Decomposable ultrafilters and possible cofinalities

Paolo Lipparini

Abstract We use Shelah’s theory of possible cofinalities in order to solve some problems about ultrafilters.

Theorem 1 Suppose that λ is a singular cardinal, $\lambda' < \lambda$, and the ultrafilter D is κ-decomposable for all regular cardinals κ with $\lambda' < \kappa < \lambda$. Then D is either λ-decomposable, or λ^+-decomposable.

Corollary 2 If λ is a singular cardinal, then an ultrafilter is (λ, λ)-regular if and only if it is either $\text{cf} \lambda$-decomposable or λ^+-decomposable.

We give applications to topological spaces and to abstract logics (Corollaries 8, 9 and Theorem 10).

If F is a family of subsets of some set I, and λ is an infinite cardinal, a λ-decomposition for F is a function $f : I \to \lambda$ such that whenever $X \subseteq \lambda$ and $|X| < \lambda$ then $\{i \in I | f(i) \in X\} \notin F$. The family F is λ-decomposable if and only if there is a λ-decomposition for F. If D is an ultrafilter (that is, a maximal proper filter) let us define the decomposability spectrum K_D of D by $K_D = \{\lambda \geq \omega | D$ is λ-decomposable\}.

The question of the possible values the spectrum K_D may take is particularly intriguing. Even the old problem from [P; Si] of characterizing those cardinals μ for which there is an ultrafilter D such that $K_D = \{\omega, \mu\}$ is not yet completely solved [Shr, p. 1007].

The case when K_D is infinite is even more involved. [P] studied the situation in which λ is limit and $K_D \cap \lambda$ is unbounded in λ; he found some assumptions which imply that $\lambda \in K_D$. This is not always the case; if μ is strongly compact and $\text{cf} \lambda < \mu < \lambda$ then there is an ultrafilter D such that $K_D \cap \lambda$ is unbounded in λ, and D is not λ-decomposable. If we are in the

Printed April 18, 2008
2001 Mathematics Subject Classification: Primary, 03C20, 03E04; 03C95, 54D20
Keywords: λ-decomposable, (μ, λ)-regular (ultra)-filter; cofinality of a partial order; (productive) $[\mu, \lambda]$-compactness
©2008 University of Notre Dame
above situation, \(D \) is necessarily \(\lambda^+ \)-decomposable (by [So, Lemma 3] and the proof of [P, Proposition 2]).

The above examples suggest the problem (implicit in [P]) whether \(K_D \cap \lambda \) unbounded in \(\lambda \) implies that either \(\lambda \in K_D \) or \(\lambda^+ \in K_D \). In general, the problem is still open; here we solve it affirmatively in the particular case when there is \(\lambda' < \lambda \) such that \(K_D \) contains all regular cardinals in the interval \([\lambda', \lambda)\). This is sufficient for all applications we know of: see Corollaries 2, 7, 8, 9, and Theorem 10.

We briefly review some known results on \(K_D \). If \(\kappa \) is regular and \(\kappa^+ \in K_D \), then \(\kappa \in K_D \). If \(\kappa \in K_D \) is singular, then \(\kappa \in K_D \). Results from [D] imply that if there is no inner model with a measurable cardinal then \(K_D \) is always an interval with minimum \(\omega \). On the other hand, it is trivial that \(K_D = \{\mu\} \) if and only if \(\mu \) is either \(\omega \) or a measurable cardinal. If a measurable cardinal \(\mu \) is made singular by Prikry forcing, then in the resulting model we have an ultrafilter \(D \) such that \(K_D = \{\omega, \mu\} \). Further comments and constraints on \(K_D \) are given in [L3; L4]. Apparently, the problem of determining which sets of cardinals can be represented as \(K_F = \{\lambda \geq \omega | F \) is \(\lambda \)-decomposable\} for a filter \(F \) has not been studied.

If \((\lambda_j)_{j \in J} \) are regular cardinals, the cofinality of \(\prod_{j \in J} \lambda_j \) of the product \(\prod_{j \in J} \lambda_j \) is the smallest cardinality of a set \(G \subseteq \prod_{j \in J} \lambda_j \) having the property that for every \(f \in \prod_{j \in J} \lambda_j \) there is \(g \in G \) such that \(f(j) \leq g(j) \) for all \(j \in J \).

We shall state our results in a quite general form, involving arbitrary filters, rather than ultrafilters. In what follows, the reader interested in ultrafilters only can always assume that \(F \) is an ultrafilter.

Proposition 3 \((\lambda_j)_{j \in J} \) are infinite regular cardinals, \(\mu = \text{cf} \prod_{j \in J} \lambda_j \) and the filter \(F \) is \(\lambda_j \)-decomposable for all \(j \in J \), then \(F \) is \(\mu' \)-decomposable for some \(\mu' \) with \(\text{sup}_{j \in J} \lambda_j \leq \mu' \leq \mu \).

Proof Let \(F \) be over \(I \), and let \((g_\alpha)_{\alpha \in \mu} \) witness \(\mu = \text{cf} \prod_{j \in J} \lambda_j \). For every \(j \in J \) let \(f(j, -) : I \to \lambda_j \) be a \(\lambda_j \)-decomposition for \(F \). For any fixed \(i \in I \), \(f(-, i) \in \prod_{j \in J} \lambda_j \), thus there is \(\alpha(i) \in \mu \) such that \(f(j, i) \leq g_{\alpha(i)}(j) \) for all \(j \in J \).

Let \(X \) be a subset of \(\mu \) with minimal cardinality with respect to the property that \(Y = \{i \in I | \alpha(i) \in X\} \subseteq F \). Let \(\mu' = |X| \). Thus, whenever \(X' \subseteq \mu \) and \(|X'| < \mu' \), we have \(Y' = \{i \in I | \alpha(i) \in X'\} \subseteq F \). Define \(h(i) = \alpha(i) \) for \(i \in Y \), and \(h(i) = 0 \) for \(i \notin Y \). Thus, \(h : I \to X \cup \{0\} \).

If \(|X'| < \mu' \) then \(\{i \in I | h(i) \in X'\} \subseteq Y' \cup (I \setminus Y) \notin F \) (otherwise, since \(F \) is a filter, \(Y' \subseteq Y \cap (Y' \cup (I \setminus Y)) \subseteq F \), contradiction). This shows that, modulo a bijection from \(X \cup \{0\} \) onto \(\mu' \), \(h \) is a \(\mu' \)-decomposition for \(F \). Trivially, \(\mu' \leq \mu \).

Hence, it remains to show that \(\text{sup}_{j \in J} \lambda_j \leq \mu' \). Suppose to the contrary that \(\mu' < \lambda_j \) for some \(j \in J \). Then \(|\{g_{\alpha(i)}(j) | i \in Y\}| \leq |\{\alpha(i) | \alpha(i) \in X\}| \leq |X| = \mu' < \lambda_j \). Since \(\lambda_j \) is regular, we have that \(\beta = \text{sup}_{i \in Y} g_{\alpha(i)}(j) < \lambda_j \). Hence, if \(i \in Y \), then \(f(\hat{j}, i) \leq g_{\alpha(i)}(\hat{j}) \leq \beta < \lambda_j \). Thus, \(\{0, \beta\} < \lambda_j \), but \(\{i \in I | f(\hat{j}, i) \in [0, \beta]\} \subseteq Y \in F \), and this contradicts the assumption that \(f(\hat{j}, -) \) is a \(\lambda_j \) decomposition for \(F \). \(\Box \)
Proposition 3 has not the most general form: we have results dealing with the cofinality μ of reduced products $\prod E \lambda_j$, where E a filter on J. We shall not need this more general version here.

Recall from [She] that if a is a set of regular cardinals, then $pcf a$ is the set of regular cardinals which can be obtained as $\prod E a$, for some ultrafilter E on a.

Corollary 4 If a is a set of infinite regular cardinals, $|a|^+ < \min a$, and the filter F is λ-decomposable for all $\lambda \in a$, then F is μ'-decomposable for some μ' with $\sup a \leq \mu' \leq \max pcf a$.

Proof By [She, II, Lemma 3.1], if $|a|^+ < \min a$ then $\max pcf a = \prod a \lambda$, thus the conclusion is immediate from Proposition 3. □

Recall that an ultrafilter D is (μ, λ)-regular if and only if there is a family of λ members of D such that the intersection of any μ members of the family is empty. We list below the properties of decomposability and regularity we shall need. Much more is known: see [DD; F], [W, p. 427-431] for recent results. See [L2; L4] for more references.

Properties 5
(a) Every λ-decomposable ultrafilter is $cf \lambda$-decomposable.
(b) Every $cf \lambda$-decomposable ultrafilter is (λ, λ)-regular.
(c) If $\mu' \geq \mu$ and $\lambda' \leq \lambda$ then every (μ, λ)-regular ultrafilter is (μ', λ')-regular.
(d) [CC, Theorem 1] [KP, Theorem 2.1] If λ is singular, D is a λ^+-decomposable ultrafilter, and D is not $cf \lambda$-decomposable then D is (λ', λ^+)-regular for some $\lambda' < \lambda$.
(e) [K, Corollary 2.4] If λ is singular then every λ^+-decomposable ultrafilter is either $cf \lambda$-decomposable or (λ', λ)-regular for some $\lambda' < \lambda$.
(f) [L1, Corollary 1.4] If λ is singular then every (λ, λ)-regular ultrafilter is either $cf \lambda$-decomposable or (λ', λ)-regular for some $\lambda' < \lambda$.
(g) If λ is regular then an ultrafilter is λ-decomposable if and only if it is (λ, λ)-regular.

Theorem 6 Suppose that λ is a singular cardinal, F is a filter, and either
(a) there is $\lambda' < \lambda$ such that F is κ^+-decomposable for all regular cardinals κ with $\lambda' < \kappa < \lambda$, or
(b) $cf \lambda > \omega$ and $S = \{ \kappa < \lambda | F \text{ is } \kappa^+\text{-decomposable} \}$ is stationary in λ.
Then F is either λ-decomposable, or λ^+-decomposable.
If $F = D$ is an ultrafilter, then D is (λ, λ)-regular. Moreover, D is either
(i) λ-decomposable, or
(ii) (λ', λ^+)-regular for some $\lambda' < \lambda$, or
(iii) $cf \lambda$-decomposable and (λ, λ^+)-regular.

Proof If $cf \lambda = \nu > \omega$ then by [She, II, Claim 2.1] there is a sequence $(\lambda_\alpha)_{\alpha \in \nu}$ closed and unbounded in λ and such that, letting $a = \{ \lambda_\alpha \mid \alpha \in \nu \}$, we have $\lambda^+ = \max pcf a$. If $cf \lambda = \omega$ then we have $\lambda^+ = \max pcf a$ for some a of order type ω unbounded in λ as a consequence of [She, II, Theorem 1.5] (since a has order type ω, any ultrafilter over a is either principal, or extends the dual of the ideal of bounded subsets of a).
Letting $b = a \cap [\lambda', \lambda)$ in case (a), and $b = a \cap \{\kappa | \kappa \in S\}$ in case (b), we still have $\text{max pcf} b = \lambda^+$, because b is unbounded in λ, hence $\text{max pcf} b \geq \lambda^+$, and because $\text{max pcf} b \leq \text{max pcf} a = \lambda^+$, since $b \subseteq a$.

Assume, without loss of generality, that $\lambda' > (\text{cf} \lambda)^+$ in (a), and that $\inf S > (\text{cf} \lambda)^+$ in (b). Since $|b| \leq |a| = \text{cf} \lambda$, then $|b|^+ < \min b$, hence Corollary 4 with b in place of a implies that F is either λ-decomposable, or λ^+-decomposable.

The last statements follow from Properties 5(a)-(e). □

Corollary 7 If λ is a singular cardinal and the ultrafilter D is not $\text{cf} \lambda$-decomposable, then the following conditions are equivalent:

(a) There is $\lambda' < \lambda$ such that D is κ-decomposable for all regular cardinals κ with $\lambda' < \kappa < \lambda$.

(a') (Only in case $\text{cf} \lambda > \omega$) $\{\kappa < \lambda | F^+ \text{ is } \kappa^+\text{-decomposable}\}$ is stationary in λ.

(b) D is λ^+-decomposable.

(c) There is $\lambda' < \lambda$ such that D is (λ', λ^+)-regular.

(d) D is (λ, λ)-regular.

(e) There is $\lambda' < \lambda$ such that D is (λ', λ)-regular.

(f) There is $\lambda' < \lambda$ such that D is (λ'', λ''')-regular for every λ'' with $\lambda' < \lambda'' < \lambda$.

Proof (a) \Rightarrow (b) and (a') \Rightarrow (b) are immediate from Theorem 6 and Property 5(a). In case $\text{cf} \lambda > \omega$, (a) \Rightarrow (a') is trivial.

(b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f) \Rightarrow (a) are given, respectively, by Properties 5(d)(c)(f)(c)(g). □

Proof of Corollary 2 Immediate from Corollary 7(d)\Rightarrow(b) and Properties 5(b)-(d). □

A topological space is $[\mu, \lambda]$-compact if and only if every open cover by λ many sets has a subcover by $< \mu$ many sets. A family \mathcal{F} of topological spaces is productively $[\mu, \lambda]$-compact if and only if every (Tychonoff) product of members of \mathcal{F} (allowing repetitions) is $[\mu, \lambda]$-compact.

Corollary 8 If λ is a singular cardinal, then a family of topological spaces is productively $[\lambda, \lambda]$-compact if and only if it is either productively $[\text{cf} \lambda, \text{cf} \lambda]$-compact or productively $[\lambda^+, \lambda^+]$-compact.

Proof [C, Theorem 1.7] proved that, for every infinite cardinals μ and λ, a family \mathcal{F} of topological spaces is productively $[\mu, \lambda]$-compact if and only if there exists a (μ, λ)-regular ultrafilter D such that every member of \mathcal{F} is D-compact (see [C] for the definition and references). The corollary is then immediate from Corollary 2, using Property 5(g). □

Henceforth, by a **logic**, we mean a **regular logic** in the sense of [E]. Typical examples of regular logics are infinitary logics, or extensions of first-order logic obtained by adding new quantifiers; e. g., cardinality quantifiers asserting “there are at least $\omega_\alpha x$’s such that . . . ”.

A logic L is $[\lambda, \mu]$-compact if and only if for every pair of sets Γ and Σ of sentences of L, if $|\Sigma| \leq \lambda$ and if $\Gamma \cup \Sigma'$ has a model for every $\Sigma' \subseteq \Sigma$ with
Decomposable ultrafilters and possible cofinalities

\(|\Sigma| < \mu\), then \(\Gamma \cup \Sigma\) has a model (see [C; M] for some history and further comments).

Corollary 9 If \(\lambda\) is a singular cardinal, then a logic is \([\lambda, \lambda]\)-compact if and only if it is either \([\cf \lambda, \cf \lambda]\)-compact or \([\lambda^+, \lambda^+]\)-compact.

Proof J. Makowski and S. Shelah defined what it means for an ultrafilter to be related to a logic, and showed that a logic \(\mathcal{L}\) is \([\lambda, \mu]\)-compact if and only if there exists some \((\mu, \lambda)\)-regular ultrafilter related to \(\mathcal{L}\) (see [M, Theorem I.4.4]; notice that the order of the parameters is reversed in the definition of \((\lambda, \mu)\)-regularity as given by [M]). The corollary is then immediate from Corollary 2 and Property 5(g).

Theorem 10 Suppose that \((\lambda_i)_{i \in I}\) and \((\mu_j)_{j \in J}\) are sets of infinite cardinals. Then the following are equivalent:

(i) For every \(i \in I\) there is a \((\lambda_i, \lambda_i)\)-regular ultrafilter which for no \(j \in J\) is \((\mu_j, \mu_j)\)-regular.

(ii) There is a logic which is \([\lambda_i, \lambda_i]\)-compact for every \(i \in I\), and which for no \(j \in J\) is \([\mu_j, \mu_j]\)-compact.

(iii) For every \(i \in I\) there is a \([\lambda_i, \lambda_i]\)-compact logic which for no \(j \in J\) is \([\mu_j, \mu_j]\)-compact.

The logics in (ii) and (iii) can be chosen to be generated by at most \(2 \cdot |J|\) cardinality quantifiers (at most \(|J|\) cardinality quantifiers if all \(\mu_j\)'s are regular).

Proof In the case when all the \(\mu_j\)'s are regular, the theorem is proved in [L1, Theorem 4.1]. The general case follows from the above particular case, by applying Corollaries 2 and 9.

References

Acknowledgments

The author has received support from MPI and GNSAGA. We wish to express our gratitude to X. Caicedo for stimulating discussions.
Decomposable ultrafilters and possible cofinalities

URL: http://www.mat.uniroma2.it/~lipparin