MORE GENERALIZATIONS OF
PSEUDOCOMPACTNESS

PAOLO LIPPARINI

ABSTRACT. We introduce a covering notion depending on two car-
dinals, which we call O-[u, A]-compactness, and which encompasses
both pseudocompactness and many other generalizations of pseu-
docompactness. For Tychonoff spaces, pseudocompactness turns
out to be equivalent to O-|w, w]-compactness.

We provide several characterizations of O-[u, A]-compactness,
and we discuss its connection with D-pseudocompactness, for D
an ultrafilter. We analyze the behaviour of the above notions with
respect to products.

Finally, we show that our results hold in a more general frame-
work, in which compactness properties are defined relative to an
arbitrary family of subsets of some topological space X.

1. INTRODUCTION

As well-known, there are many equivalent reformulations of pseudo-
compactness. See, e. g. [St]. Various generalizations and extensions of
pseudocompactness have been introduced by many authors; see, among
others, [Ar, CoNe, Fr, Ga, GiSa, Gl, Ke, Li4, Re, Sa, SaSt, ScSt, St,
StVa]. We introduce here some more pseudocompactness-like prop-
erties, focusing mainly on notions related to covering properties and
ultrafilter convergence.

The most general form of our notion depends on two cardinals u
and \; we call it O-[u, \]-compactness. It generalizes and unifies sev-
eral pseudocompactness-like notions appeared before. See Remark 2.3.

1991 Mathematics Subject Classification. Primary 54D20; Secondary 54A20,
54B10.

Key words and phrases. Pseudocompactness, O-[u, A]-compactness, D-
pseudocompactness, D-limits, in products, regular ultrafilter, family of subsets of
a topological space.

The author has received support from MPI and GNSAGA. We wish to express
our gratitude to X. Caicedo and S. Garcia-Ferreira for stimulating discussions and
correspondence.

1



2 GENERALIZATIONS OF PSEUDOCOMPACTNESS

In a sense, O-[u, \]-compactness is to pseudocompactness what [u, A]-
compactness is to countable compactness. See Remark 2.2. In par-
ticular, for Tychonoff spaces, O-[w,w]-compactness turns out to be
equivalent to pseudocompactness.

We find many conditions equivalent to O-[u, A]-compactness. In par-
ticular, a characterization by means of ultrafilters, Theorem 3.2, plays
an important role in this paper. It provides a connection between O-
(11, A\]-compactness and D-pseudocompactness, for D a (u, A)-regular
ultrafilter. The notion of a (i, A\)-regular ultrafilter arose in a model-
theoretical setting, and has proved useful also in some areas of set-
theory, and even in topology. See [Li3, Li2] for references.

More sophisticated results are involved when we deal with products,
since D-pseudocompactness is productive, but O-[u, A]-compactness is
not productive, as well known in the special case p = A = w, that is,
pseudocompactness. We show that if D is a (i, \)-regular ultrafilter,
then every D-pseudocompact topological space X is O-[u, \]-compact,
hence all (Tychonoff) powers of X are O-[u, A]-compact, too (Corollary
3.7). The situation is in part parallel to the relationship between the
more classical notions of D-compactness and [u, A]-compactness. In
this latter case, an equivalence holds: all powers of a topological space
X are [u, A]-compact if and only if there is some (i, A)-regular ultra-
filter D such that X is D-compact. We show that an analogous result
holds for D-pseudocompactness, provided we deal with a notion slightly
stronger than O-[u, A]-compactness. See Definition 4.1 and Theorem
4.6. In particular, we provide a characterization of those spaces which
are D-pseudocompact, for some (p, \)-regular ultrafilter D.

In the final section of this note we mention that our results gener-
alize to the abstract framework presented in [Li4]. That is, our proofs
work essentially unchanged both for pseudocompactness-like notions
and for the corresponding compactness notions. In [Li4] each compact-
ness property is defined relative to a family F of subsets of some topo-
logical space X. The pseudocompactness case is obtained when F = O,
the family of all nonempty open sets of X. When F is the family of
all singletons of X, we obtain results related to [u, A]-compactness.

Our notation is fairly standard. Unless explicitly mentioned, we as-
sume no separation axiom. However, the reader is warned that there
are many conditions equivalent to pseudocompactness, but the equiv-
alence holds only assuming some separation axiom (they are all equiv-
alent only for Tychonoff spaces). For Tychonoff spaces, the particular
case it = A = w of our definitions of O-[u, \]-compactness (Definition
2.1) turns out to be equivalent to pseudocompactness, but this is not
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necessarily the case for spaces with lower separation properties. See
Remark 2.3.

2. A TWO CARDINAL GENERALIZATION OF PSEUDOCOMPACTNESS

The following definition originally appeared in [Li4] in a more gen-
eral framework. The letter O is intended to denote the family of all
the nonempty open sets of some topological space X. In this sense,
the definition of O-[u, A]-compactness is the particular case F = O of
the definition of F-[u, A]-compactness in [Li4, Definition 4.2]. See also
Section 5.

Definition 2.1. We say that a topological space X is O-[u, A|-compact
if and only if the following holds.

For every sequence (C,)aen of closed sets of X, if, for every Z C A
with |Z| < p, there exists a nonempty open set Oz of X such that
Nucz Ca 2 Oz, then N, Co # 0.

Clearly, in the above definition, we can equivalently let Oz vary
among the (nonempty) elements of some base of X, rather than among
all nonempty open sets. Also, by considering complements, we have
that O-[u, A]-compactness is equivalent to the following statement.

For every A-indexed open cover (Qq)acx of X, there exists Z C A,
with |Z| < p, such that | J, ., Q. is dense in X.

Remark 2.2. The notion of O-[u, A]-compactness should be compared
with the more classical notion of [p, A]-compactness.

A topological space X is [u, A\]-compact if and only if, for every se-
quence (Cy)aen of closed sets of X, if () ., Cy # 0, for every Z C )
with |Z] < p, then (., Ca # 0.

Thus, in the definition of [u, A]-compactness, we require only the
weaker assumption that (7,., Co is nonempty, for every Z C A with
|Z| < p, rather than requiring that (1), ., Cs contains some nonempty
open set. In particular, every [u, A]-compact space is O-[u, \]-compact.

Thus, [w, w|-compactness is the same as countable compactness, which
is the analogue of pseudocompactness for O-[u, A]-compactness. Many
of the results presented here are versions for O-[u, A]-compactness of
known results about [u, A]-compactness. Indeed, a simultaneous method
of proof is available for both cases, and shall be mentioned in Section
5.

Notice that [p, A\]-compactness is a notion which encompasses both
Lindelofness (more generally, k-final compactness) and countable com-
pactness (more generally, k-initial compactness). See, e. g., [Ca2, G4,
Lil, Li2, Va] and references there for further information about [u, AJ-
compactness.

acZ



4 GENERALIZATIONS OF PSEUDOCOMPACTNESS

Remark 2.3. For Tychonoff spaces, O-|w, w]-compactness is equivalent
to pseudocompactness. Without assuming X to be Tychonoff, O-[w, w]-
compactness turns out to be equivalent to a condition which is usually
called feeble compactness. See [Li4, Theorem 4.4(1) and Remark 4.5]
and [St].

More generally, the particular case p = w of Definition 2.1, that is,
O-[w, A]-compactness, has been introduced and studied in [Fr], where
it is called almost A-compactness. The notion of O-[w, A]-compactness
has also been studied, under different names, in [SaSt], as weak-A-X,-
compactness, and in [Re, StVa] as weak initial A\-compactness.

Moreover, [Fr| introduced also a notion which corresponds to O-
(11, A]-compactness for all cardinals A, calling it almost u-Lindeldfness.

Assuming that X is a Tychonoff space, a property equivalent to
O-[k, k]-compactness, has been introduced in [CoNe| under the name
pseudo-(k, k)-compactness. See [Li4, Theorem 4.4].

Definition 2.1 generalizes all the above mentioned notions.

See [Ar, CoNe, Fr, Ga, GiSa, Gl, Ke, Li4, Re, Sa, SaSt, ScSt, St, StVa]
for the study of further related notions.

For A, p infinite cardinals, S,(\) denotes the set of all subsets of
A of cardinality < pu. We put A** = sup,, M Thus, \<* is the
cardinality of S, ().

In the next proposition we present some useful conditions equivalent
to O-[u, AJ-compactness. A further important characterization will be
presented in Theorem 3.2.

Proposition 2.4. For every topological space X and infinite cardinals
A and p, the following are equivalent.

(1) X is O-[u, \]-compact.

(2) For every sequence (P, )acx of subsets of X, if, for every Z C A
with |Z| < p, there exists a nonempty open set Oy of X such
that ey Pa 2 Oz, then ey Pa # 0.

(3) For every sequence (Qa)acx of open sets of X, if, for every
Z C X with |Z| < u, there ezists a nonempty open set Oz of X
such that ey Qa 2 Oz, then (e Qa # 0.

(4) For every sequence {Oz | Z € S,(\)} of nonempty open sets of
X, it happens that (),ex U{Oz | Z € S,(N), € Z} # 0.

(5) For every sequence {Oz | Z € S,(A\)} of nonempty open sets
of X, the following holds. If, for every finite subset W of A,
we put Qw = J{Oz | Z € S.(\) and Z D W}, then N{Qw |
W is a finite subset of \} # ().
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(6) For every sequence {Cy | Z € S,(\)} of closed sets of X, such
that each Cy is properly contained in X, if we let, for a € A,
P, be the interior of \{Cz | Z € S,(\),a € Z}, then we have
that (P, )aex s not a cover of X.

Proof. (1) = (2) Just take C, = P,, for a € \.

(2) = (3) is trivial.

(3) = (5) The sequence {Qw | W is a finite subset of A\} is a se-
quence of X\ open sets of X, since there are X\ finite subsets of \.

For every v < p, if (W3)pe, is a sequence of finite subsets of A,
then Z = (s, Wi has cardinality < v, and thus belongs to S,(A).
Moreover, for each 8 € v, we have that Z 2 Wp, hence Qw, 2 Oz.
This implies that (¢, Qw, 2 Oz.

We have proved that the sequence {Qw | W a finite subset of A} is a
sequence of A open sets of X such that the intersection of < y members
of the sequence contains some nonempty open set of X. By applying (3)
to this sequence, we have that (\{Qw | W is a finite subset of A} # 0.

(5) = (4) is trivial.

(4) = (1) Suppose that (Cy)aer and Oz, for Z C X\ with |Z| < p,
are as in the premise of the definition of O-[u, A]-compactness.

For o € A\, let C!, = {0z | Z € S,(\),a € Z}. Since C,, is closed,
and C, O Oz whenever o € Z, we have that C, 2 C!. By (4),
Noer Cn # 0, hence also (,c) Ca # 0. Thus we have proved (1).

We shall also give a direct proof of (3) = (4), since it is very simple.
Given the sequence {Oz | Z € S,()\)} then, for every a € A, put
Qo = U{Oz | Z € S,(\),a € Z}. For every Z € S,()), and every
a € Z, we have that Q, 2 Oz. Hence, for every Z € S,(\), we get
Nacz @a 2 Oz, so that we can apply (3).

(4) < (6) is immediate by taking complements. O

In the particular case when g = X is regular, there are many more
conditions equivalent to O-[\, A]-compactness.

Theorem 2.5. Suppose that X is a topological space, and X is a reqular
cardinal. Then the following conditions are equivalent.

(a) X is O-|\, N]-compact.

(b) Suppose that (Cy)aex 1S a sequence of closed sets of X such that
Co 2 Cg, whenever a < 3 < . If, for every a € A, there exists a
nonempt open set O of X such that Co, 2 O, then [),c\ Ca # 0.

(c¢) Suppose that (Cy)acx 1S a sequence of closed sets of X such that
Co 2 Cg, whenever o < 3 < \. Suppose further that, for every o € A,
Cy,, 15 the closure of some open set of X. If, for every a € X, there exists
a nonempt open set O of X such that Co D O, then ),y Ca # 0.
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(d) For every sequence (Oy)acn of nonempty open sets of X, there
exists v € X such that |{a € A | UNO, # 0} = A\, for every neighbor-
hood U of x in X.

(e) For every sequence (Oy)aer of nonempty open sets of X, there
exists some ultrafilter D uniform over A such that (O )aer has a D-
limit point (see Definition 3.1).

(f) For every A-indexed open cover (Oy)aca of X, such that O, C Og
whenever a < 3 < A, there exists a € X such that O, is dense in X.

In all the above statements we can equivalently require that the ele-
ments of the sequence (Cy)aex, respectively, (Oy)aer, are all distinct.

Proof. By [Li4, Theorem 4.4], taking F there to be the family O of all
the nonempty open sets of X.

Since A is regular, the last statement is trivial, as far as conditions
(b), (c) and (f) are concerned. It follows from [Li4, Proposition 3.3(a)]
in case (d). Then apply [Li4, Proposition 4.1 | in order to get (e). O

Remark 2.6. At this point, we should mention a significant difference
between O-[u, A]-compactness and [, A]-compactness.

It is true that a topological space is [i, A]-compact if and only if it is
[k, k]-compact, for every x such that p < x < A. Though simple, the
above equivalence has proved very useful in many circumstances. See,
e. g., [Li2].

It is trivial that every O-[u, A\]-compact space is O-[¢/, N']-compact,
whenever p < ¢/ < X < A. In particular, every O-[u, A]-compact space
is O-[k, k]-compact, for every s such that u < k < .

On the contrary, the condition of being O-[k, k|-compact, for every
such that u < k < ), is not always a sufficient condition in order to get
O-[u, \]-compactness. See Remark 4.13. This fact limits the usefulness
of Theorem 2.5 in the present context.

3. A CHARACTERIZATION BY MEANS OF ULTRAFILTERS

The first theorem in this section, Theorem 3.2, furnishes a charac-
terization of O-[u, A]-compactness by means of the existence of D-limit
points of ultrafilters. This characterization is the key for the study of
the connections between O-[u, A]-compactness and D-pseudocompact-
ness, for D a (u, A)-regular ultrafilter and shall be used in the next
section in connection with properties of products.

Definition 3.1. Suppose that D is an ultrafilter over some set I, and
X is a topological space. If (Y;);es is a sequence of subsets of X, then
x € X is called a D-limit point of (Y;);e; if and only if {i € I | Y;NU #
0} € D, for every neighborhood U of z in X. The notion of a D-limit
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point is due to [GiSa, Definition 4.1] for non-principal ultrafilters over
w, and appears in [Ga| for uniform ultrafilters over arbitrary cardinals.

We say that an ultrafilter D over S,()\) covers A if and only if, for
every o € A, it happens that {Z € S,()\) | « € Z} € D. This notion is
connected with (u, \)-regularity, as we shall see in Definition 3.5.

Theorem 3.2. For every topological space X and infinite cardinals A
and i, the following are equivalent.
(1) X is O-[u, \]-compact.
(2) For every sequence {Oz | Z € S,(\)} of nonempty open sets of
X, there exists an ultrafilter D over S, (\) which covers A\ and
such that {Oyz | Z € S,(\)} has a D-limit point.

Proof. (1) = (2) Suppose that {O; | Z € S,(\)} is a sequence of

nonempty open sets of X. For every finite subset W of A, let Qw =

U{Oz | Z € S,(N\) and Z D W}. By O-[u, A]-compactness, and Condi-

tion (5) in Proposition 2.4, we have that (\{Qw | W a finite subset of \}
# (). Suppose that x € N{Qw | W a finite subset of \}.

For every neighborhood U of z in X, let Ay = {Z € S,(\) |
UNOz # 0}. For every a € A let [o) = {Z € S,(\) | a €
Z}. We are going to show that the family A = {[a) | a € A} U
{Av |U a neighborhood of x in X'} has the finite intersection property.

Indeed, let Uy,...,U, be neighborhoods of x, and ay,...,a,, be
elements of \. Let U =UyN---NU,, W ={aq,...,a,}, and [IWV) =
[a) M- Nam) ={Z € S,(\) | Z 2 W}. Since # € Quw, we get that
UNQw # 0, that is, UN Oz # 0, for some Z € S,(\) with Z O W.
Hence Z € Ay, and also Z € Ay, ..., Z € Ay,, since Uy D U, ...,
U, 2 U. In conclusion, Z € Ay, N---N Ay, N[ag) NN [ay), hence
the above intersection is not empty.

We have showed that A has the finite intersection property. Hence
A can be extended to some ultrafilter D over S,(\). By construction,
@) € D, for every a € A, hence D covers \. Again by construction,
Ay € D, for every neighborhood U of z in X, and this means exactly
that x is a D-limit point of {Oz | Z € S,()\)}. Thus, (2) is proved.

In order to prove (2) = (1), it is sufficient to prove that (2) implies
Condition (4) in Proposition 2.4. Let {Oz | Z € S,(\)} be a sequence
of nonempty open sets of X. Letting C, = J{Oz | Z € S,(\), € Z},
for & € A, we need too show that (., Ca # 0. Let D be an ultrafilter
as given by (2), and suppose that = is a D-limit point of {Oz | Z €
Su(A)}. We are going to show that z € [),c, Ca. Suppose by contradic-
tion that, for some a € A, it happens that x ¢ C,. Since C,, is closed, x
has some neighborhood U disjoint from C,. Notice that, if Z € S, (\)
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and a € Z, then C, D Oz. Hence {Z € S,(\) | UNOz # 0} N ) = 0,
hence {Z € S,(A\) | UN Oz # 0} ¢ D, since D is an ultrafilter,
and [a) € D by assumption, since D is supposed to cover A. But
{Z € S,(A\) | UNOz # 0} ¢ D contradicts the assumption that
is a D-limit point of {Oz | Z € S,(\)}. Hence z € ()¢, Ca, thus
Nuex Ca # 0, and the proof is complete. O

Remark 3.3. Theorem 3.2 is inspired by results by X. Caicedo from his
seminal paper [Ca2]. See also [Cal]. Caicedo proved results similar
to Theorem 3.2 for [u, A]-compactness. The result analogous to the
implication (1) = (2) in Theorem 3.2 is Lemma 3.3 (i) in [Ca2]. A
common generalization and strengthening of both Theorem 3.2 and
[Ca2, Lemmata 3.1 and 3.2] holds. See Theorem 5.2 (1) = (7) below.
Notice that, because of the well known result about [u, \]-compact-
ness mentioned in Remark 2.6, essentially all applications of results in
[Ca2] can be obtained using only the particular case A = p of [Ca2,
Lemmata 3.1 and 3.2]. However, such a reduction is not possible in the
case of O-[u, A]-compactness, by Remark 4.13. Hence it is necessary to
deal with the more general case in which A # p is allowed. The idea
from [Cal, Ca2] of treating the full general case is thus well-justified

Definition 3.4. If D is an ultrafilter over I, then a topological space X
is said to be D-pseudocompact ([GiSa, Gal) if and only if every sequence
(O;)ier of nonempty open subsets of X has some D-limit point in X.

Definition 3.5. An ultrafilter D over some set [ is said to be (u, \)-
reqular if and only if there is a function f : I — S,()\) such that
{i € Ila € f(i)} € D, for every a € \. See, e. g., [Li3] for equivalent
definitions and for a survey of results on (u, A)-regular ultrafilters.

If D is an ultrafilter over I, and f : [ — J is a function, the ultrafilter
f(D) over J is defined by the following clause: Z € f(D) if and only
if f~%Z) e D.

With the above notation, it is trivial to see that D over I is (i, \)-
regular if and only if there exists some function f : I — S,(\) such
that f(D) covers A.

In passing, let us mention that the above definitions involve the so-
called Rudin-Keisler order. If D and E are two ultrafilters, respectively
over [ and J, then F is said to be less than or equal to D in the Rudin-
Keisler (pre-) order, £ <gx D for short, if and only if there exists
some function f : I — J such that E = f(D). If both E' <gkx D and
D <gx F, then E and D are said to be (Rudin-Keisler) equivalent.

The next fact is trivial, but very useful.
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Fact 3.6. If D is an ultrafilter over I, X is a D-pseudocompact topolog-
ical space, and f : I — J is a function, then X is f(D)-pseudocompact.

Corollary 3.7. Suppose that D is a (p, A\)-reqular ultrafilter.

If X is a D-pseudocompact topological space, then X is O-[u, \]-
compact.

More generally, if (X;)jes is a sequence of D-pseudocompact topo-
logical spaces, then the Tychonoff product Hje] X is O-[p, \]-compact.

Proof. By (u, A)-regularity, there is f : I — S,(\) such that f(D)
covers A\. By Fact 3.6, X is f(D)-pseudocompact, hence O-|u, A]-
compactness of X follows from Theorem 3.2 with f(D) in place of D.
Notice that here f(D) works “uniformly” for every sequence , while,
in the statement of Theorem 3.2(2), the ultrafilter, in general, depends
on the sequence.

The last statement follows from the known fact ([GiSa, Theorem 4.3])
that D-pseudocompactness is preserved under taking products. O

A result analogous to Corollary 3.7 for [u, A]-compactness is proved
in [Ca2, Lemma 3.1].
We now present a nice characterization of D-pseudocompactness.

Theorem 3.8. Suppose that D s an ultrafilter over some set I, and
X is a topological space. Then the following are equivalent.

(1) X is D-pseudocompact.

(2) For every sequence {O; | i € I} of nonempty open sets of X, if,
for Z € D, we put Cz = J,c, Os, then we have that ()., Cz #
0.

(3) Whenever (Cz)zep is a sequence of closed sets of X with the
property that, for everyi € I, mieZ Cz contains some nonempty
open set of X, then (\,cp Cz # 0.

(4) For every open cover (Qz)zep of X, there is some i € I such
that ;e @7 is dense in X.

(5) For every sequence {C; | i € I} of closed sets of X, such that
each C; is properly contained in X, if, for Z € D, we let Q4
be the interior of (e, Ci, then we have that (Qz)zep is not a
cover of X.

Proof. (1) = (2) By D-pseudocompactness, the sequence {O; | i € I}
has some D-limit point x in X, that is, {i € I |UNO; # 0} € D, for
every neighborhood U of z in X.

We are going to show that = € (,., Cz. Indeed, let Z be any set
in D. If U is a neighborhood of x, then Z/ =ZnN{ie I |UNO; # 0}
is still in D, thus is nonempty. Let ¢ € Z’. Then U N O; # 0, and
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Cyz D Oy, since i € Z. Hence U N Cyz # (). Since the above argument
works for every neighborhood U of x, we have that x € C, since Cy
is a closed set.

We have showed that = € Cy, for every Z € D, hence x € ()., Cz.

(2) = (3) For every i € I, let O; be some nonempty open set of
X such that (., Cz 2 O;. For every Z € D, put C}, = U, O:.
By Clause (2), we have that (,.,C% # 0. Since, for every i € Z,
Cz 2 Oy, we have that C'z O C, for every Z € D. Hence, ()., Cz 2
Niep C # 0.

(3) = (1) Suppose that (O;);cs is a sequence of nonempty open sets
of X. For Z € D, let Cz = U, O;. Hence, for every i € Z, Cz 2 O;,
and, for every i € I, [),.,, Cz contains the nonempty open set O;.

By (3), there is some & € X such that z € (., Cz. It is enough
to show that x is a D-limit point of (O;);e;. If not, x has some
neighborhood U such that {i € I | UNO; # 0} ¢ D, that is,
{ielT|UNO; =0} € D. Letting Z = {i € I | UNO; = 0},
we have that U N{J,., O; = 0, but this contradicts z € C = J,., O:.

(3) & (4) and (2) < (5) are obtained by considering complements.

O

4. THEOREMS ABOUT PRODUCTS

In this section we consider, for a product space [ | . X, a variant of
O-[u, AJ-compactness, a variant which takes into account all the open
sets in the box topology on the set || jes Xj- This notion shall be used
in order to provide a characterization of all those spaces X which are
D-pseudocompact, for some (i, A)-regular ultrafilter D (Theorem 4.6).

We shall need to consider the set [];.; X; endowed both with the
Tychonoff topology and with the boz topology. A base for the latter
topology is given by all the products HjEJ Oj, each O; being an open
set of X;. When we write [ jes Xj, we shall always assume that the
product is endowed with the Tychonoff topology, while O;c;X; shall
denote the product endowed with the box topology.

Definition 4.1. Suppose that (Xj),;es is a sequence of topological
spaces. We say that the topological space [ [, ; X; is O-[u, A]-compact
if and only if the following holds.

For every sequence (Cy)aex of closed sets of [],.; Xj, if, for every
Z C X with |Z| < p, there exists a nonempty open set Oz of O;c ;X
such that (., Ca 2 Oz, then (., Co # 0.

jeJ
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Notice that O"-[u, A]-compactness is a notion stronger than O-[u, AJ-
compactness, that is, every OD-[M, AJ-compact product [] jeJ X, is O-
(11, \]-compact. The two notions are distinct, in general, as we shall
see in Remark 4.8. Notice also that every [u, A]-compact product is

O"-[p, A]-compact.

Remark 4.2. Notice that O°-[u, A]-compactness is not an intrinsic prop-
erty of the topological space Y = HjGJ X;. That is, O-[u, \]-compact-
ness does not only depend on the topology on Y, but depends also on
the way Y is realized as a product. There might be two homeomorphic
spaces, say, Y = Hjej Xjand Z =[],y Yn such that Y, as a product
[1,c; X;, is O-[u, Al-compact, while Z, as a product [], ¢y Ya, is not.
Just to consider a simple case, if Y =[] jeJ X, and Z is a homeomor-
phic copy of Y, and we consider Z “as itself”, that is, as the product of
just a single factor, then Z is O"-[u, A]-compact if and only if it is O-
(11, A]-compact. On the contrary, as we shall see, O"-[u, A]-compactness
and O-[u, A]-compactness are distinct notions, in general.

The above remark will cause no problem here, since we will always
be dealing with a space Y = Hjej X, together with just one single
realization of Y as [[,; X;. In other words, we shall never deal with
the homeomorphism equivalence class of Y, but we shall always deal
with Y =[] jes X just in its concrete realization.

Of course, O°-[u, \]-compactness can be characterized in a way sim-
ilar to the characterizations of O-[u, A\]-compactness given in Propo-
sition 2.4. Clause (7) in the next proposition is proved as the last
statement of Definition 2.1.

Proposition 4.3. For every sequence (X;);es of topological spaces,
and X\, p infinite cardinals, the following are equivalent, where, in items
(2)-(5), closures are computed in [];; X;-.
(1) [Les X; is O -[u, A]-compact.
(2) For every sequence (Pu)aex of subsets of [];c; X, if, for every
Z C X\ with |Z| < p, there ezists a nonempty open set Oz of
OjesX; such that ey Po 2 Oz, then (,e\ Pa # 0.
(3) For every sequence (Qqa)acx of open sets of Ojc X, if, for every
Z C X with |Z| < p, there exists a nonempty open set Oz of
OjesX; such that ey Qa 2 Oz, then (,e) Qo # 0.
(4) For every sequence {Oz | Z € S,(AN)} of nonempty open sets of
OjesX;, it happens that (e, U{Oz | Z € Su(N),ac € Z} # 0.
(5) For every sequence {Oz | Z € S,(N\)} of nonempty open sets
of Oje; X, the following holds. If, for every finite subset W
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of A\, we put Qw = \U{Oz | Z € S,(\) and Z > W}, then
M Qw | W is a finite subset of A} # 0.

(6) For every sequence {Cz | Z € S,,(\)} of closed sets of Ojc;X;,
such that each Cy is properly contained in X, if we let, for
a € A, Py be the interior (computed in [[;c; X;) of (W{Cz |
Z € Su(N), € Z}, then we have that (Py,)aex is not a cover of
X.

(7) For every A-indexed open cover (Qq)acx of Hje] X, there exists
Z C N with |Z] < p, such that |J,c, Qa is a dense subset in
0,eX;.

The proof of Theorem 3.2 carries over essentially unchanged in order
to get the following useful theorem.

Theorem 4.4. For every sequence (X;);es of topological spaces, and
A, poinfinite cardinals, the following are equivalent.
(1) I1;es X; s O°-[u, A]-compact.
(2) For every sequence {Oy | Z € S,(\)} of nonempty open sets of
Ojcs X, there exists an ultrafilter D over S,(X\) which covers A
and such that {Oz | Z € S, (N)} has a D-limit point in [ [, X;.

Theorem 4.4 can be used to improve the last statement in Corollary

3.7.

Corollary 4.5. Suppose that D is a (p, \)-reqular ultrafilter.
If (X;)jes is a sequence of D-pseudocompact topological spaces, then
[1;c; X is O7-[p, A]-compact.

We are now going to show that a topological space X is D-pseu-
docompact for some (u, \)-regular ultrafilter D if and only if all (Ty-
chonoff) powers of X are O"-[u, A\]-compact. We shall denote by X°
the Tychonoff product of §-many copies of X.

Theorem 4.6. For every topological space X, and A, p infinite cardi-
nals, the following are equivalent.

(1) There exists some ultrafilter D over S,(\) which covers X, and
such that X is D-pseudocompact.

(2) There exists some (u, \)-reqular ultrafilter D (over any set) such
that X 1s D-pseudocompact.

(3) There exists some (u, \)-reqular ultrafilter D such that, for ev-
ery cardinal §, the space X° is D-pseudocompact.

(4) The power X° is O-[u, N|-compact, for every cardinal 6.

(5) The power X° is O°-[u1, \]-compact, for § = min{2?", (w(X))~},
where kK = AP,
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Proof. (1) = (2) is trivial, since if D is over S,(A) and covers A, then
D is (u, A)-regular.

(2) = (3) follows from the mentioned result from [GiSa, Theorem
4.3], asserting that a product of D-pseudocompact spaces is still D-
pseudocompact.

(3) = (4) follows from Corollary 4.5.

(4) = (5) is trivial.

(5) = (1) We first consider the case § = (w(X))".

Let B be a base of X of cardinality w(X). Thus, there are d-many
S, (A)-indexed sequences of elements of B, since |S,(\)| = k. Let us
enumerate them as {Qp7 | Z € S,(\)}, B varying in 6. In X° consider
the sequence {[[5.5@s2 | Z € Su(\)}. For every Z € S,(A), the
set [[5e5 @p.z is open in the box topology on X°. By the O-[u, \J-
compactness of X° and by Theorem 4.4(1) = (2), there exists an
ultrafilter D over S,(A) which covers A and such that {[[;c; @7 |
Z € S,(\)} has some D-limit point z in X°.

We are going to show that X is D-pseudocompact. So, let {Oy |
Z € S,(\)} be a sequence of nonempty open sets of X. Since B is a
base for X, then, for every Z € S,()), there is a nonempty By in B
such that Oz O By. Choose one such By for each Z € S,()). The
sequence {Bz | Z € S,(A\)} is an S, (A)-indexed sequences of elements
of B. Since, by construction, all such sequences are enumerated by
{Qs2 | Z € S,(N)}, there is some ) € 0 such that By = Qg, 7, for
every Z € S,(N).

By what we have proved before, the sequence {[[;5@s2 | Z €
S,.(A\)} has some D-limit point x in X°, say x = (z5)pes. A trivial
property of D-limits implies that, for every 3 € 9, we have that x5 is
a D-limit of {Qpz | Z € S,(\)}. In particular, by taking 3 = [, we
get that x5, is a D-limit point of {By | Z € S,()\)}.

Since Oz 2 By, for every Z € S, (\), we get that zg, is also a D-
limit point of {Oz | Z € S,(A\)}. We have proved that every sequence
{0z | Z € S,(\)} of nonempty open sets of X has some D-limit point
in X, that is, X is D-pseudocompact.

Now we consider the case § = 22°. We shall prove that if § = 22
and (1) fails, then (5) fails. If (1) fails, then, for every ultrafilter D
over S,(A) which covers A, there is a sequence {Oz | Z € S,(A\)} of
nonempty open sets of X which has no D-limit point. Since there are
d-many ultrafilters over S, (\), we can enumerate the above sequences
as {Opz | Z € S,(N)}, B varying in 6. Now, given any ultrafilter
D over S,()\) and covering A, it is not the case that the sequence
{I1se5 Os.z | Z € Su(A)} has some D-limit point. Indeed, were z =
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(25)pes a D-limit point of {[]5c50p.2 | Z € Su(A)}, then, by a trivial
property of D-limits, for every 3 € §, xz would be a D-limit point of
{Os7 | Z € S,(N\)}. This is a contradiction since, by construction, for
every ultrafilter D over S,()) covering A, there exists some 3 € ¢ such
that {Opz | Z € S,(\)} has no D-limit point.

We have showed that for no ultrafilter D over S,()\) and covering A
the sequence {[[3.5Op.z | Z € S.(A)} has some D-limit point. Since,
for every Z € S,(A), [lge; Op,z 1s an open set of the box topology
on X% we get that, by Theorem 4.4 (1) = (2), X° is not O"-[u, \]-
compact, that is, (5) fails. d

Remark 4.7. Condition (5) in Theorem 4.6 can be improved to the effect
that we can take k there to be equal to the cofinality of the partial order
S, (N). A subset H of S, ()) is said to be cofinal in S,()) if and only if,
for every Z € S,,()), there is Z' € H such that Z C Z’. The cofinality
cf S, (A) of S,()) is the minimal cardinality of some subset H cofinal
in S,(A). Notice that if X is regular, then cf S\(A\) = A and, more
generally, cf Sy(AT) = A™. Highly non trivial results about cf S, () are
consequences of Shelah’s pcf-theory [Sh].

For the rest of this remark, let us fix some subset H cofinal in S,,(\).

All the definitions and results involving S, (A) can be modified in
order to apply to H, too. In particular, in the definitions of O-|u, A]-
compactness and of O"-[u, A]-compactness, we get an equivalent notion
if we consider only those Z € H. Similarly, in Propositions 2.4 and 4.3
we can equivalently consider H-indexed sequences, rather than S,(\)-
indexed sequences, that is, we can replace everywhere Z € S,()\) by
Z € H, still obtaining the results.

Moreover, we can say that an ultrafilter D over H covers A if and
only if, for every a € A, it happens that o)y ={Z € H |a € Z} € D.
With this definition, we have that Theorems 3.2 and 4.4, too, hold, if
Z € S, () is everywhere replaced by Z € H.

Moreover, let f : S, (A\) — H be defined in such a way that Z C f(2).
If D is over S,(A) and covers A, then f(D) is over (a subset of) H, and
f(D), too, covers A\. The above observations give us the possibility of
proving Theorem 4.6 with the improved value x = c¢f S, (\) in Condition

(5).

Remark 4.8. In order to get results like Theorem 4.6, it is actually nec-
essary to deal with O"-[u, A\]-compactness, rather than with O-[u, \]-
compactness. Indeed, [GiSa, Example 4.4] constructed a Tychonoff
space X such that all powers of X are pseudocompact but for no ul-
trafilter D uniform over w, X is D-pseudocompact. By Remark 2.3,
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all powers of X are O-|w,w]-compact. The condition that, for no ul-
trafilter D uniform over w, X is D-pseudocompact is easily seen to
be equivalent to the property that for no ultrafilter D over S, (w) and
covering w, X is D-pseudocompact. The equivalence can be proved di-
rectly; otherwise, notice that, for y = A a regular cardinal, Condition
(4) in Theorem 4.6 coincides with Condition (5) in [Li4, Corollary 5.5],
hence the respective Conditions (1) are equivalent.

Since, for no ultrafilter D over S,(w) and covering w, X is D-
pseudocompact, we get, by Theorem 4.6, that not every power of X
is O"-|w, w]-compact, but, as we remarked, every power of X is O-
[w, w]-compact, thus the two notions are distinct, in general. Indeed,
by Remark 4.7, we have that X° is not O"-|w, w]-compact for § = 2%°.

In particular, Conditions (4) and (5) in Theorem 4.6 are in gen-
eral not equivalent to the other conditions, if we replace O°-[u, A]-
compactness with O-[u, A\]-compactness.

Indeed, as is the case for pseudocompactness, we can show that
the O-[u, A]-compactness of a product depends only on the O-[u, A]-
compactness of all subproducts of some small number of factors. Thus,
we have an analogue for O-[u, A\]-compactness of the equivalence (4) <
(5) in Theorem 4.6.

Lemma 4.9. If X and Y are topological spaces, f : X — Y is a
continuous and surjective function, and X is O-|u, \]-compact then
also Y is O-[u, A]-compact.

Theorem 4.10. Suppose that (X;);ecs is a sequence of topological spaces.
Then the product [[;c; X; is O-[p, A|-compact if and only if any sub-
product of < k factors is O-|u, \]-compact, where k = X<, Indeed, the
result can be improved to k = cf S,(N).

Proof. The only-if part is immediate from Lemma 4.9.

To prove the converse, given (Cy)acx as in the definition of O-[u, AJ-
compactness, we might assume, without loss of generality, that the O;’s
are members of the canonical base of HjeJ X, that is, each Oy has
the form HJ.EJ Q;, where each @); is an open set of X;, and Q; = Xj,
for all j € J\ Jz, for some finite J; C J.

It J' = Ugzes,n Jz, and 7 : [[;c; X; — [l;ep X is the canonical
projection, then, by assumption, [[;c; X; is O-[u, A]-compact, since
|J'| < &, hence (e, 7(Ca) # 0, and this clearly implies (), Ca # 0.

By arguments similar to those in Remark 4.7, we can improve the
value of K to cf S, (A). O
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For sake of simplicity, in the statement of Theorem 4.6 we have dealt
with a single topological space X. However, a version of the theorem
holds for families of topological spaces.

Theorem 4.11. For every family T of topological spaces, and X\,
infinite cardinals, the following are equivalent.

(1) There exists some (j, N)-reqular ultrafilter D (which can be taken
over S, (X)) such that, for every X € T, we have that X is D-
pseudocompact.

(2) Every product of any number of members of T (allowing repe-
titions) is O°-[u, A]-compact.

(3) Every product of members of T (allowing repetitions) with at
most § factors is O -y, A|-compact, where § = min{2%*" sup{|T|,v}},
for v = supyer(w(X))* and kK = X" (indeed, this can be im-

proved to k = cf S, (X))

Corollary 4.12. For u, A\, p' and X infinite cardinals, the following
are equivalent.

(a) Every (p, A)-reqular ultrafilter is (u', \')-regular.

(b) For every family T of topological spaces, if every product of any
number of members of T (allowing repetitions) is O°-[u, \]-compact,
then every product of any number of members of T (allowing repeti-
tions) is O [, N']-compact.

(c) For every topological space X, if every power of X is O7-[u, \]-
compact, then every power of X is O°-[u/, N']-compact.

(d) Same as (c), restricted to Tychonoff spaces.

Proof. (a) = (b) Suppose that the assumption in (b) holds. By Theo-
rem 4.11 (2) = (1), there exists some (u, A)-regular ultrafilter D such
that, for every X € T, we have that X is D-pseudocompact. By (a),
D is (¢/, N)-regular. Hence, by Theorem 4.11 (1) = (2), every product
of any number of members of T is O°-[i/, N']-compact.

(b) = (c) and (c) = (d) are trivial.

(d) = (a) Garcia-Ferreira [Ga] constructs, for every ultrafilter D,
say over I, a Tychonoff space Prg (D) such that, for every ultrafilter
E, say over J, the space Pri (D) is E-pseudocompact if and only if
E = f(D) for some function f : I — J, that is if and only if £ <gx D
in the Rudin-Keisler order.

Let D be a (u, A)-regular ultrafilter, say over I. By above, X =
Pri (D) is D-pseudocompact, hence, by Theorem 4.6 (2) = (4), every
power of X is O°-[u, A]-compact.

By (d), every power of X is O"-[y/, N']-compact and, by Theorem 4.6
(2) = (4), X is E-pseudocompact, for some (p/, \')-regular ultrafilter £
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over some set J. By the above-mentioned result from [Ga|, E = f(D),
for some function f : I — J. By a trivial property of the Rudin-Keisler
order, D is (u/, \')-regular, thus (a) is proved. O

Many results are known about cardinals for which Condition (a) in
Corollary 4.12 holds. See [Li3] for a survey. Corollary 4.12 can be
applied in each of these cases.

Remark 4.13. As we mentioned in Remark 2.6, [u, A]-compactness is
equivalent to [k, k|-compactness for every k such that p < k < A\
We now show that the analogous result fails, in general, for O-[u, A]-
compactness.

Under some set-theoretical assumption, [Ka] constructed an ultra-
filter D uniform over w; and an ultrafilter D’ over w such that, for
every ultrafilter F, it happens that F <gx D if and only if E is
Rudin-Keisler equivalent either to D or to D’. By the results from
[Ga] mentioned in the proof of Corollary 4.12, the space Prg(D) is
both D-pseudocompact and D’-pseudocompact, hence both O-[w,w]-
compact and O-|wy,w;]-compact, since every uniform ultrafilter over
some cardinal A is (A, A)-regular (see, e. g., [Li3]). Indeed, by Corol-
lary 4.5, all powers of Pry(D) are even both O°-[w,w]-compact and
OP-|wy, wy]-compact.

However, [Ga] proved that Pgg(D) is not even w;-pseudocompact.
Since, by [Re, Theorem 2(c)], every O-[w, A]-compact Tychonoff space
is A\-pseudocompact, we have that Pry(D) is not O-|w,w;]-compact
(O-]w, \]-compact spaces are called weakly-initially compact in [Re]).

5. THE ABSTRACT FRAMEWORK

In this final section we mention that our results actually hold in
the general framework introduced in [Li4]. In [Li4] each compactness
property is defined relative to some family F of subsets of a topological
space X. By taking F to be either the set of all singletons of X,
or the set of all nonempty open sets of X, this generalized approach
provides a unified treatment of definitions and results about [u, A]-
compactness and related compactness notions, on one side, and about
O-[u, A]-compactness and related pseudocompactness-like notions, on
the other side.

In the case of [u, A\]-compactness, as we shall point after each single
result, most of the theorems we get are known; in the case when F = O
we usually get back the results obtained in the previous sections.
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Definition 5.1. The definitions of F-[u, A]-compactness and of F-D-
compactness can be obtained, respectively, from the definitions of O-
(11, A]-compactness (Definition 2.1) and of D-pseudocompactness (Def-
inition 3.4), by replacing the family O off all nonempty open sets with
another specified family F of subsets of X.

In more detail, let X be a topological space, and let F be any family
of subsets of X.

Let A and p be infinite cardinals. We say that X is F-[u, A]-compact
if and only if, for every sequence (C,)aeca of closed sets of X, if, for
every Z C A with |Z| < p, there exists F' € F such that () ., Cs 2 F,
then (,c, Ca # 0.

Let D be an ultrafilter over some set Z. We say that X is F-D-
compact if and only if every sequence (F,),cz of members of F has
some D-limit point in X.

When, in the preceding definitions, 7 = O, the family of all the
nonempty open sets of X, we get back Definitions 2.1 and 3.4. When
F is taken to be the family of all singletons of X, we get back the
more familiar notions of, respectively, [u, A]-compactness and of D-
compactness. See [Li4] for more information. In particular, notice that,
for ;1 = A a regular cardinal, [Li4] provides a very refined theory of F-
[A, A]-compactness. In the particular case p = A regular, the results
presented in [Li4]| are usually stronger than the results presented here
for F-[u, A]-compactness. Notice also that, by Remark 4.13, the theory
of F-[u, A\]-compactness, in general, cannot be “reduced” to the theory
of F-|k, k]-compactness. On the contrary, it is a very useful fact that
(11, A\]-compactness can be studied in terms of [k, k]-compactness, for
<k <\ (Remark 2.6).

Notice that if X is realized as a Tychonoff product [] jes Xj, then
O"-[p, A]-compactness, as introduced in Definition 4.1, is the same as
F-[u, A]-compactness of [[,.; X;, when we take F to be the family of
all open sets in Oj¢ ;. X, that is, the open sets in the box topology.

If F is a family of subsets of some topological space, we denote
by VV F (resp., V., F), the family of all subsets of X which can be
obtained as the union of the members of some subfamily of F (resp.,
some subfamily of cardinality < k).

Theorem 5.2. Suppose that X is a topological space, F is a family of
subsets of X, and A and p are infinite cardinals. Then the following
are equivalent.

(1) X is F-[u, \]-compact.
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(2) For every sequence (P,)aca of subsets of X, if, for every Z C A
with |Z| < p, there exists some Fy € F such that (., Pa 2
Fz, then (Nyer Pa # 0.

(3) For every sequence (Qa)acx of sets in \| F (equivalently, in
\ F<n, where k = XM), if, for every Z C X\ with |Z| < pu,
there exists some Fy, € F such that ﬂaEZ Qo O Fyz, then
MNacx Q, # 0. The value of k can be improved to cf Su(A).

(4) For every sequence {Fy | Z € S,(\)} of members of F, it
happens that (\,cn U{Fz | Z € Su(N), v € Z} # 0.

(5) For every sequence {Fy | Z € S,(\)} of members of F, the
following holds. If, for every finite subset W of \, we put Qw =
U{Fz | Z € S.(\) and Z 2> W}, then N{Qw | W is a finite
subset of \} # (.

(6) For every A-indezed open cover (Qu)acx of X, there exists Z C
A, with | Z| < p, such that FNJ,c; Qa # 0, for every F € F.

(7) For every sequence {Fy | Z € S,(\)} of elements of F, there
exists an ultrafilter D over S, (\) which covers A and such that
{Fz | Z € S,(\)} has some D-limit point in X.

Proof. Same as the proofs of Proposition 2.4, of the last remark in
Definition 2.1 and of Theorem 3.2. See also Remark 4.7. U

Proposition 2.4 and Theorem 3.2 can be obtained as the particular
case of Theorem 5.2, when F = O is the family of the nonempty open
sets of X.

Proposition 4.3 and Theorem 4.4 can be obtained as the particular
case of Theorem 5.2, when X is the topological space HjeJ X, (with
the Tychonoff topology), and F is the family of the nonempty open
sets of O,c;X; (with the box topology).

Thus, Theorem 5.2 provides a generalization of all the above results.

As we mentioned in Remark 3.3, in the particular case when F is the
family S of all singletons, the implication (1) = (7) in Theorem 5.2 is
proved in [Cal, Ca2]. Again when F = S, the equivalence of (1) and
(2) in Theorem 5.2 has been proved in [G&], with different notation.
See also [Va, Lemma 5(b)].

Theorem 5.3. Suppose that X is a topological space, F is a family
of subsets of X, and D is an ultrafilter over some set I. Then the
following are equivalent.
(1) X is F-D-compact.
(2) For every sequence {F; | i € I} of members of F, if, for Z € D,
we put Cy = ;o Fi, then we have that ()., Cz # 0.
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(3) Whenever (Cyz)zep is a sequence of closed sets of X with the
property that, for every i € I, there exists some F € F such
that (N;ey Cz 2 F, then (\,ep Cz # 0.

(4) For every open cover (Oz)zep of X, there is some i € I such
that FNJ;c, Oz # 0, for every F € F.

Proof. Similar to the proof of Theorem 3.8. U

Theorem 3.8 could be obtained as the particular case F = O of
Theorem 5.3.

The particular case of Theorem 5.3 when F is the set of all singletons
of X might be new, so we state it explicitly.

Corollary 5.4. Suppose that X s a topological space, and D s an
ultrafilter over some set I. Then the following are equivalent.

(1) X is D-compact.

(2) For every sequence {z; | i € I} of elements of X, if, for Z € D,
we put Cy = {x; | i € Z}, then we have that (., Cz # 0.

(3) Whenever (Cz)zep is a sequence of closed sets of X with the
property that, for everyi € I, (e, Cz # 0, then (\,cp Cz # 0.

(4) For every open cover (Oz)zep of X, there is some i € I such
that (Oz)icz is a cover of X.

Theorem 5.5. Suppose that A and p are infinite cardinals, T is a
family of topological spaces, and, for every X € T, Fx is a family of
subsets of X.

To every product HjeJ X, where each X; belongs to T, associate the
family F = {]1;c; i | Fx; € Fj, for every j € J}.

Then the following are equivalent.

(1) There exists some ultrafilter D over S,(X) which covers X, and
such that, for every X € T, we have that X is Fx-D-compact.

(2) There exists some (i, \)-regular ultrafilter D (over any set) such
that, for every X € T, we have that X 1s Fx-D-compact.

(3) There exists some (u, \)-reqular ultrafilter D such that, for ev-
ery set J, every product HjeJ X; of members of T (allowing
repetitions) is F-D-compact.

(4) For every set J, every product [[;c; X; of members of T (al-
lowing repetitions), is F-[u, \|-compact.

(5) Let & = min{2%",sup{|T|,supyer |Fx|"}, where K = A\<* (in-
deed, this can be improved to k = cfS,(N\)). For every set J
with | J| <6, every product [[,c; X; of members of T' (allowing
repetitions) is F-[u, \|-compact.
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Proof. Same as the proofs of Corollary 3.7 and of Theorem 4.6, using
[Li4, Fact 6.1 and Proposition 5.1 (b) with v = |J*|] and Theorem 5.2
(7) & (1). For (5), see also Remark 4.7. O

Theorem 5.5 is more general than Theorems 4.6 and 4.11. In the
particular case when F is the family S of all singletons, Theorem 5.5
is essentially [Ca2, Theorem 3.4] (in some cases, our evaluation of ¢
might be slightly sharper). Corollaries 3.7 and 4.5 are immediate con-
sequences of Theorem 5.5 (2) = (4), by taking, for every j € J, F; to
be the family of all nonempty open sets of Xj.

The following easy proposition, generalizing Lemma 4.9, describes
the behavior of F-D-compactness with respect to quotients.

Proposition 5.6. Suppose that X and Y are topological spaces, and
f X — Y is a continuous function. Suppose that F is a family of
subsets of X, and suppose that G is a family of subsets of Y, such that
for every G € G there is F € F such that F C f~(G).

Then the following hold.

(1) If X is F-[pu, \]-compact then Y is G-[u, A\]-compact.
(2) If X is F-D-compact then Y is G-D-compact.

We end with a trivial but useful property of F-[u, A\]-compactness.

Proposition 5.7. Every F-[cf A, cf \|-compact topological space is F-
(A, A]-compact.

In particular, every O-[cf A, cf A]-compact topological space is O-[\, A]-
compact.
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