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Decomposable ultrafilters
and possible cofinalities

Paolo Lipparini

Abstract We use Shelah’s theory of possible cofinalities in order to
solve some problems about ultrafilters.

Theorem 1 Suppose that λ is a singular cardinal, λ′ < λ, and the ul-
trafilter D is κ-decomposable for all regular cardinals κ with λ′ < κ < λ.
Then D is either λ-decomposable, or λ+-decomposable.

Corollary 2 If λ is a singular cardinal, then an ultrafilter is (λ, λ)-
regular if and only if it is either cf λ-decomposable or λ+-decomposable.

We give applications to topological spaces and to abstract logics (Corol-
laries 8, 9 and Theorem 10).

If F is a family of subsets of some set I, and λ is an infinite cardinal, a
λ-decomposition for F is a function f : I → λ such that whenever X ⊆ λ
and |X| < λ then {i ∈ I|f(i) ∈ X} 6∈ F . The family F is λ-decomposable if
and only if there is a λ-decomposition for F . If D is an ultrafilter (that is, a
maximal proper filter) let us define the decomposability spectrum KD of D by
KD = {λ ≥ ω|D is λ-decomposable}.

The question of the possible values the spectrum KD may take is partic-
ularly intriguing. Even the old problem from [P; Si] of characterizing those
cardinals µ for which there is an ultrafilter D such that KD = {ω, µ} is not
yet completely solved [Shr, p. 1007].

The case when KD is infinite is even more involved. [P] studied the sit-
uation in which λ is limit and KD ∩ λ is unbounded in λ; he found some
assumptions which imply that λ ∈ KD. This is not always the case; if µ is
strongly compact and cf λ < µ < λ then there is an ultrafilter D such that
KD ∩ λ is unbounded in λ, and D is not λ-decomposable. If we are in the
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2 Decomposable ultrafilters and possible cofinalities

above situation, D is necessarily λ+-decomposable (by [So, Lemma 3] and the
proof of [P, Proposition 2]).

The above examples suggest the problem (implicit in [P]) whether KD ∩ λ
unbounded in λ implies that either λ ∈ KD or λ+ ∈ KD. In general, the
problem is still open; here we solve it affirmatively in the particular case
when there is λ′ < λ such that KD contains all regular cardinals in the interval
[λ′, λ). This is sufficient for all applications we know of: see Corollaries 2, 7,
8, 9, and Theorem 10.

We briefly review some known results on KD. If κ is regular and κ+ ∈ KD

then κ ∈ KD. If κ ∈ KD is singular, then cf κ ∈ KD. Results from [D] imply
that if there is no inner model with a measurable cardinal then KD is always
an interval with minimum ω. On the other hand, it is trivial that KD = {µ}
if and only if µ is either ω or a measurable cardinal. If a measurable cardinal
µ is made singular by Prikry forcing, then in the resulting model we have an
ultrafilter D such that KD = {ω, µ}. Further comments and constraints on
KD are given in [L3; L4]. Apparently, the problem of determining which sets
of cardinals can be represented as KF = {λ ≥ ω|F is λ-decomposable} for a
filter F has not been studied.

If (λj)j∈J are regular cardinals, the cofinality cf
∏

j∈J λj of the product∏
j∈J λj is the smallest cardinality of a set G ⊆

∏
j∈J λj having the property

that for every f ∈
∏

j∈J λj there is g ∈ G such that f(j) ≤ g(j) for all j ∈ J .
We shall state our results in a quite general form, involving arbitrary filters,

rather than ultrafilters. In what follows, the reader interested in ultrafilters
only can always assume that F is an ultrafilter.

Proposition 3 If (λj)j∈J are infinite regular cardinals, µ = cf
∏

j∈J λj and
the filter F is λj-decomposable for all j ∈ J , then F is µ′-decomposable for
some µ′ with supj∈J λj ≤ µ′ ≤ µ.

Proof Let F be over I, and let (gα)α∈µ witness µ = cf
∏

j∈J λj . For every
j ∈ J let f(j,−) : I → λj be a λj-decomposition for F . For any fixed i ∈ I,
f(−, i) ∈

∏
j∈J λj , thus there is α(i) ∈ µ such that f(j, i) ≤ gα(i)(j) for all

j ∈ J .
Let X be a subset of µ with minimal cardinality with respect to the property

that Y = {i ∈ I|α(i) ∈ X} ∈ F . Let µ′ = |X|. Thus, whenever X ′ ⊆ µ and
|X ′| < µ′, we have Y ′ = {i ∈ I|α(i) ∈ X ′} 6∈ F . Define h(i) = α(i) for i ∈ Y ,
and h(i) = 0 for i 6∈ Y . Thus, h : I → X ∪ {0}.

If |X ′| < µ′ then {i ∈ I|h(i) ∈ X ′} ⊆ Y ′ ∪ (I \ Y ) 6∈ F (otherwise, since F
is a filter, Y ′ ⊇ Y ∩ Y ′ = Y ∩ (Y ′ ∪ (I \ Y )) ∈ F , contradiction). This shows
that, modulo a bijection from X ∪{0} onto µ′, h is a µ′-decomposition for F .
Trivially, µ′ ≤ µ.

Hence, it remains to show that supj∈J λj ≤ µ′. Suppose to the contrary
that µ′ < λj̄ for some j̄ ∈ J . Then |{gα(i)(j̄)|i ∈ Y }| ≤ |{α(i)|α(i) ∈ X}| ≤
|X| = µ′ < λj̄ . Since λj̄ is regular, we have that β = supi∈Y gα(i)(j̄) < λj̄ .
Hence, if i ∈ Y , then f(j̄, i) ≤ gα(i)(j̄) ≤ β < λj̄ . Thus, |[0, β]| < λj̄ , but
{i ∈ I|f(j̄, i) ∈ [0, β]} ⊇ Y ∈ F , and this contradicts the assumption that
f(j̄,−) is a λj̄ decomposition for F . �
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Proposition 3 has not the most general form: we have results dealing with the
cofinality µ of reduced products cf

∏
E λj , where E a filter on J . We shall not

need this more general version here.
Recall from [She] that if a is a set of regular cardinals, then pcf a is the set

of regular cardinals which can be obtained as cf
∏

E a, for some ultrafilter E
on a.

Corollary 4 If a is a set of infinite regular cardinals, |a|+ < min a, and the
filter F is λ-decomposable for all λ ∈ a, then F is µ′-decomposable for some
µ′ with sup a ≤ µ′ ≤ max pcf a.

Proof By [She, II, Lemma 3.1], if |a|+ < min a then maxpcf a = cf
∏

λ∈a λ,
thus the conclusion is immediate from Proposition 3. �

Recall that an ultrafilter D is (µ, λ)-regular if and only if there is a family of
λ members of D such that the intersection of any µ members of the family
is empty. We list below the properties of decomposability and regularity we
shall need. Much more is known: see [DD; F], [W, p. 427-431] for recent
results. See [L2; L4] for more references.

Properties 5 (a) Every λ-decomposable ultrafilter is cf λ-decomposable.
(b) Every cf λ-decomposable ultrafilter is (λ, λ)-regular.
(c) If µ′ ≥ µ and λ′ ≤ λ then every (µ, λ)-regular ultrafilter is (µ′, λ′)-

regular.
(d) [CC, Theorem 1] [KP, Theorem 2.1] If λ is singular, D is a λ+-

decomposable ultrafilter, and D is not cf λ-decomposable then D is (λ′, λ+)-
regular for some λ′ < λ.

(e) [K, Corollary 2.4] If λ is singular then every λ+-decomposable ultrafilter
is (λ, λ+)-regular.

(f) [L1, Corollary 1.4] If λ is singular then every (λ, λ)-regular ultrafilter is
either cf λ-decomposable or (λ′, λ)-regular for some λ′ < λ.

(g) If λ is regular then an ultrafilter is λ-decomposable if and only if it is
(λ, λ)-regular.

Theorem 6 Suppose that λ is a singular cardinal, F is a filter, and either
(a) there is λ′ < λ such that F is κ-decomposable for all regular cardinals

κ with λ′ < κ < λ, or
(b) cf λ > ω and S = {κ < λ|F is κ+-decomposable} is stationary in λ.
Then F is either λ-decomposable, or λ+-decomposable.
If F = D is an ultrafilter, then D is (λ, λ)-regular. Moreover, D is either

(i) λ-decomposable, or (ii) (λ′, λ+)-regular for some λ′ < λ, or (iii) cf λ-
decomposable and (λ, λ+)-regular.

Proof If cf λ = ν > ω then by [She, II, Claim 2.1] there is a sequence (λα)α∈ν

closed and unbounded in λ and such that, letting a = {λ+
α |α ∈ ν}, we have

λ+ = maxpcf a. If cf λ = ω then we have λ+ = maxpcf a for some a of order
type ω unbounded in λ as a consequence of [She, II, Theorem 1.5] (since a
has order type ω, any ultrafilter over a is either principal, or extends the dual
of the ideal of bounded subsets of a).
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Letting b = a ∩ [λ′, λ) in case (a), and b = a ∩ {κ+|κ ∈ S} in case (b), we
still have max pcf b = λ+, because b is unbounded in λ, hence max pcf b ≥ λ+,
and because max pcf b ≤ max pcf a = λ+, since b ⊆ a.

Assume, without loss of generality, that λ′ > (cf λ)+ in (a), and that
inf S > (cf λ)+ in (b). Since |b| ≤ |a| = cf λ, then |b|+ < min b, hence
Corollary 4 with b in place of a implies that F is either λ-decomposable, or
λ+-decomposable.

The last statements follow from Properties 5(a)-(e). �

Corollary 7 If λ is a singular cardinal and the ultrafilter D is not cf λ-
decomposable, then the following conditions are equivalent:

(a) There is λ′ < λ such that D is κ-decomposable for all regular cardinals
κ with λ′ < κ < λ.

(a′) (Only in case cf λ > ω) {κ < λ|F+ is κ+-decomposable} is stationary
in λ.

(b) D is λ+-decomposable.
(c) There is λ′ < λ such that D is (λ′, λ+)-regular.
(d) D is (λ, λ)-regular.
(e) There is λ′ < λ such that D is (λ′, λ)-regular.
(f) There is λ′ < λ such that D is (λ′′, λ′′)-regular for every λ′′ with

λ′ < λ′′ < λ.

Proof (a) ⇒ (b) and (a′) ⇒ (b) are immediate from Theorem 6 and Property
5(a). In case cf λ > ω, (a) ⇒ (a′) is trivial.

(b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a) are given, respectively, by Properties
5(d)(c)(f)(c)(g). �

Proof of Corollary 2 Immediate from Corollary 7(d)⇒(b) and Properties 5(b)-
(d). �

A topological space is [µ, λ]-compact if and only if every open cover by λ
many sets has a subcover by < µ many sets. A family F of topological
spaces is productively [µ, λ]-compact if and only if every (Tychonoff) product
of members of F (allowing repetitions) is [µ, λ]-compact.

Corollary 8 If λ is a singular cardinal, then a family of topological spaces is
productively [λ, λ]-compact if and only if it is either productively [cf λ, cf λ]-
compact or productively [λ+, λ+]-compact.

Proof [C, Theorem 1.7] proved that, for every infinite cardinals µ and λ,
a family F of topological spaces is productively [µ, λ]-compact if and only
if there exists a (µ, λ)-regular ultrafilter D such that every member of F is
D-compact (see [C] for the definition and references). The corollary is then
immediate from Corollary 2, using Property 5(g). �

Henceforth, by a logic, we mean a regular logic in the sense of [E]. Typical
examples of regular logics are infinitary logics, or extensions of first-order logic
obtained by adding new quantifiers; e. g., cardinality quantifiers asserting
“there are at least ωα x’s such that . . . ”.

A logic L is [λ, µ]-compact if and only if for every pair of sets Γ and Σ of
sentences of L, if |Σ| ≤ λ and if Γ ∪ Σ′ has a model for every Σ′ ⊆ Σ with
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|Σ| < µ, then Γ ∪ Σ has a model (see [C; M] for some history and further
comments).

Corollary 9 If λ is a singular cardinal, then a logic is [λ, λ]-compact if and
only if it is either [cf λ, cf λ]-compact or [λ+, λ+]-compact.

Proof J. Makowski and S. Shelah defined what it means for an ultrafilter to
be related to a logic, and showed that a logic L is [λ, µ]-compact if and only
if there exists some (µ, λ)-regular ultrafilter related to L (see [M, Theorem
1.4.4]; notice that the order of the parameters is reversed in the definition
of (λ, µ)-regularity as given by [M]). The corollary is then immediate from
Corollary 2 and Property 5(g). �

Theorem 10 Suppose that (λi)i∈I and (µj)j∈J are sets of infinite cardinals.
Then the following are equivalent:

(i) For every i ∈ I there is a (λi, λi)-regular ultrafilter which for no j ∈ J
is (µj , µj)-regular.

(ii) There is a logic which is [λi, λi]-compact for every i ∈ I, and which for
no j ∈ J is [µj , µj ]-compact.

(iii) For every i ∈ I there is a [λi, λi]-compact logic which for no j ∈ J is
[µj , µj ]-compact.

The logics in (ii) and (iii) can be chosen to be generated by at most 2 · |J |
cardinality quantifiers (at most |J | cardinality quantifiers if all µj’s are regu-
lar).

Proof In the case when all the µj ’s are regular, the theorem is proved in [L1,
Theorem 4.1]. The general case follows from the above particular case, by
applying Corollaries 2 and 9. �
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