EVERY WEAKLY INITIALLY m-COMPACT TOPOLOGICAL SPACE IS mPCAP

PAOLO LIPPARINI

ABSTRACT. The statement in the title solves a problem raised by T. Retta. We also present a variation of the result in terms of $[\mu, \kappa]$ -compactness.

Let \mathfrak{m} be an infinite cardinal. A topological space is *weakly initially* \mathfrak{m} -compact if and only if every open cover of cardinality $\leq \mathfrak{m}$ has a finite subset with a dense union.

A topological space X is said to be $\mathfrak{m}pcap$ [R] if every family of $\leq \mathfrak{m}$ open sets in X has a complete accumulation point, i. e., a point each neighborhood of which meets κ members of the family, where κ is the cardinality of the family. The acronym $\mathfrak{m}pcap$ stands for \mathfrak{m} -pseudocompact in the sense of complete accumulation points.

The next Theorem solves the last problem in [R].

Theorem 1. For every infinite cardinal \mathfrak{m} , every weakly initially \mathfrak{m} -compact topological space is \mathfrak{m} pcap.

Before proving the theorem, we recall some known facts about the notions involved in its statement.

The notion of weak initial \mathfrak{m} -compactness has been introduced by Frolík [F] under the name almost \mathfrak{m} -compactness, and has been studied by various authors under various names, such as weak- \mathfrak{m} - \aleph_0 -compactness, or \mathcal{O} -[ω, \mathfrak{m}]-compactness. See [L2] for references. By taking complements, it is trivial to see that a topological space X is weakly initially \mathfrak{m} compact if and only if the following holds. For every sequence $(C_{\alpha})_{\alpha \in \mathfrak{m}}$ of closed sets of X, if, for every finite $F \subseteq \mathfrak{m}$, there exists a nonempty open set \mathcal{O}_F of X such that $\bigcap_{\alpha \in F} C_{\alpha} \supseteq \mathcal{O}_F$, then $\bigcap_{\alpha \in \mathfrak{m}} C_{\alpha} \neq \emptyset$.

A topological space is said to be *pseudo*- (κ, λ) -*compact* [CN] if and only if for every λ -indexed sequence $(O_{\alpha})_{\alpha \in \lambda}$ of nonempty open sets of X, there is $x \in X$ such that, for every neighborhood U of x, $|\{\alpha \in \lambda \mid U \cap O_{\alpha} \neq \emptyset\}| \geq \kappa$.

²⁰⁰⁰ Mathematics Subject Classification. 54D20, 54A20.

Key words and phrases. Weak initial compactness, mpcap, $[\mu, \kappa]$ -compactness, pseudo- (κ, λ) -compactness.

PAOLO LIPPARINI

T. Retta [R, Theorem 3(d)] proved that a space is \mathfrak{m} pcap if and only if it is pseudo- (κ, κ) -compact for each $\kappa \leq \mathfrak{m}$.

Proof of the theorem. If $\kappa \leq \mathfrak{m}$, then trivially every weakly initially \mathfrak{m} -compact topological space is weakly initially κ -compact. Thus if we prove that, for every infinite cardinal κ , every weakly initially κ -compact topological space is pseudo- (κ, κ) -compact, then we have that every weakly initially \mathfrak{m} -compact topological space is pseudo- (κ, κ) -compact, for every $\kappa \leq \mathfrak{m}$, and we are done by the mentioned result from [R, Theorem 3(d)].

Hence let X be a weakly initially κ -compact topological space, and let $(O_{\alpha})_{\alpha \in \kappa}$ be a sequence of nonempty open sets of X. Let $S_{\omega}(\kappa)$ be the set of all finite subsets of κ . Since $|S_{\omega}(\kappa)| = \kappa$, we can reindex the sequence $(O_{\alpha})_{\alpha \in \kappa}$ as $(O_F)_{F \in S_{\omega}(\kappa)}$. For every $\alpha \in \kappa$, let $C_{\alpha} = \bigcup \{O_F \mid F \in S_{\omega}(\kappa), \alpha \in F\}$. For every finite subset F of κ , we have that $\bigcap_{\alpha \in F} C_{\alpha}$ contains the nonempty open set O_F . By weak initial κ -compactness, $\bigcap_{\alpha \in \kappa} C_{\alpha} \neq \emptyset$.

Let $x \in \bigcap_{\alpha \in \kappa} C_{\alpha}$. We are going to show that, for every neighborhood U of x, we have that $|\{F \in S_{\omega}(\kappa) \mid U \cap O_F \neq \emptyset\}| = \kappa$, thus X is pseudo- (κ, κ) -compact, and the theorem is proved.

So, let U be a neighborhood of x, and suppose by contradiction that the cardinality of $H = \{F \in S_{\omega}(\kappa) \mid U \cap O_F \neq \emptyset\}$ is $< \kappa$. Then $|\bigcup H| < \kappa$. Choose $\alpha \in \kappa$ such that $\alpha \notin \bigcup H$. Thus if $F \in S_{\omega}(\kappa)$ and $\alpha \in F$, then $F \notin H$, hence $U \cap O_F = \emptyset$. Then we also get $U \cap \bigcup \{O_F \mid F \in S_{\omega}(\kappa), \alpha \in F\} = \emptyset$, hence $U \cap C_{\alpha} = \emptyset$, since $C_{\alpha} = \bigcup \{O_F \mid F \in S_{\omega}(\kappa), \alpha \in F\}$. In particular, $x \notin C_{\alpha}$. We have reached a contradiction, and the theorem is proved. \Box

In fact, our argument gives something more. Let us say that a topological space is weakly $[\lambda, \kappa]$ -compact if and only if every open cover of cardinality $\leq \kappa$ has a subset of cardinality $< \lambda$ with a dense union. This notion has been studied in [L1, L2], sometimes under the name \mathcal{O} - $[\lambda, \kappa]$ -compactness.

For $\kappa \geq \lambda \geq \mu$, let $\operatorname{COV}(\kappa, \lambda, \mu)$ denote the minimal cardinality of a family of subsets of κ , each of cardinality $< \lambda$, such that every subset of κ of cardinality $< \mu$ is contained in at least one set of the family. Highly non trivial results about $\operatorname{COV}(\kappa, \lambda, \mu)$ are proved in [S] under the terminology $\operatorname{cov}(\kappa, \lambda, \mu, 2)$. See [S, II, Definition 5.1]. Notice that, trivially, $\operatorname{COV}(\kappa, \lambda, \mu) \leq |S_{\mu}(\kappa)| = \sup_{\mu' < \mu} \kappa^{\mu'}$. In particular, $\operatorname{COV}(\kappa, \lambda, \omega) = \kappa$, hence the next Proposition is stronger than Theorem 1, via [R, Theorem 3(d)].

 $\mathbf{2}$

Proposition 2. Suppose that $\kappa \geq \lambda \geq \mu$ are infinite cardinals, and either $\kappa > \lambda$, or κ is regular. Then every weakly $[\mu, \kappa]$ -compact topological space is pseudo- $(\kappa, \text{COV}(\kappa, \lambda, \mu))$ -compact.

Proof. The proof is essentially the same as the proof of Theorem 1. We shall only point out the differences. Let K be a subset of $S_{\lambda}(\kappa)$ witnessing $|K| = \operatorname{COV}(\kappa, \lambda, \mu)$. Suppose that X is a weakly $[\mu, \kappa]$ compact topological space and let $(O_Z)_{Z \in K}$ be a sequence of nonempty open sets of X. For $\alpha \in \kappa$, put $C_{\alpha} = \bigcup \{O_Z \mid Z \in K, \alpha \in Z\}$. If $W \subseteq \kappa$, and $|W| < \mu$, then there is $Z \in K$ such that $Z \supseteq W$, so that $\bigcap_{\alpha \in W} C_{\alpha} \supseteq \bigcap_{\alpha \in Z} C_{\alpha}$ contains the nonempty open set O_Z , hence, by weak $[\mu, \kappa]$ -compactness, $\bigcap_{\alpha \in \kappa} C_{\alpha} \neq \emptyset$.

Now notice that the union of $< \kappa$ sets, each of cardinality $< \lambda$, has cardinality $< \kappa$, and this is the only thing that is used in the final part of the proof of Theorem 1.

For κ a regular cardinal, weak $[\kappa, \kappa]$ -compactness is equivalent to pseudo- (κ, κ) -compactness, as proved in [L1] under different terminology.

By replacing everywhere nonempty open sets by points in Proposition 2, we get the following result which, in the present generality, might be new.

Proposition 3. Suppose that $\kappa \geq \lambda \geq \mu$ are infinite cardinals, and either $\kappa > \lambda$, or κ is regular, and let $\nu = \text{COV}(\kappa, \lambda, \mu)$. If X is a $[\mu, \kappa]$ compact topological space, then, for every ν -indexed family $(x_{\beta})_{\beta \in \nu}$ of elements of X, there is some element $x \in X$ such that, for every neighborhood U of x, the set $\{\beta \in \nu \mid x_{\beta} \in U\}$ has cardinality $\geq \kappa$.

A common generalization of both Propositions 2 and 3 can be given along the abstract framework presented in [L1, L2]. If X is a topological space, and \mathcal{F} is a family of subsets of X, we say that X is \mathcal{F} - $[\mu, \kappa]$ compact if and only if the following holds. For every sequence $(C_{\alpha})_{\alpha \in \kappa}$ of closed sets of X, if, for every $Z \subseteq \kappa$ with $|Z| < \mu$, there exists a set $F_Z \in \mathcal{F}$ such that $\bigcap_{\alpha \in Z} C_{\alpha} \supseteq F_Z$, then $\bigcap_{\alpha \in \kappa} C_{\alpha} \neq \emptyset$.

Proposition 4. Suppose that $\kappa \geq \lambda \geq \mu$ are infinite cardinals, and either $\kappa > \lambda$, or κ is regular, and let $\nu = \text{COV}(\kappa, \lambda, \mu)$. Suppose that X is a topological space, and \mathcal{F} is a family of subsets of X. If X is \mathcal{F} - $[\mu, \kappa]$ -compact, then, for every ν -indexed family $(F_{\beta})_{\beta \in \nu}$ of elements of \mathcal{F} , there is some element $x \in X$ such that, for every neighborhood U of x, the set $\{\beta \in \nu \mid F_{\beta} \cap U \neq \emptyset\}$ has cardinality $\geq \kappa$.

Proposition 2 is the particular case of Proposition 4 when we take \mathcal{F} to be the family of all nonempty subsets of X. Proposition 3 is the

PAOLO LIPPARINI

particular case of Proposition 4 when we take \mathcal{F} to be the family of all singletons of X.

References

- [CN] W. Comfort, S. Negrepontis, *Chain conditions in topology*, Cambridge Tracts in Mathematics **79**, Cambridge University Press, Cambridge-New York (1982).
- [F] Z. Frolík, Generalisations of compact and Lindelöf spaces (Russian, with expanded English summary), Czechoslovak Math. J. 9 (1959), 172–217.
- [L1] P. Lipparini, Some compactness properties related to pseudocompactness and ultrafilter convergence, submitted, preprint available at arXiv:0907.0602 (2009).
- [L2] P. Lipparini, More generalizations of pseudocompactness, submitted, preprint available at arXiv:1003.6058 (2010)
- [R] T. Retta, Some cardinal generalizations of pseudocompactness, Czechoslovak Math. J. 43 (1993), 385–390.
- [S] S. Shelah, Cardinal arithmetic, Oxford Logic Guides, Vol. 29, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1994).

DIPARTIMENTO DI MATEMATICA, VIALIS RICERCÆSCIENTIFICÆ, II UNIVERSITÀ DI ROMA (TOR VERGATA), I-00133 ROME ITALY

URL: http://www.mat.uniroma2.it/~lipparin