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EVERY WEAKLY INITIALLY m-COMPACT

TOPOLOGICAL SPACE IS mPCAP

PAOLO LIPPARINI

Abstract. The statement in the title solves a problem raised by
T. Retta. We also present a variation of the result in terms of
[µ, κ]-compactness.

Let m be an infinite cardinal. A topological space is weakly initially

m-compact if and only if every open cover of cardinality ≤ m has a
finite subset with a dense union.
A topological space X is said to be mpcap [R] if every family of

≤ m open sets in X has a complete accumulation point, i. e., a point
each neighborhood of which meets κ members of the family, where κ

is the cardinality of the family. The acronym mpcap stands for m-

pseudocompact in the sense of complete accumulation points.
The next Theorem solves the last problem in [R].

Theorem 1. For every infinite cardinal m, every weakly initially m-

compact topological space is mpcap.

Before proving the theorem, we recall some known facts about the
notions involved in its statement.
The notion of weak initial m-compactness has been introduced by

Froĺık [F] under the name almost m-compactness, and has been studied
by various authors under various names, such as weak-m-ℵ0-compactness,
or O-[ω,m]-compactness. See [L2] for references. By taking comple-
ments, it is trivial to see that a topological spaceX is weakly initiallym-
compact if and only if the following holds. For every sequence (Cα)α∈m
of closed sets of X , if, for every finite F ⊆ m, there exists a nonempty
open set OF of X such that

⋂
α∈F Cα ⊇ OF , then

⋂
α∈m Cα 6= ∅.

A topological space is said to be pseudo-(κ, λ)-compact [CN] if and
only if for every λ-indexed sequence (Oα)α∈λ of nonempty open sets of
X , there is x ∈ X such that, for every neighborhood U of x, |{α ∈ λ |
U ∩ Oα 6= ∅}| ≥ κ.
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T. Retta [R, Theorem 3(d)] proved that a space is mpcap if and only
if it is pseudo-(κ, κ)-compact for each κ ≤ m.

Proof of the theorem. If κ ≤ m, then trivially every weakly initially
m-compact topological space is weakly initially κ-compact. Thus if
we prove that, for every infinite cardinal κ, every weakly initially κ-
compact topological space is pseudo-(κ, κ)-compact, then we have that
every weakly initially m-compact topological space is pseudo-(κ, κ)-
compact, for every κ ≤ m, and we are done by the mentioned result
from [R, Theorem 3(d)].
Hence let X be a weakly initially κ-compact topological space, and

let (Oα)α∈κ be a sequence of nonempty open sets of X . Let Sω(κ) be
the set of all finite subsets of κ. Since |Sω(κ)| = κ, we can reindex
the sequence (Oα)α∈κ as (OF )F∈Sω(κ). For every α ∈ κ, let Cα =
⋃
{OF | F ∈ Sω(κ), α ∈ F}. For every finite subset F of κ, we have

that
⋂

α∈F Cα contains the nonempty open set OF . By weak initial
κ-compactness,

⋂
α∈κ Cα 6= ∅.

Let x ∈
⋂

α∈κ Cα. We are going to show that, for every neighborhood
U of x, we have that |{F ∈ Sω(κ) | U∩OF 6= ∅}| = κ, thus X is pseudo-
(κ, κ)-compact, and the theorem is proved.
So, let U be a neighborhood of x, and suppose by contradiction that

the cardinality of H = {F ∈ Sω(κ) | U ∩ OF 6= ∅} is < κ. Then
|
⋃
H| < κ. Choose α ∈ κ such that α 6∈

⋃
H . Thus if F ∈ Sω(κ)

and α ∈ F , then F 6∈ H , hence U ∩ OF = ∅. Then we also get
U ∩

⋃
{OF | F ∈ Sω(κ), α ∈ F} = ∅, hence U ∩ Cα = ∅, since Cα =

⋃
{OF | F ∈ Sω(κ), α ∈ F}. In particular, x 6∈ Cα. We have reached a

contradiction, and the theorem is proved. �

In fact, our argument gives something more. Let us say that a topo-
logical space is weakly [λ, κ]-compact if and only if every open cover of
cardinality ≤ κ has a subset of cardinality < λ with a dense union.
This notion has been studied in [L1, L2], sometimes under the name
O-[λ, κ]-compactness.
For κ ≥ λ ≥ µ, let COV(κ, λ, µ) denote the minimal cardinality

of a family of subsets of κ, each of cardinality < λ, such that every
subset of κ of cardinality < µ is contained in at least one set of the
family. Highly non trivial results about COV(κ, λ, µ) are proved in
[S] under the terminology cov(κ, λ, µ, 2). See [S, II, Definition 5.1].
Notice that, trivially, COV(κ, λ, µ) ≤ |Sµ(κ)| = supµ′<µ κ

µ′

. In partic-
ular, COV(κ, λ, ω) = κ, hence the next Proposition is stronger than
Theorem 1, via [R, Theorem 3(d)].



WEAKLY INITIALLY COMPACT IMPLIES MPCAP 3

Proposition 2. Suppose that κ ≥ λ ≥ µ are infinite cardinals, and

either κ > λ, or κ is regular. Then every weakly [µ, κ]-compact topo-

logical space is pseudo-(κ,COV(κ, λ, µ))-compact.

Proof. The proof is essentially the same as the proof of Theorem 1.
We shall only point out the differences. Let K be a subset of Sλ(κ)
witnessing |K| = COV(κ, λ, µ). Suppose that X is a weakly [µ, κ]-
compact topological space and let (OZ)Z∈K be a sequence of nonempty

open sets of X . For α ∈ κ, put Cα =
⋃
{OZ | Z ∈ K,α ∈ Z}. If

W ⊆ κ, and |W | < µ, then there is Z ∈ K such that Z ⊇ W , so that⋂
α∈W Cα ⊇

⋂
α∈Z Cα contains the nonempty open set OZ , hence, by

weak [µ, κ]-compactness,
⋂

α∈κCα 6= ∅.
Now notice that the union of < κ sets, each of cardinality < λ, has

cardinality < κ, and this is the only thing that is used in the final part
of the proof of Theorem 1. �

For κ a regular cardinal, weak [κ, κ]-compactness is equivalent to
pseudo-(κ, κ)-compactness, as proved in [L1] under different terminol-
ogy.
By replacing everywhere nonempty open sets by points in Propo-

sition 2, we get the following result which, in the present generality,
might be new.

Proposition 3. Suppose that κ ≥ λ ≥ µ are infinite cardinals, and

either κ > λ, or κ is regular, and let ν = COV(κ, λ, µ). If X is a [µ, κ]-
compact topological space, then, for every ν-indexed family (xβ)β∈ν of

elements of X, there is some element x ∈ X such that, for every neigh-

borhood U of x, the set {β ∈ ν | xβ ∈ U} has cardinality ≥ κ.

A common generalization of both Propositions 2 and 3 can be given
along the abstract framework presented in [L1, L2]. IfX is a topological
space, and F is a family of subsets of X , we say that X is F -[µ, κ]-
compact if and only if the following holds. For every sequence (Cα)α∈κ
of closed sets of X , if, for every Z ⊆ κ with |Z| < µ, there exists a set
FZ ∈ F such that

⋂
α∈Z Cα ⊇ FZ , then

⋂
α∈κ Cα 6= ∅.

Proposition 4. Suppose that κ ≥ λ ≥ µ are infinite cardinals, and

either κ > λ, or κ is regular, and let ν = COV(κ, λ, µ). Suppose that

X is a topological space, and F is a family of subsets of X. If X is

F-[µ, κ]-compact, then, for every ν-indexed family (Fβ)β∈ν of elements

of F , there is some element x ∈ X such that, for every neighborhood

U of x, the set {β ∈ ν | Fβ ∩ U 6= ∅} has cardinality ≥ κ.

Proposition 2 is the particular case of Proposition 4 when we take
F to be the family of all nonempty subsets of X . Proposition 3 is the
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particular case of Proposition 4 when we take F to be the family of all
singletons of X .

References

[CN] W. Comfort, S. Negrepontis, Chain conditions in topology, Cambridge Tracts
in Mathematics 79, Cambridge University Press, Cambridge-New York (1982).
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