intersections, then it is a filter).
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Trivially, for every E, we have that E+ is closed under supersets.
Moreover, it is easy to see that E++ = E if and only if E is closed
under supersets. Notice that if E is a filter, then E is an ultrafilter if
and only if E = E+.

If A ⊆ P(I), then, for every i ∈ I, we put i<A = {a ∈ A | i ∈ a}.
We can now state the main result of this section.

Theorem 3.9. Suppose that X is a topological space, I is a set, A ⊆
P(I), and let E = A+. Then the following conditions are equivalent.

(1) X satisfies the E-accumulation property.
(2) For every open cover (Oa)a∈A of X, there is i ∈ I such that

(Oa)i∈a∈A is a cover of X.
(3) X is [B,A]-compact, for B = {i<A | i ∈ I}.
(4) For every sequence (xi)i∈I of elements of X, if, for each a ∈ A,

we put Ca = {xi | i ∈ a}, then
⋂
a∈ACa 6= ∅.

Before proving Theorem 3.9, we state its main corollary, and then
we present a stronger local version for the equivalence of Conditions
(1) and (4).

Corollary 3.10. For every E ⊆ P(I) such that E is closed under
supersets, there are A ⊆ P(I) and B ⊆ P(A) such that, for every
topological space, the E-accumulation property is equivalent to [B,A]-
compactness.

Proof. If E ⊆ P(I) is closed under supersets, then E = E++, hence,
by taking A = E+, we have E = E++ = A+. Thus we get from
Theorem 3.9 (1)⇔(3) that, for every E closed under supersets, the E-
accumulation property is equivalent to some compactness property in
the sense of Definition 1.1. �

Proposition 3.11. Suppose that X is a topological space, x ∈ X, I is a
set, and (xi)i∈I is a sequence of elements of X. Suppose that A ⊆ P(I),

E = A+, and, for a ∈ A, put Ca = {xi | i ∈ a}.
Then the following conditions are equivalent.

(1) x is an E-accumulation point of (xi)i∈I .
(2) x ∈

⋂
a∈ACa.

Proof. If (1) holds, then, for every open neighborhood U of x, the set
eU = {i ∈ I | xi ∈ U} belongs to E. We are going to show that
x ∈

⋂
a∈ACa.

Hence, suppose that a ∈ A. For every open neighborhood U of x,
a∩ eU 6= ∅, by the first statement, and the definition of E. This means
that there is i ∈ I such that i ∈ a ∩ eU , that is, xi ∈ Ca ∩ U , hence
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Ca ∩ U 6= ∅. Since Ca is closed, and the above inequality holds for
every open neighborhood U of x, then x ∈ Ca. Since this holds for
every a ∈ A, we have x ∈

⋂
a∈ACa.

Now assume that (2) holds. Suppose that U is a neighborhood of x,
and let e = {i ∈ I | xi ∈ U}. We have to show that e ∈ E = A+, that
is, e∩ a 6= ∅, for every a ∈ A. Let us fix a ∈ A. By (2), x ∈ Ca and, by
the definition of Ca, there is i ∈ a such that xi ∈ U . By the definition
of e, i ∈ e, thus i ∈ e ∩ a 6= ∅. Since this argument works for every
neighborhood U of x, we have proved (1). �

The particular case of Proposition 3.11 in which x is a cluster point
of some net is Exercise 1.6.A in [7]. Cf. also [5, IV], and Remark 4.7
below.

Proof of Theorem 3.9. (2) ⇔ (3) is immediate from the definitions.
(3) ⇔ (4) is a particular case of Theorem 2.4 (1) ⇔ (4). Indeed, in

the situation at hand, members of B have the form H = i<A, for i ∈ I.
For such an H, we have that H ∈ a<B if and only if a ∈ H = i<A if
and only if i ∈ a, thus Condition (4) in Theorem 2.4 reads exactly as
Condition (4) in Theorem 3.9.

(1) ⇔ (4) is immediate from Proposition 3.11.
Alternatively, the proof of 3.9 can be completed avoiding the use

of Proposition 3.11, and using Corollary 3.5 in order to prove (1)
⇔ (3). Indeed, under the respective assumptions, and modulo the
obvious correspondence between I and B = {i<A | i ∈ I}, the E
given by the statement of 3.5 corresponds exactly to the E given
by the statement of 3.9. To check this, let I ′ = B and, for e ⊆
I, let e′ ⊆ I ′ be defined by e′ = {i<A | i ∈ e}. Applying Corol-
lary 3.5 to I ′, the resulting E ′ turns out to be equal to {e′ ⊆ I ′ |
for every a ∈ A, there is i ∈ I such that i<A ∈ e′ and i ∈ A} = {e′ ⊆ I ′ |
e ∩ a 6= ∅, for every a ∈ A} = {e′|e ∈ E}. Corollary 3.5 thus shows
that [B,A]-compactness is equivalent to the E ′-accumulation property,
which, through the above mentioned correspondence, is trivially equiv-
alent to the E-accumulation property. �

Remark 3.12. If D is an ultrafilter over I, then, by taking A = D
in Theorem 3.9, the equivalence of (1) and (2) furnishes a proof of
Proposition 1.3, since, for D an ultrafilter, we have that D+ = D.

In [18, Proposition 17] we also proved a characterization of D-pseu-
docompactness analogous to Proposition 1.3. The methods of Sections
2 and 3 do apply also in case of notions related to pseudocompactness.
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We shall devote the next section to this endeavor. Before proceed-
ing, we show that Theorem 3.9 furnishes a characterization of weak
M -compactness.

Definition 3.13. If M is a set of ultrafilters over some set I, a topo-
logical space is said to be weakly M-compact if and only if, for every
sequence (xi)i∈I of elements of X, there is x ∈ X such that, for every
neighborhood U of x, there is D ∈ M such that {i ∈ I | xi ∈ U}. See
[9] for more information, credits, references and a characterization. In
the terminology of Definition 3.1, X is weakly M -compact if and only
if it satisfies the E-accumulation property, for E =

⋃
D∈M D.

Corollary 3.14. Suppose that X is a topological space, M is a set of
ultrafilters over I, and let F =

⋂
D∈M D. Then the following conditions

are equivalent.

(1) X is weakly M-compact.
(2) For every open cover (OZ)Z∈F of X, there is some i ∈ I such

that (OZ)i∈Z∈F is a cover of X.

Proof. By Theorem 3.9, taking A = F , and noticing that E = A+ =⋃
D∈M D. �

4. Pseudocompactness and the like

Definitions 1.1 and 3.1 can be generalized in the setting presented in
[17, 18]; in particular, in such a way that incorporates pseudocompact
-like notions.

Let us fix a family F of subsets of a topological space X. The most
interesting case will be when F = O is the family of all the nonempty
open sets of X. At first reading, the reader might want to consider this
particular case only.

We relativize Definitions 1.1 and 3.1 to F . The notion of [B,A]-
compactness is modified by replacing the conclusion with the require-
ment that the union of the elements of an appropriate subsequence
intersects ever member of F . As far as notions of accumulation are
concerned, instead of considering accumulation points of elements, we
shall now consider limit points of sequences of elements of F .

The two most significant cases are when F is the family of all sin-
gletons of X, in which case we get back the definitions and results of
Sections 2 and 3, and, as we mentioned, when F = O is the family of all
the nonempty open sets of X, in which case we get notions and results
related to pseudocompactness or variants of pseudocompactness.
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Definition 4.1. If A is a set, B ⊆ P(A), X is a topological space, and
F is a family of subsets of X, we say that X is F -[B,A]-compact if
and only if one of the following equivalent conditions holds.

(1) For every open cover (Oa)a∈A of X, there is H ∈ B such that⋃
a∈H Oa intersects every member of F (that is, for every F ∈ F ,

there is a ∈ H such that Oa ∩ F 6= ∅).
(2) For every sequence (Ca)a∈A of closed subsets of X, if, for every

H ∈ B, there exists F ∈ F such that
⋂
a∈H Ca ⊇ F , then⋂

a∈ACa 6= ∅.
The equivalence of the above conditions is trivial, by taking comple-

ments.
Notice that, in the particular case when F = O, the conclusion in

Definition 4.1 (1) asserts that
⋃
a∈AOa is dense in X.

Definition 4.2. Let I be a set, E be a subset of P(I), and (Fi)i∈I be
an I-indexed sequence of subsets of some topological space X.

We say that a point x ∈ X is a limit point in the sense of E, or
simply an E-limit point, of the sequence (Fi)i∈I if and only if, for every
open neighborhood U of x, the set {i ∈ I | Fi ∩ U 6= ∅} belongs to E.

If F is a family of subsets of X, we say that X satisfies the F-
E-accumulation property if and only if every I-indexed sequence of
elements of F has some limit point in the sense of E.

In the particular case when F is the family of all singletons of X
Definitions 4.1 and 4.2 reduce to Definitions 1.1 and 3.1, respectively.

As in Remark 3.2, if E = P(I), then every space satisfies the F -E-
accumulation property, for every F .

More generally, for every sequence (Fi)i∈I of subsets of X, and every
x ∈ X, there is a smallest set E ⊆ P(I) such that x is an E-limit point
of (Fi)i∈I : just take E = {IU |U an open neighborhood of x}, where
IU = {i ∈ I | Fi ∩ U 6= ∅}. In the same way, and exactly as in Remark
3.2, for every family of I-indexed sequences, and respective families of
elements of X, there is the smallest E such that each element in the
family is a limit point of the corresponding sequence.

Remark 4.3. If F is a family of subsets of some topological space X,
let F denote the set of all closures of elements of F .

If G is another family of subsets of X, let us write F � G to mean
that, for every F ∈ F , there is G ∈ G such that F ⊇ G. We write
F ≡ G to mean that both F � G and G � F .

It is trivial to see that, in Definitions 4.1 and 4.2, as well as in the
theorems below, we get equivalent conditions if we replace F either by
F , or by G, in case F ≡ G (in this latter case, as far as Definition



18 PAOLO LIPPARINI

4.2 is concerned, the condition turns out to be equivalent provided we
assume that E is closed under supersets).

In particular, when F = O, we get equivalent definitions and results
if we replace O by either

(1) the set B of the nonempty elements of some fixed base of X, or
(2) the set O of all nonempty regular closed subsets of X, or
(3) the set B of the closures of the nonempty elements of some base

of X, or
(4) the set R of all nonempty regular open subsets of X (since
R = O).

The connection of Definitions 4.1 and 4.2 with pseudocompactness
goes as follows. A Tychonoff space X is pseudocompact if and only if
every countable open cover of X has a finite subcollection whose union
is dense in X. This is Condition (C5) in [24], and corresponds to the
particular case A = ω, B = Pω(ω) of O-[B,A]-compactness, in the
sense of Definition 4.1.

As another characterization of pseudocompactness, Glicksberg [13]
proved that a Tychonoff space X is pseudocompact if and only if the
following condition holds:

(*) for every sequence of nonempty open sets of X, there is some
point x ∈ X such that each neighborhood of x intersects infinitely
many elements of the sequence.

This corresponds to the particular case of Definition 4.2 in which
F = O, I = ω and E equals the set of all infinite subsets of ω. Actually,
as a very particular case of Theorem 4.4 (1) ⇔ (5) below, and arguing
as in Remark 2.5, we get another proof of Glicksberg result, in the
sense that we get a proof that (*) and (C5) above are equivalent, for
every topological space (no separation axiom assumed).

The situation is entirely parallel to the characterization of countable
compactness, which is equivalent to CAPω, as discussed in detail in
Remark 2.5. Indeed, conditions analogous to (*) and (C5) above are
still equivalent when ω is replaced by any infinite regular cardinal; see
[17, Theorem 4.4] for exact statements. This kind of analogies, together
with many generalizations, had been the main theme of [17, 18]. In the
present paper we show that such analogies can be carried over much
further.

The connections between covering properties and general accumula-
tion properties, as described in Section 3, do hold even in the extended
setting we are now considering. In other words, the relationships be-
tween the properties introduced in Definitions 1.1 and 3.1 are exactly
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the same as the relationships between the properties introduced in Def-
initions 4.1 and 4.2. This shall be stated in Theorem 4.5.

We first state the result analogous to Theorem 2.4 (and Corollary
3.5).

Theorem 4.4. Suppose that A is a set, B ⊆ P(A), X is a topological
space, and F is a family of subsets of X. Then the following conditions
are equivalent.

(1) X is F-[B,A]-compact.
(2) For every sequence (Pa)a∈A of subsets of X, if, for every H ∈ B,

there exists F ∈ F such that
⋂
a∈H Pa ⊇ F , then

⋂
a∈A P a 6= ∅.

(3) Same as (2), with the further assumption that, for every a ∈ A,
Pa is the union of ≤ κa-many elements of F , where κa = |a<B|.

(4) For every sequence {FH | H ∈ B} of elements of F , it happens

that
⋂
a∈A

⋃
{FH | H ∈ a<B} 6= ∅.

(5) For every sequence {FH | H ∈ B} of elements of F , there is
x ∈ X such that, for every neighborhood U of x in X, and for
every a ∈ A, there is H ∈ B such that a ∈ H and FH ∩ U 6= ∅.

(6) For every sequence {YH | H ∈ B} of subsets of X such that

each YH contains some FH ∈ F ,
⋂
a∈A

⋃
{YH | H ∈ a<B} 6= ∅.

(7) For every sequence {DH | H ∈ B} of closed subsets of X
such that each DH contains some FH ∈ F , it happens that⋂
a∈A

⋃
{DH | H ∈ a<B} 6= ∅.

(8) For every sequence {OH | H ∈ B} of open subsets of X such
that, for each H ∈ B, there is FH ∈ F disjoint from OH , if, for
every a ∈ A, we put Qa = (

⋂
{OH | H ∈ a<B})

◦, then (Qa)a∈A
is not a cover of X.

(9) X satisfies the F-E-accumulation property, for I = B and E =
{Z ⊆ B | for every a ∈ A there is H ∈ Z such that a ∈ H}.

In each case, we get equivalent conditions by replacing F with either
F , or G, in case F ≡ G.

Proof. The proof is similar to the proof of Theorem 2.4. Cf. also parts
of the proof of [18, Proposition 6].

It is not obvious that we get equivalent statements for all conditions,
when F is replaced by F , or by G, when F ≡ G. However, this is true
for, say, Condition (1), and the proof of the equivalences of (1) - (9)
works for an arbitrary family. �

As a simple example of the equivalence of (1) and (9), and arguing as
in Remark 3.7, a topological space X has an open cover of cardinality
λ with no proper dense subfamily if and only if X contains a discrete
family of λ open sets.



20 PAOLO LIPPARINI

We now state the results corresponding to those in Section 3. There
is no essential difference in proofs.

Theorem 4.5. Suppose that X is a topological space, F is a family of
subsets of X, I is a set, A ⊆ P(I) and E = A+.

Then the following conditions are equivalent.

(1) X satisfies the F-E-accumulation property.
(2) For every sequence (Ca)a∈A of closed subsets of X, if, for every

i ∈ I, there exists F ∈ F such that
⋂
i∈a∈ACa ⊇ F , then⋂

a∈ACa 6= ∅.
(3) X is F-[B,A]-compact, where B = {i<A | i ∈ I}.
(4) For every sequence (Fi)i∈I of elements in F , if, for each a ∈ A,

we put Ca =
⋃
i∈a Fi, then

⋂
a∈ACa 6= ∅.

In each case, we get equivalent conditions by replacing F with either
F , or G, in case F ≡ G.

We state explicitly also the analogue of Proposition 3.11, since it
does not follow formally from Theorem 4.5.

Proposition 4.6. Suppose that X is a topological space, x ∈ X, I is a
set, and (Fi)i∈I is a sequence of subsets of X. Suppose that A ⊆ P(I),

E = A+, and, for a ∈ A, put Ca =
⋃
i∈a Fi.

Then the following conditions are equivalent.

(1) x is an E-limit point of (Fi)i∈I .
(2) x ∈

⋂
a∈ACa.

Remark 4.7. A version of Proposition 4.6 appears in [5, IV], using dif-
ferent terminology and notations, and possibly with a misprint. Propo-
sition 4.6 appears to be slightly more general, since E does not neces-
sarily become a filter (cf. Remark 3.4).

As an example, Theorem 4.5 can be applied to notions related to
ultrafilter convergence, in particular, to D-pseudocompactness.

Definition 4.8. Let D be an ultrafilter over some set I, X be a topo-
logical space, and F be a family of subsets of X.

We say [17, Definition 2.1] that X is F -D-compact if and only if
every sequence (Fi)i∈I of members of F has some D-limit point in X.

In case F is the set of all singletons of X, we get back the no-
tion of D-compactness. In case F = O we get the notion of D-
pseudocompactness, as introduced in [12, 11].

Corollary 4.9. [18, Proposition 33] Suppose that X is a topological
space, F is a family of subsets of X, and D is an ultrafilter over some
set I. Then the following are equivalent.
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(1) X is F-D-compact.
(2) For every sequence {Fi | i ∈ I} of members of F , if, for Z ∈ D,

we put CZ =
⋃
i∈Z Fi, then we have that

⋂
Z∈D CZ 6= ∅.

(3) Whenever (CZ)Z∈D is a sequence of closed sets of X with the
property that, for every i ∈ I, there exists some F ∈ F such
that

⋂
i∈Z CZ ⊇ F , then

⋂
Z∈D CZ 6= ∅.

(4) For every open cover (OZ)Z∈D of X, there is some i ∈ I such
that F ∩

⋃
i∈Z OZ 6= ∅, for every F ∈ F .

In the particular case F = O, Corollary 4.9 provides a charac-
terization of D-pseudocompactness parallel to the characterization of
D-compactness given in Proposition 1.3. This characterization of D-
pseudocompactness had been explicitly stated with a direct proof in
[18, Proposition 17]. Also Corollary 3.14 can be generalized without
difficulty. We leave this to the reader.

Of course, all the results of Sections 2 and 3, in particular, Theorems
2.4 and 3.9, could be obtained as particular cases of the results in the
present section, by taking F to be the set of all singletons of X. In
principle, we could have first proved Theorems 4.4 and 4.5, and then
obtain Theorems 2.4 and 3.9 as corollaries. We have chosen the other
way for easiness of presentation, and since already Sections 2 and 3
appear to be abstract enough. Probably, there are more readers (if any
at all!) interested in Theorems 2.4 and 3.9 rather than in Theorems
4.4 and 4.5 in such a generality.

However, the particular case F = O in the results of the present
section appears to be of interest. We stated the results in the general
F -dependent form for three reasons. First, to point out that, even if it
is possible that the results are particularly interesting only in the case
F = O, nevertheless almost nowhere we made use of the specific form
of the members of O. Second, since it is not always trivial that we can
equivalently replace O with anyone of the families (1) - (4) of Remark
4.3. The general form of our statements thus provides many equiva-
lences at the same time. The third reason for stating the theorems in
the F -form is to make clear that there is absolutely no difference, in
the proofs and in the arguments, with the case dealt in the preceding
sections, that is, when dealing with sequences of points, rather than
general subsets. In fact, the statements of Theorems 4.4 and 4.5 unify
the two cases. This is similar to what we have done in [17]; indeed,
some results of [17] can be obtained as corollaries of results proved here.

Of course, the possibility is left open for interesting applications of
Theorems 4.4 and 4.5 in other cases, besides the cases of singletons and
of nonempty open sets.
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5. Notions related to sequential compactness

Sequential compactness is not a particular case of Definition 3.1.
However, Definition 3.1 can be modified in order to include also no-
tions such as sequential compactness. The results in Sections 3 and 4
generalize even to this situation.

Definition 5.1. Suppose that I is a set, E is a set of subsets of P(I),
and X is a topological space.

(1) If (xi)i∈I is a sequence of elements of X, we say that x ∈ X is
an E-accumulation point of (xi)i∈I if and only if there is E ∈ E
such that x is an E-accumulation point of (xi)i∈I (in the sense
of Definition 3.1).

We say that X satisfies the E-accumulation property if and
only if every I-indexed sequence of elements of X has some
E-accumulation point.

(2) If (Fi)i∈I is an I-indexed sequence of subsets of X, we say that
a point x ∈ X is an E-limit point of the sequence (Fi)i∈I if and
only if, for some E ∈ E , x is an E-limit point of (Fi)i∈I (cf.
Definition 4.2).

If F is a family of subsets of X, we say that X satisfies the F-
E-accumulation property if and only if every I-indexed sequence
of elements of F has some E-limit point.

Case (1) in Definition 5.1 is the particular case of (2) when F is
taken to be the set of all singletons of X.

When E = {E} has just one member, Definitions 5.1(1)(2) reduce to
Definitions 3.1 and 4.2, respectively.

Remark 5.2. Notice that if in Definition 5.1(1) we take I = ω and
we let E be the set of all nonprincipal ultrafilters over ω, we get still
another equivalent formulation of countable compactness. This is the
reformulation of a nowadays standard fact (see, e. g., [12]). The equiv-
alence follows also from Remark 5.4 below, and the fact (Remark 2.5)
that countable compactness is equivalent to CAPω. More generally,
if λ is regular, and in Definition 5.1(1) we take I = λ and E the set
of all uniform ultrafilters over λ, we get an equivalent formulation of
[λ, λ]-compactness, equivalently, of CAPλ.

We now show how to get the definition of sequential compactness as
a particular case of Definition 5.1(1).

Definitions 5.3. As usual, if W ⊆ ω is infinite, we let [W ]ω denote
the set of all infinite subsets of W . If Z ∈ [ω]ω, we let FZ = {W ⊆ ω |



A VERY GENERAL COVERING PROPERTY 23

|Z \W | is finite}, that is, FZ is the filter on ω generated by the Frechet
filter on Z.

We now get sequential compactness if in Definition 5.1(1) we take
I = ω, and E = {FZ | Z ∈ [ω]ω}.

With the above choice of I and E , and taking F = O in 5.1(2) (that
is, considering sequences (Oi)i∈I of nonempty open sets of X), we get a
notion called sequential pseudocompactness in [3], and sequential feeble
compactness in [6]. Notice that in [3] the Oi’s are requested to be
pairwise disjoint; however, it can be shown [20] that we get equivalent
definitions, whether or not we suppose the Oi’s to be disjoint.

Remark 5.4. Suppose that each element of E is closed under supersets,
and let E ′ = {F ⊆ P(I) | F is a filter on I and F ⊆ E, for some E ∈
E}. Then some point x is an E-accumulation point of some sequence
x = (xi)i∈I if and only if x is an E ′-accumulation point of x. Indeed, E ′-
accumulation trivially implies E-accumulation. On the other direction,
if x is an E-accumulation point of x, then there is E ∈ E such that
Ix,U = {i ∈ I | xi ∈ U} ∈ E, for every open neighborhood U of x. If F
is the filter generated by G = {Ix,U | U is an open neighborhood of x},
then F ⊆ E, since G is closed under intersection, and E is closed under
supersets. Thus F ∈ E ′, and F witnesses that x is an E ′-accumulation
point of x (cf. also Remarks 3.2 and 3.4).

In particular, under the above assumptions on E and E ′, a topological
space satisfies the E-accumulation property if and only if it satisfies the
E ′-accumulation property. Thus, in contrast with Remark 3.4, and as
far as Definition 5.1 is concerned, it is no loss of generality to assume
that all members of E are filters. Of course, the above observation
applies only in case we are not concerned with the cardinality of E ,
since, in the above situation, the cardinality of E ′ is generally strictly
larger than the cardinality of E .

Notice that the above argument carries over even when we con-
sider E ′′ = {F ⊆ P(I) | F is a filter on I and, for some E ∈ E , F ⊆
E and F is maximal among the filters contained in E} (because every
filter F ⊆ E can be extended to a maximal filter with this property,
using Zorn’s Lemma). Sometimes this turns out to be useful.

We now introduce the generalization of Definitions 1.1 and 4.1 which
furnishes the equivalent of Definition 5.1 in terms of properties of open
covers.

Definition 5.5. Suppose that A is a set, B,G ⊆ P(A), and X is a
topological space.



24 PAOLO LIPPARINI

(1) We say that X is [B,G]-compact if and only if one of the fol-
lowing equivalent conditions hold.
(a) If (Oa)a∈A are open sets of X, and, for every K ∈ G,

(Oa)a∈K is a cover of X, then there is H ∈ B such that
(Oa)a∈H is a cover of X,

(b) If (Ca)a∈A is a sequence of closed subsets of X, and, for
every H ∈ B,

⋂
a∈H Ca 6= ∅, then there is K ∈ G such that⋂

a∈K Ca 6= ∅.
(2) If F is a family of subsets of X, we say that X is F -[B,G]-

compact if and only if one of the following equivalent conditions
hold.
(a) If (Oa)a∈A are open sets of X, and, for every K ∈ G,

(Oa)a∈K is a cover of X, then there is H ∈ B such that,
for every F ∈ F , there is a ∈ H such that Oa ∩ F 6= ∅.

(b) If (Ca)a∈A are closed sets of X, and, for every H ∈ B, there
exists F ∈ F such that

⋂
a∈H Ca ⊇ F , then there is K ∈ G

such that
⋂
a∈K Ca 6= ∅.

Case (1) in Definition 5.5 is the particular case of (2) when F is
taken to be the set of all singletons of X.

Definitions 1.1 and 4.1 are the particular cases of the above definition
when G = {A}.

Remark 5.6. Some known notions are particular cases of [B,G]-com-
pactness, as introduced in Definition 5.5.

Indeed, in the particular case when G is a partition of A, say into
κ classes, the hypothesis in Condition (1)(a) of Definition 5.5 amounts
exactly to considering a family of κ open covers of X, each cover hav-
ing the same cardinality as the corresponding class. In the rest of this
remark we shall deal only with the particular case when A is count-
able and G is a partition of A into ω-many classes, each class having
cardinality ω.

If, under the above assumptions, we let B consist of all subsets of
A such that B has finite intersection with each element of G, then
Condition (1)(a) in Definition 5.5 asserts that, given a countable family
of countable covers of X, we can extract a cover of X by selecting a
finite number of elements from each one of the original covers. This
property turns out to be equivalent to what nowadays is called the
Menger property, and is denoted by Sfin(O,O) in [21, Section 5] (here
we are following the notations from [21], and O denotes the collection
of all open covers of X).
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On the other hand, if B consists of all subsets of A such that B inter-
sects each element of G in exactly one element, we get the Rothberger
property, denoted by S1(O,O) in [21, Section 6].

The connections between Definition 5.5 and the notions introduced
in [21] probably deserve further analysis. Notice that here we put no
restriction on covers, while [21] also deals with special classes of covers,
such as large covers, ω-covers and so on. One probably gets interesting
notions modifying Definitions 1.1, 5.5 etc., by putting restrictions on
the nature of the starting cover and of the resulting subcover. This
suggests the next definition.

Definition 5.7. Suppose that A is a set, B,G ⊆ P(A), X is a topo-
logical space, and A, B are collections of subsets of X.
X is [BB, GA]-compact (feebly [BB, GA]-compact, respectively) if and

only if whenever (Oa)a∈A are subsets of X, and, for every K ∈ G,
(Oa)a∈K is a cover in A, then there is H ∈ B such that (Oa)a∈H is a
cover in B ((Oa)a∈H is in B and is dense in X).

Arguing as in Remark 5.6, the properties Sfin(A,B) and S1(A,B)
from [21] are particular cases of Definition 5.7.

The particular case of Definition 5.5 in which A = λ, G is the set of
subsets of λ of cardinality λ, and B = Pκ(λ) has been briefly hinted
on [16, p. 1380] under the name almost [κ, λ]-compactness.

In the next theorems we give the connections between the notions
introduced in Definitions 5.1 and 5.5.

Recall the definition of a<B given just before Theorem 2.4.

Theorem 5.8. Suppose that A is a set, B,G ⊆ P(A), and X is a
topological space. Then the following conditions are equivalent.

(1) X is [B,G]-compact.
(2) For every sequence (Pa)a∈A of subsets of X, if, for every H ∈ B,⋂

a∈H Pa 6= ∅, then there is K ∈ G such that
⋂
a∈K P a 6= ∅.

(3) For every sequence {xH | H ∈ B} of elements of X, there is

K ∈ G such that
⋂
a∈K {xH | H ∈ a<B} 6= ∅.

(4) For every sequence {YH | H ∈ B} of nonempty subsets of X,

there is K ∈ G such that
⋂
a∈K

⋃
{YH | H ∈ a<B} 6= ∅.

(5) X satisfies the E-accumulation property, for I = B and E =
{EK | K ∈ G} where, for K ∈ G, we put EK = {Z ⊆ B |
for every a ∈ K there is H ∈ Z such that a ∈ H}.

Theorem 5.9. Suppose that A is a set, B,G ⊆ P(A), X is a topo-
logical space, and F is a family of subsets of X. Then the following
conditions are equivalent.
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(1) X is F-[B,G]-compact.
(2) For every sequence (Pa)a∈A of subsets of X, if, for every H ∈ B,

there exists F ∈ F such that
⋂
a∈H Pa ⊇ F , then there is K ∈ G

such that
⋂
a∈K P a 6= ∅.

(3) For every sequence {FH | H ∈ B} of elements of F , there is

K ∈ G such that
⋂
a∈K

⋃
{FH | H ∈ a<B} 6= ∅.

(4) For every sequence {YH | H ∈ B} of subsets of X such that
each YH contains some FH ∈ F , there is K ∈ G such that⋂
a∈K

⋃
{YH | H ∈ a<B} 6= ∅.

(5) X satisfies the F-E-accumulation property, for I and E as in
Condition 4.4(5) above.

When G = {A}, the conditions in Theorems 5.8 and 5.9 turn out to
coincide with the corresponding conditions in Theorems 2.4 and 4.4.

Theorem 5.10. Suppose that X is a topological space, I is a set, G
is a set of subsets of P(I), and put E = {K+ | K ∈ G} and A =

⋃
E.

Then the following conditions are equivalent.

(1) X satisfies the E-accumulation property.
(2) If (Oa)a∈A are open sets of X, and, for every K ∈ G, (Oa)a∈K

is a cover of X, then there is i ∈ I such that (Oa)i∈a∈A is a
cover of X.

(3) X is [B,G]-compact, where B = {i<A | i ∈ I}.
(4) For every sequence (xi)i∈I of elements of X, there is K ∈ G

such that if, for each a ∈ K, we put Ca = {xi | i ∈ a}, then⋂
a∈K Ca 6= ∅.

Proof. Similar to the proof of Theorem 3.9. Notice that (2) ⇔ (3) is
immediate from the definitions, using Condition (1)(a) in Definition
5.5, and that (1) ⇔ (4) follows directly from Proposition 3.11. �

Theorem 5.11. Under the assumptions in Theorem 5.10, and if F is
a family of subsets of X, then the following conditions are equivalent.

(1) X satisfies the F-E-accumulation property.
(2) X is F-[B,G]-compact, where B = {i<A | i ∈ I}.
(3) For every sequence (Fi)i∈I of elements of F , there is K ∈ G

such that if, for each a ∈ K, we put Ca =
⋃
i∈a Fi, then⋂

a∈K Ca 6= ∅.

Theorem 5.10 is the particular case of Theorem 5.11 when F is the
family of all singletons of X. Theorems 3.9 and 4.5 are the particular
cases of, respectively, Theorems 5.10 and 5.11 when G = {A} has just
one member.
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The following characterization of sequential compactness in terms of
open covers might be known, but we know no reference for it.

Corollary 5.12. A topological space X is sequentially compact (se-
quentially feebly compact, respectively) if and only if, for every open
cover {Oa | a ∈ [ω]ω} of X such that {Oa | a ∈ [Z]ω} is still a cover of
X, for every Z ∈ [ω]ω, there is n ∈ ω such that {Oa | n ∈ a ∈ [ω]ω} is
a cover of X (is dense in X, respectively).

Proof. Take I = ω and G = {[Z]ω | Z ∈ [ω]ω} in Theorems 5.10 and
5.11. If K = [Z]ω ∈ G, then K+ = FZ , in the notations of Definition
5.3. Thus the corollary is a particular case of the equivalence (1) ⇔
(2) in Theorems 5.10 and 5.11, respectively,

Of course, also a direct proof of Corollary 5.12 is not difficult. �

As a special case of Theorem 5.8 (1) ⇔ (3), we get the following
characterizations (probably folklore) of the Rothberger and the Menger
properties.

Corollary 5.13. A topological space X satisfies the Rothberger prop-
erty if and only if, for every sequence {xf | f : ω → ω} of elements of

X, there is n ∈ ω such that
⋂
m∈ω {xf | f(n) = m} 6= ∅.

A topological space X satisfies the Menger property if and only if, for
every sequence {xf | f : ω → [ω]<ω} of elements of X, there is n ∈ ω
such that

⋂
m∈ω {xf | m ∈ f(n)} 6= ∅.

The ideas in Section 4 suggest the following definition.

Definition 5.14. A topological space X is feebly Rothberger (feebly
Menger, respectively) if and only if, for every countable family of count-
able covers of X, we can select one member (a finite number of mem-
bers, respectively) from each cover in such a way that the union of the
selected members is dense in X.

The above properties can be characterized in a way similar to Corol-
lary 5.13, by means of Theorem 5.9.

If I is a set, and M is a set of ultrafilters over I, then a topological
space X is said to be quasi M-compact if and only if, for every I-
indexed sequence (xi)i∈I of elements of X, there exists D ∈ M such
that (xi)i∈I D-converges to some point of X. Of course, if M = {D} is
a singleton, then quasi M -compactness is the same as D-compactness,
and is also equivalent to weak M -compactness (Definition 3.13). See
[9] for further references about these notions.

The space X is quasi M-pseudocompact if and only if, for every
I-indexed sequence (Oi)i∈I of nonempty open sets of X, there exists
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D ∈ M such that (Oi)i∈I has some D-limit point in X. Notice that,
for I = ω, the above notion is called M-pseudocompactness in [10,
Definition 2.1]. We have chosen the name quasi M -pseudocompactness
in analogy with quasi M -compactness.

Corollary 5.15. Suppose that M is a set of ultrafilters over some set I,
and let A =

⋃
D∈M D. Then a topological space X is quasi M-compact

(quasi M-pseudocompact, respectively) if and only if, whenever (Oa)a∈A
are open sets of X, and, for every D ∈ M , (Oa)a∈D is a cover of X,
then there is i ∈ I such that (Oa)i∈a∈A is a cover of X (is dense in X,
respectively).

Proof. By Theorems 5.10 and 5.11 (1) ⇔ (2), with E = M , since, as
already noticed, if D is an ultrafilter, then D+ = D. �

Remark 5.16. As a final remark, let us mention that not every “covering
property” present in the literature has the form given in Definitions
1.1, 4.1, or 5.5, the most notable case being paracompactness. More
generally, all covering properties involving some particular properties
(local finiteness, point finiteness, etc.) of the original cover, or of the
resulting subcover, are not part of the framework given by Definition
1.1, as it stands.

There are even equivalent formulations of countable compactness
which, at least formally, are not particular cases of Definition 1.1. In-
deed, a space X is countably compact if and only if, for every countable
open cover (On)n∈ω such that On ⊆ Om, for n ≤ m < ω, there is n ∈ ω
such that On = X. The above condition cannot be directly expressed
as a particular case of Definition 1.1.

In spite of the above remarks, we believe to have demonstrated that
Definition 1.1 and its variants are general enough to capture many
disparate and seemingly unrelated notions, being at the same time
sufficiently concrete and manageable so that interesting results can be
proved about them.

Of course, as we did in Definition 5.7, there is the possibility of
modifying Definition 1.1 and its variants by considering only particular
covers with special properties (cf. also Remark 5.6). We have not yet
pursued this promising line of research.
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