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Abstract. We derive consequences from the existence of a term which
satisfies Mal’cev identities (characterizing permutability) modulo two
functions F and G from admissible relations to admissible relations.
We also provide characterizations of varieties having a Mal’cev term
modulo F and G.

1. Introduction

In 1954 A. I. Mal’cev [16] proved the following fundamental result.
Theorem 1.1. All algebras in a variety V have permutable congruences if
and only if V has a ternary term t such that the following identities are valid
in V:

x = t(x, y, y) t(x, x, y) = y.

Mal’cev’s Theorem 1.1 can be safely considered the beginning of modern
Universal Algebra. On one side, it has initiated the study of what are
nowadays known as Mal’cev conditions. See, e.g., [5, 1] for information and
further references. On the other side, it has eventually led to a more and
more refined theory of permutable varieties, culminating perhaps in J. D.
H. Smith’s commutator theory [17].

While generalizing Smith’s theory to the congruence modular case, many
researchers independently discovered that congruence modular varieties have
a difference term, a term which satisfies Mal’cev identities, except that one
equality is replaced by congruence modulo the commutator (the commuta-
tor [α, β] of two congruences can be defined in many ways, but the actual
definition is not relevant to the present paper). In more detail, a difference
term is a term satisfying the conditions a = t(a, b, b) and t(a, a, b) [α, α] b,
whenever aα b. Notice that, for notational convenience, if R is a binary
relation, we shall usually write aR b in place of (a, b) ∈ R.

The difference term has found a great deal of applications in the theory
of congruence modular varieties; see the survey books by H-P. Gumm [3],
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and R. Freese and R. McKenzie [2] for some history. See, e.g., [1, 6, 12, 13]
and references there for more recent results.

When commutator theory for congruence modular varieties was at its
beginning, the general feeling was that the theory could not be generalized
to a larger setting. However, already in [18], W. Taylor proved that abelian
algebras are affine in m-permutable varieties, a result previously known to
hold in the case of modular varieties. W. Taylor worried about the possibility
that his result might be dependent on the definition of the commutator,
but later it has been shown in [9, Corollary 5.9] that many definitions of
“abelian” coincide in a large class of varieties, including m-permutable ones.

More importantly, the proof of [18, Theorem 2] actually shows that every
m-permutable variety has a weak difference term, that is, a term which
satisfies the form of Mal’cev identities in which both equalities are replaced
by congruence modulo the commutator. More explicitly, a weak difference
term is a term satisfying a [α, α] t(a, b, b) and t(a, a, b) [α, α] b, whenever
aα b. Many conditions equivalent to the existence of a (weak) difference
term have been given in [12]. Though m-permutable varieties do not have,
in general, a difference term, the weak difference term is enough for many
applications; for example, Taylor’s result can be used to get a rather simple
proof that congruence lattices of algebras in m-permutable varieties satisfy
non trivial identities; see [10, 11, 15].

Taylor’s Theorem is probably the first significant result in commutator
theory for non modular varieties, but the theory was ready for successful
developments. When D. Hobby and R. McKenzie [4] provided their funda-
mental classification of locally finite varieties, commutators and centralizers
played an important role in it (let us mention that, meanwhile, many results
from [4] have been extended from locally finite varieties to arbitrary vari-
eties. K. Kearnes and E. Kiss have announced [8] a book on the subject).
Weak difference terms, too, under a different terminology, played a role in
Chapters 7 and 9 of [4]. In particular, [4, Theorem 9.6] implies that a locally
finite variety omits type 1 if and only if it has a weak difference term.

Motivated by the above results from [4, 18], we begun in [9] a study of
algebras and varieties with a weak difference term for their own sake. We
showed that a large part of the commutator theory for congruence modular
varieties follows just from the assumption of the existence of a difference
term (see also [6, 13]). More surprisingly, a weak difference term is enough
for a large amount of results. As a by-product of our study, in [9] we
succeeded in generalizing to arbitrary varieties some results first proved by
Hobby and McKenzie for locally finite varieties only. Actually, [9] provided
further results which were new even in the particular case of locally finite
varieties.

In addition, Section 3 in [9] deals with an even more general situation:
we only assume that F,G : Con(A)→ Con(A), and study terms which are
Mal’cev modulo F and G, called there F -G-difference terms. In this sense, a
difference term is a term Mal’cev modulo F (α) = 0 constantly, and G(α) =
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[α, α]; and a weak difference term is a term Mal’cev modulo F (α) = G(α) =
[α, α]. Thus, a unified treatment of both cases is accomplished; moreover,
the theory becomes independent from the definition of the commutator.
Further, on [9, p. 186], we mention the possibility that Con(A) might
be replaced by Adm(A), the set of reflexive and admissible relations on
A. The possibility of such a generalization appears particularly interesting
because, in general, the proof that a variety V has a difference term, or
a weak difference term, actually shows that V has a term Mal’cev modulo
certain functions F and G, whose images range over admissible relations,
usually smaller than congruences. An example of this fact is provided in
[10, Remark 3.5] for m-permutable varieties, and a similar remark holds
for modular varieties. We shall describe in a sequel to the present paper
applications of the above remarks.

Moreover, the results proved in [7, 14] suggest the possibility that an in-
teresting commutator theory can be developed, dealing with reflexive and
admissible relations, rather than congruences. In fact, [14, Part II] provides
characterizations of what might be called neutral varieties in the sense of
commutators for relations. Though a full theory of commutators for rela-
tions goes beyond the scope of the present paper, we show that many results
proved for algebras with a weak difference term (that is, dealing with con-
gruences) generalize to the case of a term Mal’cev modulo two functions
whose domains and codomains are just admissible and reflexive relations.

In particular, we generalize results from [9, Section 3] to the case of the
existence of terms which are Mal’cev modulo F,G : Adm(A) → Adm(A).
In fact, some of the results proved here are stronger than the corresponding
results in [9] even in the particular case F,G : Con(A) → Con(A). For
example, Lemma 2.1(i) here, though apparently simple, is a significant im-
provement of the case n = 1 of [9, Lemma 3.1(i)] (we shall deal with the
case n > 1 in a sequel to the present paper). Lemma 2.1(i) is then used in
order to prove Theorem 2.2 and Corollary 2.3(i), which give a description
of R1 ◦R2 ◦ · · · ◦Rn and provide, even for admissible relations, finer bounds
than the ones obtained in [9, Lemma 3.1(iii)] for congruences. Moreover, in
Corollary 2.3(viii)(x) we can compute the congruence generated by a relation
in a more effective way than in [9, Proposition 3.7].

In Section 3 we deal with global operators defined on all algebras in a given
variety V. Many conditions equivalent to the existence of a term Mal’cev
modulo F and G for all algebras in V are given, under the assumption that
F and G satisfy a homomorphism property. Some results from [12, Part II]
are particular cases of the results proved in Section 3. At the end of the
section we show that all the commutators for relations introduced in [14]
satisfy the required homomorphism property.

The main notion of the present paper is contained in the following defi-
nition.
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Definition 1.2. If A is an algebra, and F : Adm(A) → Adm(A), G :
Adm(A) → Adm(A), we say that a ternary term t of A is Mal’cev modulo
F and G if and only if

aF (R) t(a, b, b) and t(a, a, b) G(R) b,

whenever a, b ∈ A, R ∈ Adm(A), and aR b.
An alternative name for the above notion is a weak difference term modulo

F and G, or simply an F -G-difference term: we used this terminology in [9,
p. 199], in the case when F : Con(A)→ Con(A), G : Con(A)→ Con(A).

Notice that if t(x, y, z) is Mal’cev modulo F and G, then t′ defined by
t′(x, y, z) = t(z, y, x) is Mal’cev modulo F ′ and G′, where F ′ and G′ are
defined by F ′(R) = (G(R−))− and G′(R) = (F (R−))−.

We now fix notations. For a binary relation R on some algebra, R−

denotes the converse of R, R∗ is the transitive closure of R, and Cg(R) is the
smallest congruence containing R. R denotes the least admissible relation
containing R. Notice that if R and S are admissible, then R◦S is admissible,
too. Intersection is denoted by juxtaposition. R◦nS is R◦S ◦R◦S . . . with
n− 1 occurrences of ◦. Rn = R ◦n R. By convention, we put R0 = 0, where
0 denotes the identity relation (the smallest reflexive relation) on the given
algebra; the largest binary relation is denoted by 1. R + S =

⋃
n∈ω R ◦n S.

We denote n-tuples by a bar, as in ā.

2. Formulae for sums

Lemma 2.1. Suppose that A has a term Mal’cev modulo F and G. Then for
all reflexive admissible relations R, S ∈ Adm(A), and for arbitrary relations
θ, θ1, θ2 ⊆ A2, the following hold:

(i) If a, b, c, d ∈ A, aR b θ1 c, a θ2 dS c, and b θ d (that is, the situation
pictured in the following diagram occurs)

b
R ↗

∣∣ ↘θ1

a
∣∣θ c

θ2 ↘ ↓ ↗S

d

then (a, c) ∈ F (R) ◦ θ2 ∪ θ ∪ θ1 ◦G(S).
(ii) R ◦ θ ◦ S ⊆ F (R) ◦ (R ◦ θ) ∪ (θ ◦ S) ◦G(S).
(iii) R ◦ S ⊆ F (R) ◦R ∪ S ◦G(S) ⊆ F (R) ◦ S ◦R ◦G(S).
(iv) R ◦R ⊆ F (R) ◦R ◦G(R).

Proof. (i) aF (R) t(a, b, b) θ2 ∪ θ ∪ θ1 t(d, d, c) G(S ) c.
(ii) If aR b θ dS c then aR b θ d and b θ dS c. Letting θ2 = R ◦ θ and

θ1 = θ ◦S we get the conclusion from (i), noticing that θ ⊆ R ◦ θ ⊆ θ2, since
R is reflexive.
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The first inclusion in (iii) is the particular case θ = 0 of (ii). The second
inclusion is trivial, since R and S are reflexive, and S ◦R is admissible.

(iv) is the particular case S = R of (iii). �

By applying Lemma 2.1(i), we can generalize clause 2.1(iii) in order to
get a formula for computing R1 ◦R2 ◦ · · · ◦Rn.

Theorem 2.2. Suppose that A has a term Mal’cev modulo F and G. Then
for all n ≥ 2, and for all reflexive admissible relations R1, R2, . . . , Rn ∈
Adm(A), the following hold:

R1 ◦R2 ◦ · · · ◦Rn ⊆

F (R1) ◦ F (R1) ∪ F (R2) ◦ F (R1) ∪ F (R2) ∪ F (R3) ◦ . . .

◦ F (R1) ∪ F (R2) ∪ · · · ∪ F (Rn−2) ◦ F (R1) ∪ F (R2) ∪ · · · ∪ F (Rn−1)◦
R1 ∪R2 ∪ · · · ∪Rn−1 ∪Rn◦

G(R2) ∪G(R3) ∪ · · · ∪G(Rn) ◦G(R3) ∪G(R4) ∪ · · · ∪G(Rn) ◦ . . .

◦G(Rn−2) ∪G(Rn−1) ∪G(Rn) ◦G(Rn−1) ∪G(Rn) ◦G(Rn).

Proof. The theorem is proved by induction on n.
The basis n = 2 is given by Lemma 2.1(iii).
Suppose that the Theorem holds for some n, and that (a0, an+1) ∈ R1◦R2◦

· · · ◦ Rn ◦ Rn+1. This means that there are further elements ai (1 ≤ i ≤ n)
such that a0 R1 a1 R2 a2 . . . an−2 Rn−1 an−1 Rn an Rn+1 an+1. This implies
that (a0, an) ∈ R1 ◦ R2 ◦ · · · ◦ Rn. If we denote by θ2 the right-hand side
of the formula in the statement of Theorem 2.2, we get, by the inductive
assumption, R1 ◦R2 ◦ · · · ◦Rn ⊆ θ2, hence a0 θ2 an.

Similarly, since (a1, an+1) ∈ R2 ◦ · · · ◦Rn ◦Rn+1, and letting

θ1 =

F (R2) ◦ F (R2) ∪ F (R3) ◦ F (R2) ∪ F (R3) ∪ F (R4) ◦ . . .

◦ F (R2) ∪ F (R3) ∪ · · · ∪ F (Rn−1) ◦ F (R2) ∪ F (R3) ∪ · · · ∪ F (Rn)◦
R2 ∪R3 ∪ · · · ∪Rn ∪Rn+1◦

G(R3) ∪G(R4) ∪ · · · ∪G(Rn+1) ◦G(R4) ∪G(R5) ∪ · · · ∪G(Rn+1) ◦ . . .

◦G(Rn−1) ∪G(Rn) ∪G(Rn+1) ◦G(Rn) ∪G(Rn+1) ◦G(Rn+1),
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we get, again by the inductive assumption, R2 ◦ · · · ◦Rn ◦Rn+1 ⊆ θ1, hence
a1 θ1 an+1. Putting

Ψ =

F (R1) ∪ F (R2) ∪ F (R3) ◦ F (R1) ∪ F (R2) ∪ F (R3) ∪ F (R4) ◦ . . .

◦ F (R1) ∪ F (R2) ∪ · · · ∪ F (Rn−1) ◦ F (R1) ∪ F (R2) ∪ · · · ∪ F (Rn)◦
R1 ∪R2 ∪ · · · ∪Rn−1 ∪Rn ∪Rn+1◦

G(R2) ∪G(R3) ∪ · · · ∪G(Rn+1) ◦G(R3) ∪G(R4) ∪ · · · ∪G(Rn+1) ◦ . . .

◦G(Rn−2) ∪ · · · ∪G(Rn+1) ◦G(Rn−1) ∪G(Rn) ∪G(Rn+1),

we compute

θ2 ∪ θ1 ⊆
(
F (R1) ∪ F (R2)

)
◦Ψ ◦

(
G(Rn) ∪G(Rn+1)

)
,

since (φ1 ◦φ2 ◦ · · · ◦φm)∪ (ξ1 ◦ ξ2 ◦ · · · ◦ ξm) ⊆ (φ1∪ ξ1)◦ (φ2∪ ξ2)◦ · · · ◦ (φm∪
ξm), for every m, and for arbitrary reflexive relations φ1, ξ1, . . . ; and since,
say, F (R1) ∪ F (R2) ∪ F (R2) ∪ F (R3) ⊆ F (R1) ∪ F (R2) ∪ F (R3). From the
above-displayed formula we get

θ2 ∪ θ1 ⊆ F (R1) ∪ F (R2) ◦Ψ ◦G(Rn) ∪G(Rn+1),

since the right-hand side is an admissible relation containing θ2∪θ1. Letting
θ = R2 ◦ · · · ◦ Rn, we have a1 θ an. Thus we get from Lemma 2.1(i) with
a = a0, b = a1, d = an and c = an+1:

(a0, an+1) ∈ F (R1) ◦ θ2 ∪ θ ∪ θ1 ◦G(Rn+1).

Notice that θ = R2◦· · ·◦Rn ⊆ R2◦· · ·◦Rn◦Rn+1 ⊆ θ1, thus θ2∪θ∪θ1 = θ2∪θ1.
Summing up,

(a0, an+1) ∈ F (R1) ◦ F (R1) ∪ F (R2) ◦Ψ ◦G(Rn) ∪G(Rn+1) ◦G(Rn+1).

We have proved

R1◦R2◦· · ·◦Rn+1 ⊆ F (R1)◦F (R1) ∪ F (R2)◦Ψ◦G(Rn) ∪G(Rn+1)◦G(Rn+1),

which is the statement of the theorem for n+ 1. �

Corollary 2.3. Suppose that A has a term Mal’cev modulo F and G. Then
for all reflexive admissible relations R, S,R1, R2, · · · ∈ Adm(A), the follow-
ing inclusions hold for every n ≥ 0:

(i) R ◦n+2 S ⊆ F (R)◦
(
F (R) ∪ F (S)

)n
◦R ∪ S ◦

(
G(R) ∪G(S)

)n
◦G(S•),

where S• = S if n is even, and S• = R if n is odd.

(ii) R+ S ⊆ (F (R) + F (S)) ◦R ∪ S ◦ (G(R) +G(S))

⊆ (F (R) + F (S)) ◦R ◦ S ◦ (G(R) +G(S))

(iii) Rn+1 ⊆ (F (R))n ◦R ◦ (G(R))n

(iv) R∗ ⊆ (F (R))∗ ◦R ◦ (G(R))∗
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(v) R ⊆ F (R) ◦R− ◦G(R)

(vi) R− ⊆ F (R−) ◦R ◦G(R−)

(vi′) (F (R) + F (R−)) ◦R ◦ (G(R) +G(R−)) =

(F (R) + F (R−)) ◦R− ◦ (G(R) +G(R−))

(vii) R+ S− ⊆ (F (R) + F (S−)) ◦R ∪ S ◦ (G(R) +G(S−)) ⊆
(F (R) + F (S−)) ◦R ◦ S ◦ (G(R) +G(S−))

(viii) Cg(R) ⊆ (F (R) + F (R−)) ◦R ◦ (G(R) +G(R−))

(ix) R1 +R2 + · · ·+Rn ⊆
(
F (R1) + F (R2) + · · ·+ F (Rn)

)
◦

R1 ∪R2 ∪ · · · ∪Rn ◦
(
G(R1) +G(R2) + · · ·+G(Rn)

)
(x) Cg(R1 ∪R2 ∪ · · · ∪Rn) ⊆(

F (R1) + F (R−1 ) + F (R2) + F (R−2 ) + · · ·+ F (Rn) + F (R−n )
)
◦

R1 ∪R2 ∪ · · · ∪Rn◦(
G(R1) +G(R−1 ) +G(R2) +G(R−2 ) + · · ·+G(Rn) +G(R−n )

)
If F (Ri) ⊆ Ri and G(Ri) ⊆ Gi for all i, then we get equality in (ix);

and, similarly, we get equality in (ii), (iv) and (vii) under the corresponding
assumptions.

If F (Ri) ⊆ Cg(Ri), F (R−i ) ⊆ Cg(Ri), G(Ri) ⊆ Cg(Gi) and G(R−i ) ⊆
Cg(Gi) for all i, then we get equality in (x). Similarly, we get equality in
(viii) under the corresponding assumptions.

Proof. (i) is the particular case of Theorem 2.2 in which R1 = R3 = R5 =
· · · = R, R2 = R4 = R6 = · · · = S. A direct proof of (i) can be found in [14,
Part III].

(ii) is immediate from (i).
(iii) and (iv) are the particular cases S = R of, respectively, (i) and (ii).

Notice that, for n = 0, (iii) becomes the trivial inclusion R ⊆ R.
(v) If aRb, then aF (R) t(a, b, b) R− t(a, a, b) G(R) b.
(vi) follows from (v), applied with R− in place of R, since R−− = R.
(vi′) is immediate from (v) and (vi).
(vii) By (vi) with S in place of R we get S− ⊆ F (S−)◦S ◦G(S−). Hence,

R ∪ S− ⊆ F (S−) ◦ (R ∪ S) ◦G(S−), and R ∪ S− ⊆ F (S−) ◦R ∪ S ◦G(S−),
since F (S−) and G(S−) are admissible.

By (ii) with S− in place of S, we get R + S− ⊆ (F (R) + F (S−)) ◦
R ∪ S− ◦ (G(R) + G(S−)) ⊆ (F (R) + F (S−)) ◦ F (S−) ◦ R ∪ S ◦ G(S−) ◦
(G(R) +G(S−)) = (F (R) + F (S−)) ◦R ∪ S ◦ (G(R) +G(S−)).

(viii) is immediate from (vii), since Cg(R) = R+R−, since R is admissible.
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(ix) follows from Theorem 2.2 in a way similar to (i), since if (a, b) ∈ R1 +
R2+· · ·+Rn then (a, b) ∈ R1◦R2 · · ·◦Rn◦R1◦R2 · · ·◦Rn◦R1◦R2 · · ·◦Rn◦. . . .

(x) Since Cg(R1 ∪R2 ∪ · · · ∪Rn) = R1 +R−1 +R2 +R−2 + · · ·+Rn +R−n ,
we get, by applying (ix):

Cg(R1 ∪R2 ∪ · · · ∪Rn) ⊆(
F (R1) + F (R−1 ) + F (R2) + F (R−2 ) + · · ·+ F (Rn) + F (R−n )

)
◦

R1 ∪R−1 ∪R2 ∪R−2 ∪ · · · ∪Rn ∪R
−
n ◦(

G(R1) +G(R−1 ) +G(R2) +G(R−2 ) + · · ·+G(Rn) +G(R−n )
)
.

By (vi) we get R−i ⊆ F (R−i ) ◦ Ri ◦ G(R−i ), for all i = 1, . . . , n. Hence,
R1 ∪ R−1 ∪ R2 ∪ R−2 ∪ · · · ∪ Rn ∪ R−n ⊆

(
F (R−1 ) + F (R−2 ) + · · · + F (R−n )

)
◦

(R1 ∪R2 ∪ · · · ∪Rn) ◦
(
G(R−1 ) +G(R−2 ) + · · ·+G(R−n )

)
. Now (x) follows as

in the proof of (vii).
The last two statements are trivial, since the Ri’s are reflexive and ad-

missible. �

3. Terms Mal’cev throughout a variety

We shall also be interested in the case when F and G are defined globally
on all algebras of some variety.

If V is a variety, let us say that F is a global operator on V for admissible
and reflexive relations if and only if to any algebra A ∈ V F assigns an
operation FA : Adm(A)→ Adm(A). In case there is no danger of confusion,
we shall omit the subscript A.

We say that a global operator on V satisfies the homomorphism property
if and only if whenever A,B ∈ V, φ : B → A is a homomorphism, and
R ∈ Adm(B) then φ(FB(R)) ⊆ FA(φ(R)). Here, φ(R) denotes the smallest
admissible and reflexive relation on A which contains {(φ(b), φ(c))|bR c}.

As noticed in [12, Part II, Remark 2.5], essentially all commutators defined
using matrices satisfy the homomorphism property φ([α, β]) ⊆ [φ(α), φ(β)].
A related homomorphism property can be used in order to characterize
the commutator in congruence modular varieties (see [2, Definition 3.1 and
Theorem 4.10]). In [10, Definition 3.4] and [14] we have defined commutator
operations for reflexive and admissible relations. Propositions 3.2 and 3.3
below show that these commutators (and many more) satisfy the homomor-
phism property φ([R, S]) ⊆ [φ(R), φ(S)], hence the next Theorem can be
applied, for example, in the case F (R) = G(R) = [R,R], where [, ] is one of
the commutators introduced in [14].

As usual, F is said to be monotone if and only if F (R) ⊆ F (S) whenever
R ⊆ S.

Theorem 3.1. Suppose that V is a variety, F , G are global operators on
V for admissible and reflexive relations, F , G are monotone and satisfy the
homomorphism property. Then the following are equivalent:
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(i) V has a term which is Mal’cev modulo FA and GA for every algebra
A in V.

(ii) Every A ∈ V has a term which is Mal’cev modulo FA and GA.
(iii) The free algebra X in V generated by 2 elements has a term which is

Mal’cev modulo FX and GX.
(iv) In the free algebra X in V generated by the two elements x, y there

is a ternary term t such that, if S is the smallest admissible and reflexive
relation of X containing (x, y), then

x FX(S) t(x, y, y) and t(x, x, y) GX(S) y.

(v) In every algebra A ∈ V and for every relation R ∈ Adm(A), the
following holds:

R ◦R ⊆ FA(R) ◦R ◦GA(R).
(vi) In the free algebra X in V generated by 3 elements the following holds:

R ◦R ⊆ FX(R) ◦R ◦GX(R),

for every relation R ∈ Adm(X).
(vii) In the free algebra X in V generated by the three elements x, y, z,

the following holds, where S is the smallest admissible and reflexive relation
of X containing both (x, y) and (y, z):

S ◦ S ⊆ FX(S) ◦ S ◦GX(S).

(viii) In every algebra A ∈ V and for every relation R ∈ Adm(A), the
following holds:

R ⊆ FA(R) ◦R− ◦GA(R).
(ix) In the free algebra X in V generated by 2 elements the following holds:

R ⊆ FX(R) ◦R− ◦GX(R),

for every relation R ∈ Adm(X).
(x) In the free algebra X in V generated by the two elements x, y the

following holds, where S is the smallest admissible and reflexive relation of
X containing (x, y):

S ⊆ FX(S) ◦ S− ◦GX(S).

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are trivial.
(iv) ⇒ (i) We claim that the term t given by (iv) is Mal’cev modulo FA

and GA, for every algebra A in V.
Indeed, suppose that A in V, a, b ∈ A, R ∈ Adm(A), and aR b.
Since X is the free algebra in V generated by {x, y}, there is a homo-

morphism φ : X → A such that φ(x) = a and φ(y) = b, and hence
φ(t(x, y, y)) = t(a, b, b), φ(t(x, x, y)) = t(a, a, b).

Since x FX(S) t(x, y, y), we have φ(x) φ(FX(S)) φ(t(x, y, y)), hence, by
the homomorphism property, a FA(φ(S)) t(a, b, b).

Since S is the admissible and reflexive relation generated by (x, y), and
φ is a homomorphism, then φ(S) is the admissible and reflexive relation
generated by (φ(x), φ(y)) = (a, b), and, since aR b, we have that φ(S) ⊆ R;



10 PAOLO LIPPARINI

thus, by the monotonicity of FA, we get FA(φ(S)) ⊆ FA(R) and, eventually,
a FA(R) t(a, b, b).

Exactly in the same way, we get t(a, a, b) GA(R) b, thus t is Mal’cev
modulo F and G for every algebra in V.

Having proved that (iv) ⇒ (i), we have that (i)-(iv) are all equivalent.
(i) ⇒ (v) is from Lemma 2.1(iv).
(v) ⇒ (vi) ⇒ (vii) are trivial.
(vii) ⇒ (i). Since xS y S z, we have (x, z) ∈ S ◦S, hence (x, z) ∈ FX(S) ◦

S ◦ GX(S), by assumption. This means that X has terms t1(x, y, z) and
t2(x, y, z) such that (x, t1(x, y, z)) ∈ FX(S), (t1(x, y, z), t2(x, y, z)) ∈ S and
(t2(x, y, z), z) ∈ GX(S).

Notice that S = {(u(x, y, z, x, y), u(x, y, z, y, z))|u a term of X}, since the
right-hand relation is reflexive, admissible, and contains (x, y) and (y, z);
moreover, every other reflexive admissible relation containing (x, y) and
(y, z) contains all pairs of the form (u(x, y, z, x, y), u(x, y, z, y, z)). Hence,
(t1(x, y, z), t2(x, y, z)) ∈ S means that X has a 5-ary term t′ such that
t1(x, y, z) = t′(x, y, z, x, y) and t′(x, y, z, y, z) = t2(x, y, z).

We claim that the ternary term t(x, y, z) = t′(x, y, z, x, z) is Mal’cev
modulo F and G throughout V. In order to prove it, first notice that
t1(x, y, y) = t(x, y, y), and t(y, y, z) = t2(y, y, z). Notice that, since X is
a free algebra, the above identities hold throughout V.

Suppose that A ∈ V, a, b ∈ A, R ∈ Adm(A), and aR b. There is a
homomorphism φ : X → A such that φ(x) = a, φ(y) = b, and φ(z) = b,
hence φ(t1(x, y, y)) = t1(a, b, b).

Since x FX(S) t1(x, y, z), we have φ(x) φ(FX(S)) φ(t1(x, y, z)), hence, by
the homomorphism property, a FA(φ(S)) t1(a, b, b).

Since S is the admissible and reflexive relation generated by (x, y), (y, z),
then φ(S) is the admissible and reflexive relation generated by (φ(x), φ(y)),
(φ(y), φ(z)), that is, generated by (a, b), (b, b), hence generated simply by
(a, b). Since aR b, we have that φ(S) ⊆ R; thus, by the monotonicity of FA,
we get FA(φ(S)) ⊆ FA(R) and, eventually, a FA(R) t1(a, b, b) = t(a, b, b).

Exactly in the same way, by considering the homomorphism ψ : X →
A satisfying ψ(x) = a, ψ(y) = a, and ψ(z) = b, we get t(a, a, b) =
t2(a, a, b) GA(R) b.

Thus t is Mal’cev modulo F and G for every algebra in V, and we have
closed our second cycle of equivalencies.

(i) ⇒ (viii) follows from Corollary 2.3(v).
(viii) ⇒ (ix) ⇒ (x) are trivial.
(x)⇒ (iv). Since xS y, then, by assumption, (x, y) ∈ FX(S)◦S−◦GX(S).

This means that there are binary terms t1 and t2 such that (x, t1(x, y)) ∈
FX(S), (t1(x, y), t2(x, y)) ∈ S−, and (t2(x, y), y) ∈ GX(S).

That (t1(x, y), t2(x, y)) ∈ S− means that there is a ternary term t such
that t1(x, y) = t(x, y, y) and t(x, x, y) = t2(x, y), since S = {(u(x, x, y),
u(x, y, y))|u a term of X} (cf., e.g., the proof of Theorem 1 (vi) ⇒ (vii) in
[14, Part II], or the proof of (vii) ⇒ (i) above).
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Thus, x FX(S) t1(x, y) = t(x, y, y), t(x, x, y) = t2(x, y) GX(S) y, that is,
the hypotheses of (iv) are satisfied. �

In the particular case when F (R) = G(R) = 0 constantly, Theorem 3.1
gives, via Mal’cev’s Theorem 1.1, the well known result that a variety V is
congruence permutable if and only if R ◦ R ⊆ R holds in V for admissible
and reflexive relations, if and only if R ⊆ R− holds in V for admissible and
reflexive relations.

Theorem 3.1 generalizes Theorem 2.2(i)⇔(ii)⇔(ii’), Remark 2.4 and parts
of Theorem 3.2 in [12, Part II]. Notice that, for example, condition (viii)
in Theorem 3.1 (for F (R) = G(R) = [Cg(R), Cg(R)]) implies condition
(vii) in [12, Part II, Theorem 3.2]. However, the equivalence of certain
conditions in [12, Part II, Theorem 3.2] depends on the actual definitions of
the commutators dealt there.

We now show that the commutators defined in [10, 14] satisfy the ho-
momorphism property. Actually, we shall deal with n-ary global oper-
ators on V, that is, operators depending on n-variables (as above, each
variable is intended to be an admissible and reflexive relation). In this
general situation, the homomorphism property reads φ(FB(R1, . . . , Rn)) ⊆
FA(φ(R1), . . . , φ(Rn)), for every A,B ∈ V, homomorphism φ : B→ A, and
R1, . . . , Rn ∈ Adm(B). Moreover, F is monotone if and only if R1 ⊆ S1,
. . . , Rn ⊆ Sn imply F (R1, . . . , Rn) ⊆ F (S1, . . . , Sn).

If A is any algebra, and R, S are compatible and reflexive relations,
M(R, S) is defined to be the set of all matrices of the form∣∣∣∣ t(ā, b̄) t(ā, b̄′)

t(ā′, b̄) t(ā′, b̄′)

∣∣∣∣ ,
where ā, ā′ ∈ Ah, b̄, b̄′ ∈ Ak, for some h, k ≥ 0, t is an h + k-ary term
operation of A, and āR ā′, b̄S b̄′. Here, āR ā′ means a1 R a′1, a2 R a′2, . . . .

For R, S, T, U compatible and reflexive relations, let

K(R, S;U ;T ) =
{

(z, w)|
∣∣∣∣x y
z w

∣∣∣∣ ∈M(R, S), xU z, xT y,

}
.

K(R, S; 1;T ) is denoted by K(R, S;T ) in [14], and various commutators
for relations are constructed there from K(R, S;T ).

Proposition 3.2. For every variety V, K(R, S;U ;T ) and K(R, S;T ) are
monotone global operators on V satisfying the homomorphism property.

Proof. We shall give the proof for K(R, S;U ;T ). The proof for K(R, S;T )
is similar and simpler (and, anyway, is the particular case U = 1 constantly).
The operators are trivially monotone.

We now prove that K(R, S;U ;T ) satisfies the homomorphism property.
Suppose that A,B ∈ V, φ : B → A, R, S, T, U ∈ Adm(B), x′, w′ ∈ A, and
(x′, w′) ∈ φ(K(R, S;U ;T )). We have to show that (x′, w′) ∈ K(φ(R), φ(S);
φ(U);φ(T )).
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That (x′, w′) ∈ φ(K(R, S;U ;T )) means that B has couples (x1, w1), . . . ,
(xm, wm) ∈ K(R, S;U ;T ) such that, in A, (x′, w′) belongs to the admissible
and reflexive relation generated by (φ(x1), φ(w1)), . . . , (φ(xm), φ(wm)). This
means that A has anm-ary polynomial p such that x′ = p(φ(x1), . . . , φ(xm)),
and w′ = p(φ(w1), . . . , φ(wm)).

Since (xi, wi) ∈ K(R, S;U ;T ) for every i = 1, . . .m, then, by the defini-
tion of K(R, S;U ;T ), there are matrices∣∣∣∣ti(āi, b̄i) ti(āi, b̄′i)

ti(ā′i, b̄i) ti(ā′i, b̄
′
i)

∣∣∣∣
such that āi R ā′i, b̄i S b̄′i, ti(āi, b̄i) T ti(āi, b̄′i), ti(āi, b̄i) U ti(ā′i, b̄i), and xi =
ti(ā′i, b̄i), wi = ti(ā′i, b̄

′
i).

For sake of brevity, let us write ti(φāi, φb̄i) in place of ti(φ(ai1), φ(ai2), . . . ,
φ(bi1), φ(bi2), . . . ). The matrix∣∣∣∣p(t1(φā1, φb̄1), . . . , tm(φām, φb̄m)

)
p
(
t1(φā1, φb̄

′
1), . . . , tm(φām, φb̄′m)

)
p
(
t1(φā′1, φb̄1), . . . , tm(φā′m, φb̄m)

)
p
(
t1(φā′1, φb̄

′
1), . . . , tm(φā′m, φb̄

′
m)
)∣∣∣∣

belongs to M(φ(R), φ(S)); moreover, since φ is a homomorphism, the above
matrix equals∣∣∣∣p(φ(t1(ā1, b̄1)), . . . , φ(tm(ām, b̄m))

)
p
(
φ(t1(ā1, b̄

′
1)), . . . , φ(tm(ām, b̄′m))

)
p
(
φ(t1(ā′1, b̄1)), . . . , φ(tm(ā′m, b̄m))

)
p
(
φ(t1(ā′1, b̄

′
1)), . . . , φ(tm(ā′m, b̄

′
m))
)∣∣∣∣

Since ti(āi, b̄i) T ti(āi, b̄′i), and since T is admissible, the elements in the
upper row of the matrix are φ(T )-related; similarly, the elements in the left-
hand column are φ(U)-related. Since xi = ti(ā′i, b̄i), and wi = ti(ā′i, b̄

′
i), then

the second row of the matrix consists of the elements p(φ(x1), . . . , φ(xm)) =
x′, and p(φ(w1), . . . , φ(wm)) = w′. This means that the matrix witnesses
that (x′, w′) ∈ K(φ(R), φ(S);φ(U);φ(T )). �

Proposition 3.3. If V is a variety, F1, F2, . . . are n-ary global operators
on V for admissible and reflexive relations, and F1, F2, . . . satisfy the homo-
morphism property, then so do the following operators:

(i) G1(R̄) = F1(R̄) ◦ F2(R̄);
(ii) G2(R̄) = F1(R̄) ∩ F2(R̄);
(iii) G3(R̄) = F1(R̄) ∪ F2(R̄);
(iv) G4(R̄) = F1(R̄) + F2(R̄);
(v) G5(R̄) =

(
F1(R̄)

)∗;
(vi) G6(R̄) = K

(
F1(R̄), F2(R̄);F3(R̄);F4(R̄)

)
.

(vii) G7(R̄) = K
(
F1(R̄), F2(R̄);F4(R̄)

)
.

If, in addition, F1, F2, . . . are monotone, then so are G1, . . . , G7.

Proof. The proof is similar to the proof of Proposition 3.2, in many cases
simpler. �

Since, trivially, the constant operators F (R̄) = 0 and F (R̄) = 1, the op-
erator F (R) = R−, as well as the projections, are monotone and satisfy
the homomorphism property, we get from Proposition 3.3(vii)(v) that, for
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example, F (R, S) = K(R, S; 0)∗ is monotone and satisfies the homomor-
phism property. Similarly, Proposition 3.3 can be iterated in order to show
that all the commutators introduced in [14] are monotone and satisfy the
homomorphism property. Notice also that condition (vi) in Proposition 3.3
is more general than Proposition 3.2: just take n = 4, and let each Fi be
the projection onto the i-th coordinate.

References
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