INITIAL A>-COMPACTNESS IN LINEARLY ORDERED SPACES

PAOLO LIPPARINI

ABSTRACT. We show that a linearly ordered topological space is initially A-
compact if and only if it is A-bounded, that is, every set of cardinality < A
has compact closure. As a consequence, every product of initially A-compact
linearly ordered topological spaces is initially A-compact.

A topological space is initially A-compact if every open cover by at most A sets
has a finite subcover. According to a celebrated theorem, Stephenson and Vaughan
[SV, Theorem 1.1], if X is a strong limit singular cardinal, then every product of
initially A-compact topological spaces is still initially A-compact. We prove a much
stronger result for products whose factors are linearly ordered topological spaces:
for such spaces, the above theorem holds for every infinite cardinal A. In fact, our
proof works for generalized ordered spaces, for short, GO spaces, that is, Hausdorff
spaces equipped with a linear order and with a base of order-convex sets. See, e. g.,
Bennet and Lutzer [BL] for more information about GO spaces.

We shall prove a chain of equivalences which involve several notions, such as
A-boundedness, D-compactness, D-pseudocompactness, conditions asking for the
existence of “complete accumulation points” of sequences of open sets, and a con-
dition simply asking that strictly increasing or decreasing sequences indexed by a
regular cardinal converge. To state our theorem in such a full generality we need
to recall some definitions. If D is an ultrafilter over some set I, then a topological
space X is said to be D-compact if every I-indexed sequence (x;);cr of elements of
X D-converges to some x € X, that is, {i € I | ; € U} € D, for every open neigh-
borhood U of x. The space X is said to be D-pseudocompact if every I-indexed
sequence (O;);ecr of nonempty open subsets of X has some D-limit point in X, that
is, there is some & € X such that {i € I | UNO; # 0} € D, for every open neigh-
borhood U of x. If f is a limit ordinal, we say that a sequence (z),<s of elements
of a topological space converges to some point z if, for every neighborhood U of =z,
there is v < f such that x.,, € U, for every 7' > 7.

Theorem. For every infinite cardinal A\, and every GO space X, the following
conditions are equivalent.

(1) X is ingtially A-compact.

(2) X is weakly initially A-compact, that is, every open cover of X by at most
A sets has a finite subcollection with dense union.

(3) For every infinite (equivalently, every infinite regular) cardinal v < X\, and
every family (O,)y<, of v open nonempty sets of X, there is x € X such
that [{y < v | Oy NU # 0} = v, for every neighborhood U of x.
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In the above condition we can equivalently ask either that the O, ’s are

pairwise disjoint, or that O C O, for vy >~

(4) For every infinite regular cardinal v < X, and every strictly increasing
(resp., strictly decreasing) v-indexed sequence of elements of X, the se-
quence has a supremum. (resp., an infimum) to which it converges.

(5) X is D-compact, for every ultrafilter D over any set of cardinality < \.

(6) X is D-pseudocompact, for every ultrafilter D over any set of cardinality
<\

(7) X is A-bounded, that is, every subset of cardinality < X has compact clo-
sure.

Proof. We shall first prove the following chain of equivalences: (1) = (2) = (3)reg
= (4) = (5) = (1), where by (3)cg we denote the condition (3) restricted to regular
v’s. By the way, notice that the implication (1) = (4) is trivial, hence the reader
interested only in the proof of the equivalence of (1), (4), (5) and (7) could skip the
next three passages.

(1) = (2) is trivial.

(2) = (3) is known, and true for every topological space. First, we prove here
(2) = (3)reg- Suppose that (2) holds, and that the conclusion of (3)yeg fails. Then,
since v is regular, for every x € X we can choose an open neighborhood U, of z
and some ¢, < v such that O, N U, = 0, for every v > §,. For every § < v, let
Vs = Us, -5 Uz Thus (Vs)s<, is an open cover of X by < A sets, hence, by (2), it has
a finite subcollection with dense union, say, Vs, , ..., Vs, . If v = sup{d1,...,0nt+1,
then O, N (Vs, U---U V5, ) =0, a contradiction, since O is nonempty.

(3)reg = (4) is easy. Suppose that v is a regular cardinal, and that (z.)y<,
is, say, a strictly increasing sequence. For v < v, define O, = (z,2,42) = {z €
X | zy < < Zy42}. The O,’s are open and nonempty, since z,41 € O,. It is
immediate to see that the z given by (3)eg is a supremum of (z)y<, to which the
sequence converges.

If the open sets in (3),cg are required to be disjoint, simply take only the “even”
above sets, namely, for v = a+n, with a = 0 or a limit, let Oy = (Zat2n, Tat2n+2)-

If the sequence of open sets in (3)cg is required to be C-decreasing, take O, =
U, >~ (@4, 24). Thus the proof of (3).eg = (4) is complete in each case.

Next, we concentrate on the proof of (4) = (5). Suppose that (4) holds, and
that, without loss of generality, D is an ultrafilter over some cardinal k < A. Let
f & — X be a function: we have to show that (f(7y))y<. D-converges in X. For
some ordinal ¥’ < k+ 1, we shall construct inductively two sequences (I )a<x and
(ra)a<w of elements of X U {—o0, 00}, where, as usual, —oco and oo are two new
elements intended to satisfy —oo < z < oo, for every x € X. At a certain point the
construction ends, giving a point to which (f(7))y<, D-converges.

The sequences will satisfy the following properties.

(a) 1y <lo, whenever v < o < K/, that is, (lo)a<s is increasing;

(b) 7o <7y, whenever v < a < &/, that is, (74)a<s is decreasing;

(c) f7Y((lay70)) € D, for every a < ' (hence, in particular, I, < r,, for every
a < K');

(d) f(7) € (la,ra), whenever v < a < &', and v < k.

For o = 0, take l[gp = —oo0 and ro = oo; Clause (c) is trivially satisfied, and the
other conditions are vacuously true.
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Suppose that 8 > 0, and that (Io)a<p and (rq)a<pg have been constructed satis-
fying the above properties.

If 8 = a+1 is a successor ordinal, and f(«) & (la,7a), simply take lg =1, and
rg =rq; (a)-(d) are trivially satisfied.

If $ = a+ 1, and, instead, f(a) € (la,7a), let £ = f(a). Observe that
(layra) = (layz) U {x} U (x,7r,), hence, since D is an ultrafilter and, by (c),
7Y ((la,7a)) € D, then either (i) f~'({z}) € D, or (ii) f~*((la,2)) € D, or (iii)
f7Y((z,74)) € D. In the first eventuality, (f(7)),<x trivially D-converges to z, the
construction ends, and we have obtained the desired conclusion. In the second case,
put lg =l and rg = x. Since z = f(a) < rq, then Clause (b) is satisfied, and all
the other conditions are satisfied by construction and by the inductive hypothesis.
Symmetrically, in the third case, put g = x, and rg = r,; as above, (a)-(d) are
satisfied.

To complete the induction, we have to consider the case when ( is a limit ordinal;
say, cf 8 = v; notice that v is a regular cardinal, and that v < X, since 8 < k' < k+1,
hence 8 < k < A. The sequence (Iy)a<p is either eventually constant, or, since v is
regular, has a strictly increasing subsequence of length v and unbounded in {l }a<g.
In this latter case, Condition (4) asserts the existence of a supremum to which the
subsequence converges, and hence also the sequence (l,)a<p converges to it, since
(la)a<p is increasing, by Clause (a). If this is the case, let [z be such a supremum. If,
instead, (lo)a<p is eventually constant, let {3 be the value on which (I,)a<s becomes
constant. Notice that, in both cases, (lo)a<p converges to lg (unless i, = —o0
constantly, for @ < ). Symmetrically, (7o)a<g is either eventually constant, or
has a strictly decreasing subsequence of length v unbounded in {ro}a<p. Let rg
be either the above constant value, or the infimum given by Condition (4). If
(f(7))y<r D-converges either to lg or to rg, we are done, and we can stop the
construction. Otherwise, unless either I3 = —oo or rg = oo, there are a convex
neighborhood L of I3, and a convex neighborhood R of rg such that f~'(L) € D,
and f~1(R) ¢ D. Since (lo)a<p converges to lg, there is a < 8 such that I, € L.
We have that f~1((—o0,ls]) € D, since, L being convex, (—00,lg] C (—00,l,] UL,
and, moreover, f~1((—o0,ls]) € D, by (c), and f~1(L) ¢ D. Symmetrically,
I~ ([rg,0)) € D, hence necessarily f~*((ig,r5)) € D, since D is an ultrafilter,
and X = (—o0,lg] U (Ig,73) U [rg,00). Thus Clause (c) is satisfied for 5. All the
other conditions are trivial. The cases in which either lg = —o0, or rg = oo are
treated in a similar way, and, in fact, are simpler (we just need only the “right
part”, or the “left part” of the above arguments).

Now observe that the construction cannot be completed up to stage k' = k + 1.
Indeed, by (d), at stage x + 1 we would have f~1((l,,r.)) = ), contradicting (c).
Thus the construction ends at stage x + 1, or before, and we showed that when the
construction ends we get some element to which (f(7y))y<x D-converges.

The proof of the implication (4) = (5) is thus complete.

(5) = (1) is nowadays a well-known standard argument, and, in fact, the impli-
cation holds for every topological space. See, e. g., [St, implication (7) in Diagram
3.6].

We have proved the equivalence of (1), (2), (3)reg, (4) and (5). Now notice that
5) = (6) = (3) = (3)reg are trivial: to show (6) = (3), just consider, for every
v < ), some uniform ultrafilter over v.
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Finally, the equivalence of (5) and (7) is well-known, and holds for every Haus-
dorff regular space, [Sa, Theorems 5.3 and 5.4] (recall that it can be proved that
every GO space is regular). O

Corollary. Suppose that X is a product of topological spaces, and that all factors
but at most one are GO spaces. Then X is initially A-compact if and only if each
factor is initially \-compact.

Proof. One implication is trivial. For the other direction, by the equivalence of
(1) and (7) in the Theorem, all but at most one factor are A-bounded. It is well-
known that a product of regular A-bounded spaces is still A-bounded [St, Theorem
5.7 and implications (1), (1) in Diagram 3.6], and that a product of a A-bounded
space with an initially A-compact space is initially A-compact [Sa, Theorem 5.2 and
implications (1), (2) in Diagram 3.6]. Hence the corollary follows by first grouping
together the GO spaces, and then, in case, multiplying their product with the
possibly non GO factor. O

The particular cases of the above Theorem and Corollary when A = w appeared
in Sanchis and Tamariz-Mascaria [STM, Section 2], or are immediate consequences
of the statements there.
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