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The Compactness Spectrum of Abstract Logics,
Large Cardinals and Combinatorial Principles.

PAOLO LIPPARINI (*)

Sunto. — 8i studiano le consequensze, per estensioni elementars, del realizzare
particolari tipi, che implicano Vesistenza di un elemento al di sopra di
un cardinale. Si generalizzano cost alecuni teoremi riguardanii gli ultra-
filéri. Si damno poi applicazioni alla Teoria dei Modelli Astratta, dimo-
strando che ogni logica (A, A*)-compatta ¢ anche (A, X)-compatta, purché
A sia un cardinale regolare.

0. — Introduction.

We analyze the consequences of realizing a particular kind of
types, saying that there exists an element above a cardinal, thus
generalizing some theorems about regular ultrafilters. We give ap-
plications to Abstract Model Theory: if 1 is regular, then every
(A*, A%)-compact logic is (4, A)-compact.

Ultrapowers are one of the most important constructions in
Model Theory: to any wlirafilter D and any structure 9( one can
associate |[ 9, which is (isomorphic to a) complete extension of 9.

D

It turns out that some properties of D can be equivalently stated

a8 properties of the ultrapower: the example which will play a

major role in this paper, due to Keisler [CK, Exercise 4.3.34] is that,

if 4 is a regular cardinal, then D is (4, A)-regular iff in [] <4, <)
D

there exists an element larger than all ordinals of A (regularity is
a quite natural property of ultrafilters introduced by Keisler; roughly,
D is (u, A)-regular iff it can prove the (A, u)-compactness of first
order logie; if A is regular, then (4, A)-regularity can be equivalently
defined as A-descending incompleteness or A-decomposability).

(*) Ricerca parzialmente finanziata dal G.N.S.A.G.A. (C.N.R.) ¢ da
fondi M.P.I.
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Theorems about ultrafilters can be reformulated as theorems
about complete extensions: as an example, for 2 and g regular,
the statement « every (A, A)-regular ultrafilter is (u, p)-regular» is
equivalent to «if % is a complete extension of {4, <) and in U
there is an element larger than all ordinals of A, then in 9 there
is an element less than g but larger than all ordinals of u» (this
property, known to be true if 1 = u*, in the general case depends
on the axioms of Set Theory used: see e.g. [BF, XVIII, Theo-
rem 1.5.6] or [Do]).

In this paper we mainly deal with the case when 2 is no more
assumed to be a complete extension, but just an elementary exten-
sion (of some finite expansion) of {4, <); this modified notion
shall be denoted by A =>pu. It has applications to Abstract Model
Theory (see [BF] for a conceivably complete introduction to the
subject) by means of the following equation: « complete extensions
are to [4, u]-compactness what elementary extensions are to (A, p)-
compactness », and by extending the techniques developed by Ma-
kowsky and Shelah connecting regularity of ultrafilters and [4, ul-
compactness of logics (see [BF, Chapter XVIII] for a review;
[4, ul-compaciness is a natural and easy to handle strengthening
of (A, u)-compactness: essentially, thiy amounts to assuming com-
pactness for the class of models of every L-theory).

Indeed, the original problem we started from was: «for which
cardinals A and p does (A, A)-compactness imply (u, u)-compact-
ness?». We prove that, for 4, u regular, this is true provided that
A =>p holds (and sometimes the converse is also true); so that
our relation A =-y is helpful in the study of the compactness specira
of logics (that is classes having the form {A|L is (4, 2)-compact}).
Our main result is that, if 4 is regular, then A* =>4 holds, so that
every (At, A*)-compact logic is (4, A)-compact (with still possible
but unlikely exceptions at singular 1). We also prove that if L
is (A, A)-compact then L is (x, x)-compact for some cardinal » such
that L. is (%, z)-compact (were x inaccessible, it should be weakly
compact). The analogous results for [4, A]-compactness (every 4,
and a measurable ») have already been obtained in the 70’s by
Makowsky and Shelah, and are much easier; also the possible
spectra for [A, A]-compactness can be easily characterized (with
still some gaps at singular cardinals [Lp2]).

Of course, our results about Abstract Model Theory could have
been proved (and in fact, they were originally proved) by directly
incorporating in the proofs the needed facts about the relation
A = u, and without explicitly mentioning it; nevertheless, itg isola-
tion shows in a clearer way what makes things work; moreover,
we believe that it is interesting for itself and from the point of
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view of «classical » Model Theory, and, anyway, there are some
connections with the combinatorial properties E} and [0y, and with
large cardinals (see [KM] for an introduction and an exhaustive
review of known results).

Because of this we have organized the paper in such a way
that almost all the results about A => u are presented in § 1 before
any application to Abstract Model Theory, though this may look
rather unnatural. The reader interested in Abstract Model Theory
only might begin reading § 2, going back to § 1 when needed. In
addition to the main result Theorem 1.3, and after a remark about
the cardinalities of some elementary extensions, in §1 we prove
the equivalence of 1 =-u and its «relativized » version, and also
of some regularity properties of filters. The proof of Proposition 1.6
is indeed a very first step towards a generalization for filters and
(4, p)-compactness of what the family UF(L) of [MS] is for ultra-
filters and [4, u]-compactness (the possibility of such a generaliza-
tion is one of the most interesting problems left open in this paper).

Section 2 contains the immediate applications to the compact-
ness speetrum. Under suitable cardinality hypotheses, in Theorem 2.5
we give several equivalents of the statement « every (1, 1)-compact
logic is (u, pu)-compact »; there we also show that limiting oneself
to cardinality logies is not too restrictive to this respect (part (viii)
seems to be an application to cardinality logics of independent
interest). Fasier proofs of slightly less general results (but working
also for singular cardinals) are given in Theorem 2.7 using ultra-
filters only.

In §3 we take up the study of the connections between com-
pactness and characterizability (equivalently, existence of maximal
models). We show that compactness of a logic implies compactness
of infinitary logics; so that many large cardinals are characterized
as first cardinals for which some logic is compact. Some of our
methods are generalizations of methods already used for infinitary
languages or cardinality logics (see e.g.[Dr] or [MR]); however
many of our results in §2 and § 3 seem to be new even in these
very particular cases (see e.g. Corollary 3.11).

In §4 we prove that the combinatorial principle Ei implies
the property » => A and that this implication is strict. Hence, the
set theoretical principle [, affects the possible compactness spec-
trums; also, if A is singular and there is a (A", A*)-compact non
(A%, w)-compact logic, then there exists an inner model with a
measurable cardinal (this can be indeed be improved to many
measurable cardinals).

Section 5 is:-quite outside of the main theme of the paper. We
exactly characterize the compactness properties of logics generated
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by monadic quantifiers (in terms of the compactness properties
of cardinality logics), thus generalizing results of [Lpl, § 5]. We
also show that for the compactness of such logics we do not need
many large cardinals.

Finally, § 6 contains some general remarks about some aspects
of the present state of Abstract Model Theory.

Most of the results proved in this paper were announced without
proof in [Lp2], [Lip4] and [Lp6].

We use rather standard terminology and notations (see for
example [BF], [CK], [KM], [Lp1]). |4]| is the cardinality of A4; if
A is a proper class, we put |4| = oco; and we set 1 << oo, for every
cardinal A; the letters A, u, » are reserved for infinite cardinals,
while % may be any cardinal or co. A<Fis sup {I* |u'<u}; (< A)f =
=sup {A#| A< }; (< A)<* is defined similarly.

We call (similarity) types what [BF] calls vocabularies; in gen-
eral, for sake of simplicity, we restrict ourselves to the single-sorted
case, however most of our results have immediate generalizations
to the many-sorted case; we use the word type also for elemeniary
types (that is, a collection of first-order formulas with a free vari-
able-usually « or y): when confusion may arise, we shall specify
which kind of type we are dealing with.

We shall present here an alternative definition of what a logic
is (cf. [KV]). We believe that this is a faster way to introduce
the concept of a logic, moreover greatly simplifying notations;
of course, everything has a translation for the more usual de-
finition.

An (abstract) sentence @ is a class of models of the same simi-
larity type wg, closed under isomorphism (when ¢ = 0 we have
to consider a different-« false »-sentence for each type t; alterna-
tively, see [Mu]). If ¥ is a structure of type 7, and 7 D rgp, then
we set U =g iff Ay, €.

-, A\, V, de are operators on sentences defined in the natural
way (as an example, ¢\y is the sentence (A |7 = 19U 19, U =9
or A =y}).

A logic, now, is just a collection of sentences, closed with respect
to suitable operators. The closure properties we require a logic to
satisfy are somewhat less than the ones of a regular logic [BF], in
fact, the properties listed in [Lipl, §1] are enough (see e.g. [Ca],
[Lipl, Counterexamples 6.2 and 6.3] or [Lp5, Remark 3.5] for things
that may happen without regularity). By quantifier we always
mean a relativizing quantifier as in [BF, IT.4.1.4].

We wish to express our gratitude to P. Giannini for making
us understand the importance of the ultraproduct construction.
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1. — On realizing types bounding a cardinal.

In this section we deal with the model theory of first order
logic only. We analyze the consequences of realizing (elementary)
types of the kind {x<# < A|a < 1}, for 2 a regular cardinal; a
model realizing such a type is said to bound A. In the case of
complete extensions of a model, as follows from a variation on
[Lpl, Lemma 3.2], this corresponds to taking a (limit) ultrapower
modulo a (4, A)-regular (limit) ultrafilter.

First we show that bounding A influences cardinalities.

1.1. PROPOSITION. — (i) If A is regular, then there exists an expan-
sion U of (A, <) such that |zAN| = A+ and, whenever A < B and B
realizes {o << |0 << A}, then A< |B|.

(il) If A is regular, then there exists a finile expansion A of
(A, <) such that whenever A < B and B realizes {o <z < Ala < A}
then |[{weB|B =a< A} > A

PrOOF. — Since A is regular, there is a sequence (fg)pes+ 0f func-
tions from A to A increasing modulo eventual dominance (that is,
for every <y << A", there exists an apy, such that, fy(c) > fs(a),
for every a>opy).

(i) Put % = (A <, fdpeset if B> and B =a<b (z€ i),
then fs(b) are A+ different elements of B (8 Ai').

(ii) Put A = (A%, <, [>, where f is binary and f(f8, «) = fa(«)
(BeAt, wel) (f is defined arbitrarily in the other cases).

Note that in 1.1 we could also conclude that B ({re B|B =
= < A}, respectively) contains a subset well ordered by < of
type AT,

Proposition 1.1 is a generalization of [CK, Exercise 4.3.13] for
2 regular. It is not clear to what extent Proposition 1.1 can be
generalized. For example, if there are x functions (fs)se. from A
to x such that for every =9, 5, y € % there is oy € A such that
fo(e) 5= fy(«) for every a>agsy, then bounding 4 lifts a set of car-
dinality w to one of cardinality x; also [CK, Exercise 4.3.17] can
be generalized.

1.2. DEFINITION. — If A>u are infinite regular cardinals, and
% is a cardinal, we write A % y iff there exists an expansion U of
(A, <) such that |9\ {<}|<» and whenever B > and %L real-
izes {x<w|xe A}, then B realizes {f <y < u|fepu}.

If % = w, we just write 1 = pu.
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Thus, 4 % p iff, for some theory T for a similarity type with
at most » symbols (other than <), every model bounding A also
bounds u.

Trivial facts about the relation 4 Z u are that it is transitive
(for » fixed) and is preserved by increasing ». Moreover, A = U
iff 4 % u, for every » with 0 < %<1 (A relations can be coded by
the ordinals of 4, using a pairing function to bound arities); obvi-
ously, also x> 2% gives nothing new (this is also true, but not trivial,
for the variant introduced in Proposition 1.6); for » = 0, cf. [CK,
p. 3031

Thus the above notion is interesting only for the case 1<<x <24,
Because of Theorem 2.5 (iv), Corollary 3.10 (b) and [Do, Theo-
rem 4.5], if 1 is weakly compact and — L# then for every regular
@ <A, A=-pis false, but A% u holds; so that (if it is consistent
to have a weakly compaet cardinal) the two notions are different.
We do not know what may happen for intermediate z.

The next theorem generalizes, for A regular, a result of Chang
(using GCH) and of Kunen, Prikry and Cudnovskii-Cudnovskii
independently without set-theoretical hypotheses: every (A*, 17)-
regular ultrafilter is (4, A)-regular (sce [CN, Theorem 8.35]; we use
notations as similar to this proof as possible in order to make the
comparison clearer). Similar results holding also for A-singular are
stated without proof in [Lp4] and [Lp6].

1.3. THEOREM. — If « is an infinite reqular cardinal, then ot = .

1.4. LEMMA (Ulam, Prikry) [CN, Lemmata 8.33 and 8.34]. -
If a>w, then there exists o family (Bep)ewa n<a+r Of Subsets of a* such
that |t U Ben| <o, for n < o, and if A cC oty £ <o and |A|> |E],
E<a
then (| By = 0. Moreover, & << &' implies that Bey C By,
n€4
ProoF or TH. 1.3. — Let Bsy (<<, < ot) be as in Lemma 1.4.
Expand {at, <) to a model ¥ by adding:
(i) a ternary relation B such that R(zy, & ) holds iff £ < «
and € Bey;

(i) a binary function f such that, for a<n<<ot, f(n,—) is
a bijection from % onto «; Q\”\?\I_/

(iii) a ternary function g such that, for y'<yn< arand & <a
it R(n', & n"), then «> g(n, 5", &) > f(y, n’) (this is possible since,
given %", {5’ 1" € Bep}|< || < &, and « is regular).

Let B > A, and suppose that b € B and b > 7, for every 5 < at.
There are two cases:
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(@) There exists a 5 < ot such that for every & < a, B |
EB(n, &, b).
But  |a™\ U Bgyl<a, so that there exists n'<< ot such that
£<

B>A=Vr>y Iy<a Ry, y,x), so that, as b>yx’, for some
de B, B =Kk, d,b).

But, since §< & implies BepC Bsy, we have that E<d <
for every £ < a.

(b) For every n << ot there is a & << o such that B =
=E(n, &, b).

Then there exists £ < « and a set X c ot, |X| = a, such that
&y=2E, for neX. Put j=sup X: for every neX, B=R(n,,b), so
that a> g(7, b, &) > f(7j, n); but {f(7}, n)[n € X} has cardinality «,
hence is coﬁnal in «, so that g(7, b, &) realizes the type {§ <y <
< oalf<af

Without the use of f and g we could only prove (in the termi-
nology of [Lp4]): (x+, «*) =>almost (x, «); f and g give us the
possibility of proving almost («, «) = («, ). These two steps could
also be performed separately.

Theorem 1.3 suggests that there exists some relationship be-
tween the relation A =>p and regularity of ultrafilters (in fact,
the exact connection is with some form of regularity of prime
filters over fields of sets). Using this we can see that a seemingly
weaker version of A =>u (a «relativized» form) is indeed equi-
valent to it.

1.5. DEFINITIONS. — If F is a field of sets, we say that a col-
lection L = (X(«))scr of members of F is (4, A)-regular iff:

(1) a<<fei = X(x)>X(); and
N X(x) = 0.

xEL
If D is a prime (i.e. maximal) filter of F, (i) and (ii) hold and,
in addition:

(iii) X(x)e D, for every o€ i;

we say that X makes D (4, A)-regular.

D is (4, A)-regular iff some collection makes it (4, 4)-regular.

This definition clearly extends the usual notion of a (4, )-
regular ultrafilter.

If F is over A, we say that F (or D) are almost uniform if, for
every a€ 1, then AN = {z|a<2 <A} belongs to F (or D).
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1.6. PROPOSITION. — If A>u are regular cardinals, and x>},
then the following are equivalent:

D 25 u;
(ii)x (4% p relativized). There exists a model A = (A4, A, <,

Oy - Daer SUCh that |TU|<x, << is the order on i and whenever B = N
and B realizes {a < w|a€ A}, then B realizes {f <y < p|p e u}.

(i) There exists a ficld of sets F almost uniform over ) such
that |F|<x, and there exist at most » collections Ls (6 € x) of mem-
bers of F such that for every almost uwiform prime filter D of F
there is 0 € % such that Xs makes D (u, p)-regular.

(iv)x There exist a set I, a ficld ¥ of subsets of I with | F| < 2,
a (4, A)-regular collection Y and at most x collections Lo(d € 3) such
that overy prime filter D of F made (4, A)-regular by Y is made (u, u)-
regular by some Xs.

If in addition either x = x# or »>>2%, then the preceding are also
equivalent to:

(V)x There exists a field of sets F almost uniform over A such
that |F|<x and every almost uniform prime filter D of F is (e, p)-
regular.

Indeed, for every x (iv)e => (V)x, (V)x == (iV)w; and if %> 23, then
(V) = (iV)e.

PROOF. — (i)x = (ii)x, (ili)x = (iv)x and (iii). = (V) are trivial.

(ii)x =~ (iii),: let A satisfy (ii) and suppose w.lo.g. that 9 has
Skolem functions. Take F to be the set of all subsets of i defi-
nable in A without parameters, and let {fs|6 €} be all the defi-
nable functions from A to u; and, for every dex and aeu, let
Xofo) = {B€ Al fa(B) > o).

Let now D be a prime filter of F: D can be extended to an
ultrafilter D' over 1; let B be the substructure of ]_[QI generated

o

by {d(x)|xe 4} U {id)}, where d is the canonical embedding. Since
U has Skolem functions, B = [[A =A. Moreover, B = d(x) < idy,
B

for every awe i, as a¢ D, so that, by (ii)., for some term ¢ (de-
pending on some constants from A), d(8) < #(id,) < d(u), for every
pep.

Let now f: 2 —u be defined by f(B) = ¢(g) if #(p) < p and
f(B) = 0 otherwise. f is clearly definable in o, so that f = fs, for
some d €x%; now, if ey, then

Xo(ow) = {Be Afo(B)> o} 2 {B e Ap) > o} N {B e A|H(B) < p}
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but, by F.o¥ theorem, the last two sets belong to D', hence to D
(since they are already in F), so that Xs(«) € D and Ls makes D

(@, p)-regular.

(iv)x = (ii)x: let f: T — 4 be defined by:

fi)=pg iff i¢ ¥Y(B) and for every y<<f i€ ¥(y);

without logs of generality by rearranging the Y(f)’s we can assume
that f is onto.
Let 9 be the model obtained from <I, 4, <, &, f>xes by adding:

(@) a unary relation Uy for every X € F;

(b) for every d€x, a binary relation R, such that (¢, )
iff i € Xo(or);

(¢) a function fs: I —pu + 1 such that fs(i) = o iff not Rs(i, ),
and Rs(i, '), for every a<<«'.

Let B=9l, and suppose that B < bc A%, for every f € i; then
there exists a ¢ e I® such that f(¢) = b. Let D be the prime filter
over F defined by: X € D iff B |5 Ux(c); D is made (4, A)-regular
by Y since Y(B) e D iff B |7 Uyple) iff ¢¢ Y(p)® iff b = f(c) > B.

Because of (iv)., for some ye€x, L, makes D (4, u)-regular;
hence A =VYzel f,(i)<u (by 1.5(ii), so that B =fe) <pu;
moreover, for every o €y, fo(¢)>a iff not Ry(c, o) iff not Ux,x(€)
iff Xs(x) € D, and this is true, as X makes D (u, u)-regular.

(iii)y = (i)» is similar to (iv), = (i)« and easier (indeed, it is
the particular case when I — 4 and Y (f) = YAV R

(V)x = (ili)w; and if »%>24 then (v)« = (iii), (this is because
there can be at most x# or 2%, respectively, collections as in (iii)).

1.7. COROLLARY. — If A is regular, then there exists a field ¥
of subsets of A" such that |F| = A" and every almost uniform prime
filter over F is (4, A)-regular.

PROOF. — Theorem 1.3 and Proposition 1.6 (i) =~ (v).

We do not know more direct proofs of (i) =- (i) and of (iv) =
=-(iii) in Proposition 1.6. The possibility for (v) to be equivalent
to the other conditions under weaker hypotheses is left open.

Other results about the relation A % u are given in §4, and
in Theorems 2.5 and 3.12.
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ProBLEM. — Try to generalize other theorems about ultrafilters
by expressing their properties in terms of elementary extensions.
Saturation leaves some possibilities open: see, e.g., Proposition 2.8
in the particular case L = Lyp.

2. — Applications to the compactness spectrum.

First, we introduce x-(4, u)-compactness, a concept intermediate
between [4, u]-compactness and (4, u)-compactness; for x> 1 it rep-
resents what [A, u]-compactness and (x, u)-compactness «have in
common ». This new intermediate concept is not strietly necessary
in this section, but gives our results a greater generality; it will
play a major role in § 3, where it will be shown to be connected
with maximal models and with characterizability of models; in
particular it will be useful in Corollary 3.11, where it will measure
what can be brought down from (6, §)-compactness to (x, x)-com-
pactness for a weakly compact cardinal ». In most of the theorems,
at first reading, one can take x» = 1, so that z-(4, 4)-compact-
ness turns out to be equivalent to (A, u)-compactness (Proposi-
tion 2.2 (ii)); there is also the possibility of taking x» — oo, but in
such a way some theorems become known results about [4, ul-
compactness.

A class K of models (of any type) is (4, u)-compact relative to L
iff the following holds: whenever I'c L, |I'| = 1 and every subset
of I' of cardinality less than x has a model in K, then I" has a model
in K.

PROPOSITION 2.1. — If L is a logic, A>pu are infinite cardinals,
and x is & non-zero cardinal or oo, the following are equivalent:

(i) if 2, I'c L, |X|<x and || = A, then X U I" has a model,
provided X U I has a model, for every I'c I' such that [I'| < p;

(i) %f (Za)aer s @ collection of L-sentences and |, |<x, for
we ky then U X, has @ model, provided that \J X, has a model, for

x€EA xeX

every X c A with |X| << pu;

(iil) if |2|<2x, X c L, then Mod (X) is (A, u)-compact relative
to L.

Proposition 2.1 is proved as in [BF, XVIII, Proposition 1.1.1].
We say that L is x-(4, u)-compact iff any of the above conditions
holds. The following proposition states some obvious facts about
this concept; (ii) and (iii) may be taken as definitions of (4, M-
compactness and of [4, ul-compactness.
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PROPOSITION 2.2. — (i) #-(4, u)-compactness is preserved by in-
creasing u and lowering » and A.

(ii) for every x<A, x-(A, u)-compactness is equivalent to (1, p)-
compactness.

(iii) [4, ul-compactness is equivalent to co-(A, u)-compaciness.

(iv) @ logic is x-(1, p)-compact iff it is x-(v, »)-compact for every
v such that u<v<2.

(v) if %> 2, then x-(cf (1), cf (2))-compaciness implies x-(1, 4)-
compactness.

(vi) 2-(A, p)-compactness is & consequence of either [A, ul-com-
pactness or (sup (x, A), u)-compactness.

Note that, by (ii) above, without loss of generality we can
always suppose x> A. Moreover, by (iv), we can reduce the study
of x-(A, u)-compactness to the study of x-(4, A)-compactness. Al-
ready A*-(A, A)-compactness considerably strengthens (4, 4)-com-
pactness:

PROPOSITION 2.3. — If A is reqular and L is a A*-(4, A)-compact
logic, then amy L-theory T of cardinality <A™ having @ modsl of
cardinality A has & model of cardinality > A*. In particular, Loo(Qx..)
i8 N0t Way1-(Wa, Wa)-compact, provided wx is regqular.

Proor. — Let B be a model of T of cardinality A; without loss
of generality suppose that B = 1. Let % be as in Proposition 1.1 (i)
and T' be the Lyo-theory of A, put T =T U T, I' = {a<b|ac 4}
and use Proposition 2.1 (i).

Proposition 2.3 is true also for logics not having relativization
(if we use the definition given in 2.1 (i)).

If L allows relativization, we clearly have a relativized form
of Proposition 2.3 (that is, we consider the cardinality of {x|U(x)}
for some unary predicate U in a model, instead of the cardinality
of the whole model).

Notice that the proof of Proposition 2.3 would be consider-
ably easier assuming (A%, A*)-compactness (which is stronger than
At-(4, A)-compactness): let I" say that (¢a)ses+ are A* different con-
stants (and this works also for A singular).

The conclusion of Proposition 2.3 in the particular case L =
= Lopo(Q,) is implicit in [MR]; indeed, they could prove that if
wa<<2¢ then Lew(@s) is not wa-(w, w)-compact. Also, if », 1 are
ag in Proposition 3.15, and w, = 4 << 1®, then Lyw(@s,,) is not
Way-(w, ®) compact. Notice that, on the contrary, if ws = 2oy*
then Lew(Q.) is even [w, w]-compact.
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The next theorem gives us the way for applying the concepts
introduced in § 1 to the compactness spectrum of logics.

2.4. THEOREM. — If A>pu are regular cardinals, and ) * u, then
every x-(4, A)-compact logic is x-(u, u)-compact.

PROOF. — Suppose by contradiction that L is x-(4, A)-compact
and X, {os|feu} = I is a counterexample to the x-(u, u)-com-
pactness of L; and let % be an expansion as in Definition 1.2.

Let 2* say that {#|U(»)} is isomorphic to an Lye-elementary
extension of A and that for every feu u>y>p implies that
{z|f(x) = y} is a model of XU {o5}; and put I'* = {e>a|xc ).

Now, as 1 and u are regular, X* U I'™* has a model B by x-(4, 1)-
compactness, but then, because of I'*, and since A % u, in B there
exists a b such that x> b> f, for every feu and then X*yu ['*
implies that {«|f(x) = b} is a model of X U I', a contradiction.

In some cases, a converse of Theorem 2.4 holds:

2.5. THEOREM. — If A>p are regular cardinals, then for every x
and x' such that co>x'>x>1 and »'>2% the following are equi-
valent:

(i) 2% p;

(i) A% u;

(iii) every (A, A)-regular wltrafilter over A is (u, u)-regular;
(iv) every (4, A)-regular ultrafilter over any set is (u, u)-reqular;
(v) every x'-(A, A)-compact logic is x-(u, u)-compact;

(vi) every [A, Al-compact logic is (u, u)-compact;
(vii) every [A, Al-compact logic generated by at most u cardi-

nality quantifiers is (u, p)-compact;

(viii) ¢f K is & set of ordinals, has order type u and is such thai
v < o implies v4< wa, for every o€ K, and such that either cf (ws) > A
or of (ws) = p, for every ac K, and if «’=sup K, and K'= K U
U {a'}, then the logic L = Low(Qx)xer is not [A, Al-compact.

ProOF. — The equivalence of conditions from (i) to (iv) is a
consequence of Proposition 1.6; (ii) = (v) is a consequence of The-
orem 2.4 and Proposition 2.2 (i); (v) = (vi) is a consequence of
Proposition 2.2 (i) (iii); (vi) = (vii) is trivial.

(vii) =~ (viii) It is enough to show that L is not (u, u)-compact.
Indeed, a counterexample is given by a set of sentences saying:

(a) there are less than w,. elements;
(b)x there are at least w, elements (« e K).
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(viii) = (iii) Suppose by contradiction that D is a (4, A)-regular
not (u, u)-regular ultrafilter over A, and let K, K', and L be as
in the hypotheses of (viii); if (vs)ses are cardinals, and {8 € i
|vs < w,} € D, then, since cf (w,) = and D is not (u, u)-regular,
there is » < was such that {#|vs<<»} €D, and hence

-
D

<II'[ v’<v‘<wﬁ=w“<war, for some ac K .
D

By [Lpl, Corollary 4.5 (iv)] this implies that (D, V) € Fy(Loo(@s)),
for every cardinal », where V= S(AxA). In a similar fashion,
the cardinality hypotheses on w, imply that (D, V)€ Fy(Loo(@x)),
for every cardinal » and for every « € K. Then, by [Lpl, Corol-
lary 3.5], L would be [4, A]-compact, a contradiction.

Concerning Theorem 2.5, we do not know if in (vil) we can
replace « at most u» with «one» (if we ask for [u, y]-compactness
instead of (u, u)-compactness, we can do this, as is shown by a
variation-indeed, a simplification-of the proof). Since it is known
that (iii) is a property of set-theoretical nature, it follows that. so
is A% u: we shall see more detailed connections in § 4.

By the above remark, the [4, A]-compactness spectra of logics
and the (A, 1)-regularity spectra of ultrafilters are very similar.
The situation changes if we consider [4, u]-compactness and (g, 4)-
regularity: indeed, a (A, A*)-regular ultrafilter is necessarily (4, 1)-
regular, but this does not imply (4, A")-regularity (see e.g.[Do]).
Proposition 2.2 (iv) with » = oo shows that for logics the situation
is radically different.

In view of Theorem 2.5, it is possible that the following holds:

L u iff every x-(4, 1)-compact logic is x-(u, u)-compact; anyway,
this is true if V = L (see Corollary 4.4). It is possible also that
the right notion for characterizing when (A, 1)-compactness implies
(4, p)-compactness involves filters (¢f. Proposition 1.6).

Nevertheless, we can put together Theorem 2.4 and Theorem 1.3
(if 1= wa, let 4t* be w,.,):

2.6. COROLLARY. — If A is regular, then every x-(Atn, J+")-com-
pact logic is x-(A, A)-compact.

In particular, if A is regular them every (A", At*)-compact logic
18 (A", A)-compact.

In some cases we have a similar result whose proof refers only
to regularity of ultrafilter. Notice that in the following theorem A
and Yyare not necessarily regular.
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2.7. THEOREM. — Suppose that »>2"* and that every (A, A)-
regular wultrafilter is (v, v)-regular. Then every x-(A+t", At")-compact
logic is x-(v, v)-compact.

If »%>sup {i*", 241 then every (s, A**)-compact logic is (x, A)-
compact.

Proor. — Let us say that H c 8i(A) is cofinal in 8;(4) iff for
every x € S;(A) there exists y € H such that xcy (8:(1) is the set
of subsets of A of cardinality less than ).

Let cof Sa(A) = inf {|{H||H is cofinal in S8;(A)}. It is not diffi-
cult to show that A<ef Si(4)<|Sa(d)| = A<%; and that if 1 is rog-
ular, then cf 8i(1) = 1. We shall actually prove the theorem with
the weaker hypothesis s> 2:uw(ct5:4, et ) Because of this remark,
and [CN, Theorem 8.35], the theorem will follow just from the case
n = 0.

By standard methods (see e.g. [Lpl, Lemma 3.2]) one can prove
that if H is cofinal in Si(4) and {«} € H, for every « € A, then an
ultrafilter D is (4, A)-regular iff in [ [ <H, ¢, {o}Dses there is « such
that d({a}) c @, for every xed. ?

Suppose that X, I'= {ox|a v} c L are such that |X|<x and
if I"cI" and |I"| <y then 2'U I" has & model. We construct a
model of 2 U I' as follows: let H, K be cofinal in Si(1), S.(»),
respectively, of minimal cardinality; and let 9 be the completion
of the model (<H U K U A, c, H, K, {&})s (that is, the model ob-
tained from it by adding a symbol for every constant, relation or
function in H U K U 1). Let T be the Lyo-theory of ; and let
2% say that {|U(z)} is a model of T and, for all aev, {a}Cx
and K(z) imply that {y|f(y) = #} is a model of X' U {04}; and let
I's = {{«} ce|ae A} U {H(e)}.

By #-(4, A)-compactness, 2* U I'™* has a model %, and By is a
complete extension of 2; because of [CK, Theorem 6.4.4] there
exists a model € such that A< €|y <Bly, ce € and €|y =~ [,

D

for some ultrafilter D. Because of ¢, D is (4, A)-regular, hence
(v, v)-regular, so that in €|, there is a d such that {«} c d, for every
o€ v; hence in B {y|f(y) = d} is a model of XU I

It is possible that the hypothesis x>24<* in Theorem 2.7 can
be weakened (maybe to »>>2%; this is indeed true for the second
statement [Lp4], as well for the case of both 1 and » regular. A
slight variation on the proof shows that »>cf § () 5N ig enough.)
Anyway, if 1 is a weakly compact cardinal and there is no un-
countable measurable cardinal smaller than A, then every (4, 4)-



THE COMPACTNESS SPECTRUM OF ABSTRACT LOGICS, ETC. 889

regular ultrafilter is (w, w)-regular; but there is a (4, A)-compact
logic not (w, w)-compact.

We remark that we can define also cf §,(4) in a similar way:
this notion seems interesting for the study of (4, u)-regularity.

A generalization of Kénig lemma gives cf (ef Sx(4)) > cf ».

Finally, we mention without proof:

2.8. ProposITION. — If % = {4, w, <, ...> and L is countably
generated then there exists an expansion % of % such that |7¥|<
<|Ae and whenever B =, A" and B realizes {n <wz|ne o} then
B realizes every countable consistent L-type over any finite subset
of B (that is, if {pi(w, €)},, are L-formulas, ¢= (¢, ..., ¢,) € B",
and for every finite ¥ c w there is d € B such that B = g¢.(d, ¢)
(i € F') then there is d € B such that B =¢i(d, ¢) (i € w)).

Indeed, the only hypothesis needed about L is that if |7|<
< |7 then L has at most |7[» sentences of type 7.

Notice that a B realizing such a type exists in case L is
|Th, (AF)|— (w, w)-compact .

On the contrary, if L = Lua(Ct™), B =,{w,<> and {¢,},c, are
infinitely many elements of B cofinal in %, then B does not real-
ize {¢, < d}e,-

3. — Large cardinals and infinitary logics.

3.1. DEFINITIONS. — We say that a logic N characterizes a car-
dinal A (with u sentences) iff there is a (comsistent) N-theory T
with a unary predicate U (and |T|<pu) such that in every model
of T {z|U(z)} is & model isomorphic to {4, <Jpaer. Clearly, if N
characterizes A, then N characterizes every cardinal < A.

A model % is N-maximal iff it has no proper N-elementary
extension; maximal predicates are defined similarly (see [MS, sec-
tion 1.6]). It is easy to show that if 9 is N-maximal (or has an
N-maximal predicate P) then N characterizes |4| (|P|, respec-
tively) with |Th, (%)| sentences; and, conversely, if N charac-
terizes A, then there is a model with an N-maximal predicate of
cardinality A.

We denote by N,, the logic obtained from N allowing con-
junctions and disjunctions of < o sentences, and universal or exist-
ential quantification over < f# constants. If N is also closed under
applications of the (finitary) quantifier @, we also allow Nag to be
closed under finitely many applications of @.

56
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3.2. THEOREM. — If the logic N is u-(v, x)-compact, and charac-
terizes every A< A with u sentences, then also N is p-(v, x)-compact.

ProOF. — We first observe that, under the hypotheses, ¥ charac-
terizes every A'<< A with yu sentences, so that N cannot be u-(1', 4')-
compact and hence »>A. By Proposition 2.2 (ii) we may also sup-
pose that u>v.

Suppose by contradiction that X, I' is a counterexample to
the u-(v, %)-compactness of Ni» and, for every A'< A, let Ux be
a new unary relation symbol, and let X be such that |2u|<p
and in every model of Xy, {#|Ux(x)} is a model isomorphic to
{Ay <, &aer (Without loss of generality, we can suppose that the
types of X U I'" and of the X’s have no symbol in common).

For every subformula ¢(Z) = /\/\ @s(Z) of some sentence o of

2 u T, the ¢,(Z)’s being formulas of N let By be a new (n 4+ 1)-ary
relation symbol, where n is the number of variables of ¢(Z) (n i8
finite, since ¢ is a sentence, and we can quantify away only a
finite number of variables). Now, for every such ¢, substitute

o*(Z) = Yy(Un(y) = Boly, T 7)) for ¢(Z), for every occurrence of ¢(x)
m XU T. Similarly, substitute Iy(Ux(y)ARely, 7)) for W (pa

Let X* and I'* be obtained from X and [I' by 1terat1ng trans-
finitely this procedure of substitution: an easy induction on the
complexity of sentences of Ni» shows that we need to introduce
at most sup (|Z], A) <p new relations R,’s and then

Z% U {Z0 | A< A} U {VE(pa(®) <> Bolo, 7)) |@ as above, a< 1}

and I'* give a counterexample to the u-(v, x)-compactness of N.

We remark that in the proof of 3.2 we made a substantial use
of the fact that in Ni» we do not allow quantification over infinite
sets (even in the case that this is allowed in N). Indeed, The-
orem 3.2 cannot be generalized:

3.3. EXAMPLE. — Let Cf-* and WO be the quantifiers inter-
preted by:

Of=ray @(v,y) iff ¢ defines a linear order of cofinality u
and

WOy g(z,y) iff ¢(x,y) defines a well order .

(Usually, Cf=¢ is denoted by Q%=*; however, we believe that
our notation is simpler and creates no confusion).
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Then, if u is a measurable ecardinal, the logic L,,(Cf=#) is
[p, pl-compact and characterizes every u'<<u with u' sentences; but
Lo (Ci=#) is not [u, u]-compact (indeed, already Leo(WO, Cf=#) is
not (u, u)-compact).

Thus, with the order defined in [KV], [u, u]-compact logics do
not form a lattice, but just a meet semilattice (this is true also for
fully compact logics: it is possible to find an example of two com-
pact logics whose union is not compact).

ProoF. — The [u, u]-compactness of L,,(Cf~#) is similar to [Lpl,
Example 6.1]: use a non principal u-complete ultrafilter over g,
an anti-well-order of type u with a well-order of type w at the
bottom (this is done in order to prevent the possibility of changing
to u cofinalities which are unboundedly < u).

On the contrary, Lee(WO, Ci=#) is not (u, u)-compact, since
every model with a linear order satisfying the following sentences:

Cf=ugy x<y; VeOfftyzy<e<w; WOxy o<y
must be well-ordered of type u.

CoNJECTURES. — The logic L,.(Cf=#) has the same compactness
properties of L., for every cardinal u.

If N is closed under applications of WO, then the conclusion
of Theorem 3.2 can be extended to N, (at least when A is not a
too large cardinal).

In some cases however, we have an analogue of Theorem 3.2
for infinitary quantifiers; the proof of the following proposition
uses [Lipl, Proposition 6.5.1] (it is likely that also the version for
(v, %)-compactness holds).

3.4, PROPOSITION. — If N is [v, x]-compact, contains Lgs and
characterizes every A'<< A, then also Nip is [v, x]-compact.

If N is a logic, let Ny» be the least sublogic of N, con-

taining N as well as A\ @a, whenever {@s}.c, are N-sentences and
xEp

E=@p = @a, for every a<fecu. The proof of Theorem 3.1 can be
adapted in order to give: if A>pu are regular cardinals and N is
(Ay A)-compact but not (u, u)-compact, then also Ny is (4, A)-compact.

Indeed, the hypothesis that N is not (u, u)-compact could be
replaced by the weaker « A%, u fails », which is defined as in 1.6 (ii)
but referring to N-elementary equivalence.
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3.5, LEMMA. — If the logic N characterizes A with u sentences,
then N characterizes At with sup (u, A™) sentences.

Proor. — First, observe that N is not u-(A*, A*)-compact, by
the remark after Proposition 2.3.

Hence, a set of 4 N-sentences cofinally characterizes A+ (cf. [BF,
XVIII, Definition 1.2.1]); and, if for every « such that A<a<< AT
we say that fx is a bijection from « to 4, and we characterize A,
we have completely characterized AT.

3.6. LEMMA. — If A is singular and N characterizes every A'<< A
with p sentences, then N characterizes A with sup (4, u) seniences.

PrOOF. — Since cf (1) < 4, cf (A) is characterizable, so that A is
characterized by characterizing every A'<C 4, as well as a cofinal
sequence in A.

3.7. LEMMA. — If A is a regular limit cardinal, N characterizes
every A'<< A with u sentences and N is not p'-(1, )-compact, then N
characterizes A with sup (4, u', u) sentences.

Proo¥. — As in the preceding lemmas, we use the failure of
u'-(A, A)-compactness of L in order to cofinally characterize A.

3.8. LEMMA. — If L characterizes A with p sentences and A' with
' sentences and x is either I, (< AV, A<* or (< A)<%, then L char-
acterizes » with sup (x, u, u') sentences.

PrROOF. — For » = A¥, characterize 1’ and A, and make cor-
respond (using a ternary relation) a distinet ordinal of A to a
distinet funetion from A’ to A, saying that all the functions are
distinet.

For the other cases use the first part and Lemma 3.6.

3.9. THEOREM. — If u< oo, and N is a logic, then the following
are equivalent:

(i) 4 is the first cardinal such that N is u-(, A)-compact;

(ii) A is the first cardinal which is not characterized by sup (4, u)
sentences of N.

Moreover, if this is the case, then also Niw is u-(4, A)-compact;
indeed, if p'>up, then N,, is p'-(v, x)-compact iff so is N. In par-
ticular, A is @ cardinal such that L» is u-(A, A)-compact.

If, in addition, 2<*<pu, then 1 is strongly inaccessible, hence
weakly compact; and if 22<u, then A is measurable.
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PROOF. — From Theorem 3.2 and Lemmata 3.5, 3.6, 3.7 and 3.8.
For the last conclusion, note that if N is 22-(4, A)-compact, then
F,(N) N Reg (4, 1) = 0, by [Lpl, Proposition 3.3], so that there
oxists a A-complete non principal ultrafilter over A.

We can now characterize many large cardinals as first cardinals
for which some logic satisfies some compactness property (other
results in this direction are contained in [Ma]). Weakly and strongly
compact cardinals were originally defined as cardinals for which
infinitary languages are compact: Corollary 3.10 shows that the
results would have been the same even if the starting point were
different logies.

3.10. COROLLARY. — (@) Lxw is (%, %)-compact iff theve is a logic L
such that » is the first cardinal for which L is (x, x)-compact.

(b) x is weakly compact iff there is a logic L such that x is the
first cardinal for which L is 2<*-(x, x)-compact iff wx is strong limit
and there is a logic L such that x is the first cardinal for which L is
(%, %)-compact. ‘

(¢) [BF, XVIII, Theorem 1.5.2] x is measurable iff there is a
logic L such that » is the first cardinal for which L is [x, x]-compact
iff there is a logic L such that x is the first cardinal for which L is
2%-(x, x)-compact.

(d) % is A-compact iff there is a logic L which is [A, x]-compact
but not {p, ul-compact for cvery u <.

(6) x is strongly compact iff there is « logic L which is [ oo, x]-
compact but not [p, ul-compact for every u << x.

3.11. COROLLARY. ~ If a logic N is (6, 0)-compact, then there
ewists @ x<0 such that N.o is 6-(x, x)-compact and either x is meas-
urable (or w) or 6 < 2%,

PRrROOF. — Take x to be the first cardinal such that N is 0-(zx, %)-
compact.

For the case N == Ly Corollary 3.11 strengthens & theorem
of Bell [Di, p. 186]. Inecidentally, this may be seen as another
example of the success of Abstract Model Theory in solving con-
crete problems for very particular logics [MS, p. 292].

Weakly compact cardinals werce originally defined by Hanf as
cardinals for which L,y is (%, x%)-compact: the eventuality that this
definition does not imply (strong) inaccessibility of » is seen in
many texts as a defect, so that nowadays « weak compactness»
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incorporates inaccessibility right in the definition. However, in
this paper we show that, to some extent, also Hanf’s notion is
very natural and interesting (unless the concept of (x, »)-compact-
ness is obsolete—we believe this is not the case). We remark that
we do not know of any example of a cgrdinal » such that L, is
(%, x)-compact but x» is not inaccessiblé§ 'we also do not know
whether the (x, x)-compactness of L.., of its propositional part,
and of L., can be equivalent without assuming the ina,ceessibility('ﬁf\
of % (however, by an argument of [Si], it is possible that x is weakly
inaccessible, has the tree property but L. is not (x, x)-compact).

Also the problem of characterizing relative minima in the com-
pactness spectrum is completely open (and maybe very hard in
the general case).

ProBLEM. — Characterize those cardinals » such that there
exists a 4 < » and a logic L which is (x, »)-compact but not (», »)-
compact, for every regular », A<v <<x. From the statement of
Corollary 3.10 we can obtain similar problems; e.g., for which
cardinals » there exists a logic L such that x is the least cardinal
for which L is [oo, x]-compact?

We remark that, by Corollary 4.3, if there is no inner model
with a measurable cardinal, 2 <C» and there exists a logie (x*, »™)-
compact not (v, v)-compact for every », A<v <<%, then » must be
weakly inaccessible.

On the other side, by a result of [BM], and [Lp2, Theorem 7]
it is possible (assuming the consistency of a x™-supercompact car-
dinal %) to have a logic [we,,, we]-compact not [w,, w,]-compact
for every n>>1 (this can be improved to not (®,, ,)-compact, by
a variation on Theorem 2.5 (viii)).

The relation A g>[u is connected with compactness propertics
of infinitary languages:

3.12. THEOREM. — If %50, then A % o iff Low is x-(4, A)-
compact.

The proof of Theorem 3.12 is similar to the one of Theorem 3.2.
Clearly, in Theorem 3.12 we can replace Ly o With Ly, if 4 is the
first cardinal such that Ly, is »-(u, u)-compact.

Moreover, with suitable modifications, we can extend Theo-
rem 3.12 to larger cardinals.

3.13. DEFINITION. — If A, u, (¢ € I) are infinite regular cardinals,

and » is a cardinal, we write 1 % \/ y, iff there exists an expan-
€7
sion A of (4,<) such that [:A\{<}|<x and whenever B > U

——————

() AV ExANR eXis6 s | SEE (Bo),
(#0) SEE isic Oha), v b tncvian, Tiealeh 2 4,
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and B realizes {a <x|ow< A}, then for some iel B realizes
{B<y<mlf<pi

3.14. THEOREM. — If x 5= 0, then A > \/ ' does not hold iff Ly
is %-(4, A)-compact. B<p

We remark that similar methods give a (maybe new) generaliza-
tion of a theorem by Rabin in a different direction than Keisler’s
version [CK, Theorem 6.4.5]:

3.15. PROPOSITION. ~ If x is the first cardinal for which Lo o
is (¢, x)-compact, and A <<x, A<v<A®, then there ewists am expan-
sion A of (4, <> such that |7U| = v and every proper clementary
extension of N has cardinality >wv.

On the contrary, if u is measurable and 1 is the least cardinal
of cofinality w larger than 2#, then A has a proper complete exten-
sion of cardinality 4, yet A°> A (ecf. also [CK, Exercise 6.4.12]).

3.16. PROPOSITION. — If U is a model, |A| is less than the first
cardinal x for which Lo 18 (%, %)-compact, and L is countably gen-
erated, then there exists an empansion AT of U such that |7AT|<
sup (|4]%, |7%|*) and every proper L-clementary ewiension B of AT
realizes every countable consistent L-type over any finite subsel of B
(¢f. Proposition 2.8).

4. — Consequences of E’ and [J,.

If A< x are regular cardinals, let 82 be {x < x|efx = A}. The
combinatorial principle B} states that there exists a subset 4 of 8%
stationary in x such that, for all limit « <<%, 4 N o is non sta-
tionary in «.

Let y: 82X A —>x be such that for every de S {y(d, &)|E< A}
is an increasing closed cofinal sequence in . If X c 82, say that
f: X— 1 is a disjointer for X iff, whenever J, e X and £,
we have that {y(8, £)|&>(8)} O {y(n, &) 16> f(n)} = 0

4.1. THEOREM. — If A< x are regular cardinals and B’ holds,
then » = A.

Proor. — Suppose by contradiction that » =- A fails and let y
as above be fixed. By [KM, p. 220], in order to prove that E:
fails it is enough to prove that if A c S is stationary and for
every a < »x there is a disjointer f, for A N « then there is a dis-
jointer for A.
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Consider the model M = <{x, <<, A, y, f>, where f: A xXx — 1 i3
defined by f(x, §) = f«(6) if d € A N «, and arbitrarily in the other
cases.

Since x => A fails, there exists 9> 9 such that ze N and
x>0, for every d € »; but no element y € N is such that for every
E< A E<y< A (without loss of generality we can assume that
ze A% as A is cofinal in x). Now, the fact that, for every a < z,
f(e, —) is a disjointer for 4 N o can be expressed as a first order
statement, by saying that for every a4 and d£ned N «,

'}’(67 (f(“? 6)7 j')) N '}’(77’ (ﬂ'“y 77)7 ;l)) =0.

So that in 0%, for every 6= ne A%,

(8, (@, 8), ) O y(n, (@, n), B) = 05

but the range of f is contained in A, so that for every 6 ¢ 4 there
exists & << A such that f(z, 6) < & If f#(9) is the least such &, then
clearly f*: A — 1 is a disjointer for A.

This proof is very similar to the one given in [KM] using a

NV=(}, 2)-regular ultrafilter over x. Indeed, that proof can be per-

formed by considering the above model 9 and just taking its
ultrapower.

4.2. COROLLARY. — If [, holds, then x+ = A holds for every reg-
wlar cardinal A << x; and hence, every (x*, x*)-compact logic is (A, A)-
compact; hence also (x*, w)-compact.

PRrOOF. — If % = w (or just » < @,) Theorem 1.3 is enough and
we do not need [,. Otherwise, (], implies EX. [KM, p. 221], and
the conclusion follows from Theorems 4.1 and 2.4, and Proposi-
tion 2.2 (iv) (v).

It is known that, for » > w, [, is a consequence of either
V =L (or even V = K) or «x* is not Mahlo in L »; so that the
conclusions of Corollary 4.2 also hold under such hypotheses. We
also have:

4.3. COROLLARY. — If x is singular and there is no inner model
with a measurable cardinal, then x* =1 holds, for every regular
A <<x. Bo that every (xt, xt)-compact logic is (x*, w)-compact.

Proor. — By Corellary 4.2 and some results by Dodd and Jensen
([KM, p. 222] or [Do, Theorem 3.12]).
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4.4, COROLLARY. — (V = L). For a regular cardinal »x, the fol-
lowing are equivalent:

(i) » is weakly compact.

(ii) For some (equivalently, every) regular A <<x there is &
(¢, )-compact logic not (1, A)-compact.

(iii) % => A fails for some (equivalently, every) regular A < x.
(iv) E? fails for some (equivalently, every) regular A < x.

In particular, if V = L, then for every regular i and x, the
properties B, x = A and «every (x, x)-compact logic is (1, A)-com-
pact » are all equivalent to each other.

PROOF. — (iv) = (i) is due to Jensen [KM, p.219]. The other
implications follow from Corollary 3.10 (b) and Theorems 2.4 and 4.1.

It is conceivable that the assumption V= L can be weakened
in Corollary 4.4 (indeed, it is used only in (iv) = (i)). Nevertheless,
we cannot go too far: by a result of Baumgartner [KM, p. 222] we
cannot prove the converse of Theorem 4.1.

4.5. COROLLARY. — If ZFC + « There exists a weakly compact
cardinal » is consistent, then it is consistent to assume that B fails.
On the contrary, w, =>w always holds, because of Theorem 1.3.

It is very likely that the proof of [Do, Theorem 1.4] can be
adapted in order to show that, for x> A regular cardinals, 07 im-
plies » = A.

5. — Logics generated by monadic quantifiers.

We now characterize the compactness properties of monadic
quantifiers (more precisely, we reduce it to the problem—not yet
completely solved—of the compactness properties of cardinality
quantifiers). A monadic quantifier @ is completely determined by
a class H of n-tuples of cardinals. Its interpretation is given by:

W E=Qu®iy ooy TalPry -oey Pn)
iff (wed|W=e@)}], ..., {recd|A=g.(@)})ecH.

5.1. DEFINITION. — Let H be a fixed class of n-tuples of car-
dinals: we say that a< oo is an extreme (for the i-th coordinate) iff
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for every f << o there exist f', y;, ..., ya_, such that f<pf'<« and
(V1s ooy Virs & Viy ooy Yaa) € H M (y1y oy iy B Viy oony ¥n) € H.

Thus, « and «' are consecutive extremes iff [«, &) is 2 maximal
interval with the property that for every yi, ..., y._, either {y,} x
X X [0ty &) X oo X {pu_y} i8 contained in H or is contained in the
complement of H.

For the rest of this section, H will be an arbitrary but fixed
class of n-tuples of cardinals. We first see that if Lwe(Qx) is (w0, w)-
compact, then H has a very particular form.

5.2. THEOREM. — If the logic Low(@y) is (w, w)-compact, then H
18 @ finite union of products of intervals.

ProoF. — It is enough to prove that, for every coordinate, there
are only finitely many extremes: then H is a union of products
of intervals of the kind [e«, «'), where « and «' are extremes for the
appropriate coordinate.

So, suppose by contradiction that there are infinitely many
extremes for the ¢-th coordinate: from them we can extraet an
increasing sequence (og)ie, Of consecutive extremes.

Let now % be a model <A, w, <<, fi, ...y fu, g such that < is
the order on w, each f; is a function from A to w and g is a binary
function such that for every ke w g(k, —) is injective from f;*(k)
into f;’(k + 1) and moreover, for every k€ w,

(1 Yy ey £7YH), ooy [M(R)) € H
iff (f7(k)y ooy 7N+ 1), ooy £UR)) ¢ H

(this is possible since we can choose f; in such a way that
!f:l(k)f - “k)-

By (w, w)-compactness, there exists a model 8 = ,2 with a
non-gtandard element ¢ in the order <: choose ¢ in such a way
that |f;*(¢)| is minimum: by the L-theory of 9 we have that

(fife—= 1)y oy fH(0— 1), ooy e — 1)) € H
iff (f;l(c‘“ 1)7 LR f:l(c)y seey f:l(c_ 1)) ¢H H

but this is absurd, as |[f7'(c)] = |f;*(c —1)|.

This method of proof is more general than the one given in
[Lp1, Proposition 5.2], which uses ultraproducts; however the former
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is inspired by the latter. For the case n — 1 Theorem 5.2 was
already stated with a hint of the proof in [Lp3, Theorem 2].

Now we prove that in most cases the A-closure of a logic gen-
enerated by a monadic quantifier is equivalent to the A-closure
of a logic generated by cardinality quantifiers (we conjecture that
this is true for every monadie quantifier).

5.3. THEOREM. — If H is a finite union of products of intervals,
then A(L,w(Qx)) = A(V{Loo(@s)|ws is an extreme for H, for some
coordinate}). In particular, this is true if Loo(Qr) is (w0, w)-compact.

PROOF. — Low(Qy) is indeed a sublogic of V{Lwo(@s)|wa is an
extreme for H, for some coordinate}.

For the converse, for every ¢ with 1<i<n, let o, ; (1<j<m;,)
be the extremes for H for the i-th coordinate, arranged in increasing
order: we say that the cardinals f,, (1<i<m, 1<j<m,;) are a
grating for H iff for every 4 and j with 1<i<n, and 1<i<m,,
Bii € [0i,55 %i541). Clearly, if @,; (1<i<n, 1<j<m;) are formulas
of Loo(Qr), and @,(®) =@, (x) for j< j', then the property that
Hoe|@. (@)} A<i<n, 1<j<m,) is a grating for H is expressible
by a sentence of Luyw(Qx).

Now, the condition that y € [anx, 0niys) 18 equivalent to both:

(i) whenever 8., (l<i<n, 1<j<m,) is a grating for H,
then it still remains a grating when we replace f,, with y, and
leave the other (’s unchanged; and

(ii) there is a grating f,; (1<i<mn, 1<j<m,) such that we
still have a grating when we replace §, , with y, and leave the other
fA’s unchanged;
and this shows that, if « = o; and o' = op.1, then Loo(@,.n) I8
a sublogic of A(Lew(Qx)). Since this can be done for every h
and %k, we can express every sentences of Leo(Qs) by a sentence
of A(Lwo(Qx)), if ws is an extreme for H, for some coordinate.

5.4. COROLLARY. — If Lwo(Qx) is (w, w)-compact, then it enjoys
exactly the same compaciness properties of V{Loo(Q«)|wa is an extreme
for H, for some coordinate}. Indeed, this is true for all properties
preserved by A-closure and taking sublogics.

ProoF. — This follows from Theorem 5.2 and the fact that
A-closure preserves all compactness properties.

5.5. PROPOSITION, — If H is a uwion of << x products of imter-
vals, then L.o(Qg) enjoys exactly the same compactness properties of
V{Lno(Qa) |ws is an extreme for H, for some coordinate}.
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The proof of Proposition 5.5 is a generalization of the above
arguments, by using a form of A-closure allowing infinitely many
constants, relations and funections. On the contrary, a generaliza-
tion of Theorem 5.2 is not possible (at least from some point on):
by results of [Ma], any logic is [u, u#]-compact, for some cardinal y,
if we assume Vopenka’s principle; so that, e.g., Loo(Rg) is [u, u]-
compact, for some u, where Rg is a quantifier such that Rgwe(w)
means that [{#|g(z)}| is a regular cardinal; but both regular and
singular cardinals are cofinal in the universe.

5.6. PROBLEM. — Find the first cardinal A for which there exists
a class H of cardinals such that both H and its complement are
unbounded but Lwo(Qx) is (4, 1)-compact. ([4, A]-compact, respec-
tively.)

By theorems of Magidor and Stavi [BF, XVIII, 1.5.11 and 1.5.15],
2 is less than the first measurable (extendible, respectively).

However, if we want cardinality logics or infinitary languages
to be compact we need much weaker hypotheses than Vopenka’s
principle.

The following is immediate from Kunen’s Lemma [KM, p. 156],
[Lipl, Proposition 6.5.1], and [Lp2, Theorem 6]. The proof of this
last thoorem is obtained as in Theorem 2.5 (viii) = (iii).

5.7. PROPOSITION. — For every ordinal o, L, (Qa) is [p, ul-com-
pact for all but finitely many measurable cardinals p.

5.8. COROLLARY. — If there are infinitely many measurable car-
dinals, then any logic gemerated by a finite number of cardinality
quantifiers is [u, ul-compact for some u.

If the measurable cardinals form a proper class, then any infi-
nitary logic Lag is [u, ul-compact for some u.

The second part of Corollary 5.8 follows from [Lipl, Theorem
6.5.2]. Problems: try to obtain results similar to Corollary 5.8
for other kinds of logies. Is Low(Q.) (%, x)-compact for all but
finitely many weakly compact cardinals?

Finally we notice an improvement of [Lpl, Theorem 3.9], whose
proof is exactly the same (if Oc (L) = w, then two models are
L-elementarily equivalent iff so are their reducts to any finite

type).

5.9. THEOREM. — If L is 2°-(w, w)-compact, Oc (L) = o, |4| =
= |B| = w, and, for every finite TcC v, Th (y,) is superstable and
either (i) does not have the finite cover property or (ii) some countable
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model has a proper L-complete extension of cardinality 2°, then
A=,B iff A=2B.

6. — Conclusions.

The results of [MS], as well as subsequent ones, might give the
impression that [4, u]-compactness is a much more natural notion
than (A, u)-compactness. Indeed, the former is a very useful tool
for the study of full compactness; moreover it may be very diffi-
cult to decide if a given logic L is (4, u)-compact, while the problem
of its [A, u]-compactness is generally easier: for cardinality logies
the former problem is still open [BF, Chapter V], while the latter
has a rather simple solution [Lp2]. Furthermore, of some theorems
proved for [A, u]-compactness no counterpart has been found yet
for (A, u)-compactness; other theorems do have such counterparts,
but their proofs are much more involved, and are deeply influenced
by the earlier proofs for the [4, u]-compact case; and—ab least as
we are concerned—could not even have been found without them.

Nevertheless, however desirable full compactness is, it is very
rare and difficult to be found [Sh]: if we decide to renounce to it
and limit ourselves to « fragments » of compactness in order to have
at least a small amount of logics to deal with, we discover that
changing (4, u)-compactness into [4, u]-compactness gives a perhaps
excessive strengthening and cuts out a lot of logics (for exam-
ple, Loo(@,) is (w, w)-compact but not [w, w]-compact—the exact
breaking point being explicitly given in Proposition 2.3), so that
(4, u)-compactness still remains an interesting concept deserving
further study, as it can be applied to a somewhat broader context.

More generally, our point of view is that restricting oneself to
logies satisfying desirable properties seems a rather strong require-
ment (producing a collapse to a one-element set if countable com-
pactness and the Lowenheim-Skolem theorem are between the
desirable properties) and that looking for the notions and methods
of first order Model Theory which can be generalized to the largest
possible amount of logics is as interesting as searching for logies,
maybe strange and unnatural, having the Model Theory as similar
as possible to the one of Lua.

Anyway, there is another reason for which (4, u)-compactness
is worth of study, a reason in some way connected with large
cardinal axioms in Set Theory (this is no surprise: weakly and
strongly compact cardinals were indeed originally defined in terms
of compactness properties of infinitary languages).
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The results of Section 3 naturally lead to the following identity:

(4, 1)-compactness: weak compactness =

= [4, A]-compactness: measurability .

So that it is conceivable that (4, 1)-compactness may be useful
for translating results involving measurable cardinals into prop-
erties of much smaller cardinals, as well as for finding generaliza-
tions of measurability suitable for these cardinals (for the interest
of such a process we refer to [KM, e.g. p. 180 or the last lines of
p. 105]). Concerning the present paper, the relation A = U, a8 a
strengthening of «every (A, A)-regular ultrafilter is (u, u)-regular »
may be interesting also from a set-theoretical point of view.

Finally, let us observe that many non elementary properties
have been already studied by classical Model Theory (cardinality,
omitting types, ...); the new thing in Abstract Model Theory seems
to be just in looking at what happens if one requires very few
natural closure properties. This may explain why many « abstract »
results are implicit in or forerun by older classical ones.

BIBLIOGRAPHY

[BF] J. BARWISE - 8. FEFERMAN (editors), Model-theoretic logics, Perspec-
tives in Mathematical Logic, vol. 6, Springer-Verlag, Berlin, 1985.

[BM] 8. BEN-DAvID - M. MAGIDOR, The weak [* is really weaker than
the full 00, J. Symbolic Logic, 51 (1986), 1029-1033.

[Ca] X. CarceDo, 4 simple solution to Friedman’s fourth problem, J. Sym-
bolic Logic, 51 (1986), 778-784.

[CK] C. C. Cmaxne - H. J. KErisLer, Model theory, North Holland,
Amsterdam, 1977.

[CN]1 W. Comrort - 8. NEGREPONTIS, The theory of ulirafilters, Springer-
Verlag, Berlin, 1974.

[Di] M. A. DickMANN, Large infinitary languages, North Holland, Am-
sterdam, 1976.

[Do]l H.D. DonNDER, Regularity of wlirafiliers and the core model, Israel
J. Math., 63 (1988), 289-322.

[Dr] F. R. DrAKE, Set theory, Studies in Logics and the Foundations
of Mathematics, North Holland, Amsterdam, 1974.

[KM] A. KANAMORI - M. MaGIDOR, The evolution of large cardinal axioms
in set theory, in: Higher sel theory, Lecture Notes in Mathematics,
Vol. 669, Springer-Verlag, Berlin, 1978.

[Bo] W. Boos, Infinitary compactness without
strong inaccessibility, J. Symbolic Logic, 4
(1976), 33 - 38 ‘

1
C


pao
Matita

pao
Matita

pao
Matita

pao
Matita

pao
Matita

pao
Matita

pao
Matita

pao
Formato
[Bo] W. Boos, Infinitary compactness without
strong inaccessibility, J. Symbolic Logic, 41
(1976), 33 - 38


[KV]
[Lp1]

[Lp2]

(Lip3]

[Lp4]

[Lp5]
{Lip6]
[Ma]

[MR]

[MS]
[Mu]
[Sh]

[8i]

THE COMPACTNESS SPECTRUM OF ABSTRACT LOGICS, ETC. 903

M. KRYNICKT - J. VAANANEN, On orderings of the family of all logics,
Arch. Math. Logik Grundlag., 22 (1982), 141-158.

P. LiepariNi, Limit ultrapowers and abstract logics, J. Symbolic Logic.
52 (1987), 437-454. :
P. Lieearint, Consequences of compactness properties for abstract logics,
Atti Accad. Naz. Lindei Rend. Cl. Sci. Fis. Mat. Natur., 80 (1986)
501-503.

P. LippAriYI, Compactness properties of logics generated by monadic
quantifiers and cardinalities of limit ultrapowers, in Proceedings of
the Third Easter Conference on Model Theory, held in Gross-Koris,
Seminarberichte Humboldt-Univ. 70, pp. 183-185, Berlin, April 1985.
P. LipparINI, About some generalizations of (A, p)-compactness, in
Proceedings of the Fifth Easter Conference in Model Theory, Semi-
narberichte Humboldt-Univ. 93, pp. 139-141, Berlin, 1987.

P. LippARINI, Duality for compact logics and substitution in abstract
model theory, Z. Math. Logik Grundlag. Math., 31 (1985), 517-532.
P. LIPPARINI, (A%, At)-compactness implies a weak form of (A, 4)-
compactness, (Abstract), J. Symbolic Logic, 54 (1989), 660-661.

J. MAKOWSKY, Vopenka's principle and compact logics, J. Symbolic
Logic, 50 (1985), 42-48.

J.1. MaLirz - W.N. REINHARDT, Maximal models in the language with
quantifier « there ewist uncountably many », Pacific J. Math., 40 (1972),
139-155.

J. MAKOWSKY - S. SHELAH, Positive results in abstract model theory:
a theory of compact logics, Ann. Pure Appl. Logic, 25 (1983), 263-299.
D. Muxnpicy, Duality between logics and equivalence relations, Trans.
Amer. Math. Soc., 270 (1982), 111-129.

8. SHELAH, Generalized quantifiers and compact logic, Trans. Amer.
Math. Soc., 204 (1975), 342-364.

J. H. SILvER, Some applications of model theory in set theory, Ann.
Math. Logic, 3 (1970), 45-110.

Dipartimento di Matematica, II» Universitd di Roma (Tor Vergata)

Pervenuia in Redazione
il 20 marzo 1989



