The non-equivalence of two definitions of selective pseudocompactness

PAOLO LIPPARINI

ABSTRACT. We show that two possible definitions of selective pseudocompactness are not equivalent in the class of T_1 topological spaces.

Let X be a topological space. The following conditions on X have been considered in the literature.

- (A) For every sequence $(U_n)_{n \in \omega}$ of pairwise disjoint non-empty open subsets of X, there is a sequence $(x_n)_{n \in \omega}$ of elements of X such that $x_n \in U_n$, for every $n \in \omega$, and the set $\{x_n \mid n \in \omega\}$ is not closed in X.
- (B) For every sequence $(U_n)_{n\in\omega}$ of non-empty open subsets of X, there is a sequence $(x_n)_{n\in\omega}$ of elements of X such that $x_n \in U_n$, for every $n \in \omega$, and there is $y \in X$ such that, for every open neighborhood V of y, the set $\{n \in \omega \mid x_n \in V\}$ is infinite.

The above conditions are, respectively, Conditions (i) and (iii) in Theorem 2.1 in Dorantes-Aldama and Shakhmatov [2], to which we refer for motivations, history, comments on terminology and further references. Other works on the subject include Angoa, Ortiz-Castillo and Tamariz-Mascarúa [1], García-Ferreira and Ortiz-Castillo [3], García-Ferreira and Tomita [4] and possibly others. By the way, let us mention that Conditions (iii) and (iv) in Theorem 2.1 in [2] are equivalent for every topological space (no separation axiom needed), since the proof that (iii) implies (iv) in [2] uses no separation axiom, and (iv) implies (iii) trivially.

It is proved in [2] that (A) and (B) are equivalent in the class of Tychonoff spaces. We provide a counterexample showing that (A) does not imply (B) in the class of T_1 spaces.

Let $X = \omega \times \omega$ be the product of two copies of the set of natural numbers and, for every $n \in \omega$, let $X_n = \{n\} \times \omega$. Let $\tau = \{\emptyset\} \cup \{A \subseteq X \mid X_n \setminus A \text{ is finite, for all but finitely many } n \in \omega\}$. In other words, a nonempty subset A of X belongs to τ if and only if $A \cap X_n$ is cofinite in X_n , for all but finitely many $n \in \omega$.

Theorem 1. (X, τ) is a T_1 topological space which satisfies (A) but does not satisfy (B).

 $^{2010\} Mathematics\ Subject\ Classification:\ 54 D20.$

Key words and phrases: selectively pseudocompact topological space.

Work partially supported by PRIN 2012 "Logica, Modelli e Insiemi". Work performed under the auspices of G.N.S.A.G.A.

Paolo Lipparini

Proof. It is obvious that (X,τ) is a T_1 topological space. Moreover, (X,τ) vacuously satisfies (A), since any two nonempty sets in τ have nonempty intersection.

It remains to show that (X, τ) does not satisfy (B). For each $n \in \omega$, consider the family $(U_n)_{n\in\omega}$, where $U_n = [n,\infty) \times \omega = \bigcup_{m>n} X_m$. Each U_n belongs to τ . Suppose that $(x_n)_{n \in \omega}$ is a sequence of elements of X such that $x_n \in U_n$, for $n \in \omega$. For every $n \in \omega$, $\{m \in \omega \mid x_m \in X_n\}$ is finite, since if m > n, then $U_m \cap X_n = \emptyset$, hence $x_m \notin X_n$, so each X_n can contain only finitely many x_m 's. For every $n \in \omega$, let $\overline{m}(n) = \sup\{m \in \omega \mid x_m \in X_n\}$, where we let $\sup \emptyset = 0$. Furthermore, put $Y_n = \{n\} \times (\bar{m}(n), \infty)$ and $Y = \bigcup_{n \in \omega} Y_n$. By construction, $Y \cap \{x_n \mid n \in \omega\} = \emptyset$. Hence, for every $y \in X$, $V = \{y\} \cup Y$ is an open neighborhood of y such that $V \cap \{x_n \mid n \in \omega\} \subseteq \{y\}$. Hence (B) fails.

The ideas from [1, 2, 3, 4] of introducing selective pseudocompactness properties (sometimes in different terminology) can be extended to the general framework presented in [5, 6]. If X is a topological space, I is a set, $(Y_i)_{i \in I}$ is an *I*-indexed sequence of subsets of X and F is a filter over I, a point $x \in X$ is said to be an *F*-limit point of the sequence $(Y_i)_{i \in I}$ if $\{i \in I \mid Y_i \cap U \neq \emptyset\} \in F$, for every open neighborhood U of x. As usual, if $Y_i = \{x_i\}$ is a singleton, for each $i \in I$, we simply write that some x as above is a limit point of $(x_i)_{i \in I}$. If \mathcal{P} is a family of filters over I, we defined in [6, Section 6] a space X to be sequencewise \mathcal{P} -pseudocompact if, for every *I*-indexed sequence $(U_i)_{i \in I}$ of nonempty open subsets of X, there is $F \in \mathcal{P}$ such that $(U_i)_{i \in I}$ has an F-limit point. The next definition presents the "selective" stronger variant.

Definition 2. Let \mathcal{P} be a family of filters over some set I. A topological space X is selectively sequencewise \mathcal{P} -pseudocompact if, for every I-indexed sequence $(U_i)_{i \in I}$ of nonempty open subsets of X, there is a sequence $(x_i)_{i \in I}$ of elements of X such that $x_i \in U_i$, for every $i \in I$, and there is $F \in \mathcal{P}$ such that $(x_i)_{i \in I}$ has an *F*-limit point.

The arguments from [5, 6] show that property (B), as well as many of the properties discussed in [1, 2, 3, 4] can be obtained as special cases of Definition 2.

We have not yet performed a completely accurate search in order to check whether some of the results presented here are already known. Credits for already known results should go to the original discoverers.

References

[1] J. Angoa, Y. F. Ortiz-Castillo, A. Tamariz-Mascarúa, Ultrafilters and properties related to compactness, Topology Proc. 43 (2014), 183-200.

^[2] A. Dorantes-Aldama, D. Shakhmatov, Selective sequential pseudocompactness, Topology Appl. 222 (2017), 53-69.

^[3] S. García-Ferreira, Y. F. Ortiz-Castillo, Strong pseudocompact properties, Comment. Math. Univ. Carolin. 55 (2014), 101-109.

- [4] S. García-Ferreira, A. H. Tomita, A pseudocompact group which is not strongly pseudocompact, Topology Appl. 192 (2015), 138–144.
- [5] P. Lipparini, A very general covering property, Comment. Math. Univ. Carolin. 53 (2012), 281–306.

 [6] P. Lipparini, Topological spaces compact with respect to a set of filters, Cent. Eur. J. Math. 12 (2014), 991–999.

PAOLO LIPPARINI

Dipartimento Selettivo di Matematica, Viale della Ricerca Scientifica, Università di Roma "Tor Vergata", I-00133 ROME ITALY