arXiv:submit/0651315 [math.GN] 10 Feb 2013

COMPACTNESS OF POWERS OF ω

PAOLO LIPPARINI

ABSTRACT. We characterize exactly the compactness properties of the product of κ copies of the space ω with the discrete topology. The characterization involves uniform ultrafilters, the existence of certain nonstandard elements, and infinitary languages. We also have results involving products of possibly uncountable regular cardinals.

Mycielski [My], extending previous results by Ehrenfeucht, Erdös, Hajnal, Łoś and Stone, showed that ω^{κ} is not (finally) κ -compact, for every infinite cardinal κ strictly less than the first weakly inaccessible cardinal. Here ω denotes a countable topological space with the discrete topology; products (and powers) are endowed with the Tychonoff topology, and a topological space is said to be *finally* κ -compact if any open cover has a subcover of cardinality strictly less than κ .

On the other direction, Mrówka [Mr1, Mr2] showed that if $\mathcal{L}_{\omega_1,\omega}$ is (κ, κ) compact, then ω^{κ} is indeed finally κ -compact (in particular, this holds if κ is weakly compact). As usual, $\mathcal{L}_{\lambda,\mu}$ is the *infinitary language* which allows
conjunctions and disjunctions of $< \lambda$ formulas, and universal or existential
quantification over $< \mu$ variables; (κ, κ) -compactness means that any κ satisfiable set of $|\kappa|$ -many sentences is satisfiable.

To the best of our knowledge, the gap between Mycielski's and Mrówka's results has never been exactly filled. It follows from [Mr2, Theorem 1] and Čudnovskiĭ [Ču, Theorem 2] that $\mathcal{L}_{\kappa,\omega}$ is (κ, κ) -compact if and only if every product of $|\kappa|$ -many discrete spaces, each of cardinality $< \kappa$, is finally κ -compact (the proofs build also on work by Hanf, Keisler, Monk, Scott, Tarski, Ulam and others; earlier versions and variants were known under inaccessibility conditions). No matter how satisfying the above result is, it adds nothing about powers of ω , since it deals with possibly uncountable factors.

In this note we show that Mrówka gives the exact estimation, namely, that ω^{κ} is finally κ -compact if and only if $\mathcal{L}_{\omega_{1},\omega}$ is (κ, κ) -compact. More

²⁰¹⁰ Mathematics Subject Classification. Primary 54B10, 54D20, 03C75; Secondary 03C20, 03E05, 54A20, 54A25.

Key words and phrases. Powers of omega; (finally) compact space; infinitary language; ultrafilter convergence; uniform ultrafilter; λ -nonstandard element; weakly compact cardinal.

generally, we find necessary and sufficient conditions for ω^{κ} being finally λ -compact, or, even, just being $[\lambda, \lambda]$ -compact. Our methods involve intermediate steps of independent interest, dealing with uniform ultrafilters and extensions of models by means of " λ -nonstandard" elements. The equivalences we find in such intermediate steps hold for arbitrary regular cardinals, not only for ω ; in particular, compactness properties of products of regular cardinals (with the order topology) are characterized.

Throughout, λ , μ , κ and ν are infinite cardinals, X is a topological space, and D is an ultrafilter. Cardinals are also considered as topological spaces endowed with the order topology.

The space X is $[\mu, \lambda]$ -compact if every open cover of X by at most λ sets has a subcover by less than μ sets. It is easy to show that final κ compactness is equivalent to $[\nu, \nu]$ -compactness, for every $\nu \ge \kappa$, or, more generally, that $[\mu, \lambda]$ -compactness is equivalent to $[\nu, \nu]$ -compactness, for every ν such that $\mu \le \nu \le \lambda$. If λ is regular, a space X is $[\lambda, \lambda]$ -compact if and only if every subset of X of cardinality λ has a complete accumulation point. If D is an ultrafilter over some set I, a sequence $(x_i)_{i \in I}$ of elements of X is said to D-converge to $x \in X$ if $\{i \in I \mid x_i \in U\} \in D$, for every open neighborhood U of x. If $f: I \to J$ is a function, f(D) is the ultrafilter over J defined by $Y \in f(D)$ if and only if $f^{-1}(Y) \in D$.

Definition 1. We shall denote by $\lambda \Rightarrow (\mu_{\gamma})_{\gamma \in \kappa}$ the following statement.

(*) For every sequence of functions $(f_{\gamma})_{\gamma \in \kappa}$, such that $f_{\gamma} : \lambda \to \mu_{\gamma}$ for $\gamma \in \kappa$, there is some uniform ultrafilter D over λ such that, for no $\gamma \in \kappa$, $f_{\gamma}(D)$ is uniform over μ_{γ} .

We shall write $\lambda \stackrel{\kappa}{\Rightarrow} \mu$ when all the μ_{γ} 's in (*) are equal to μ . The negation of $\lambda \stackrel{\kappa}{\Rightarrow} \mu$ is denoted by $\lambda \stackrel{\kappa}{\Rightarrow} \mu$.

The following observation by Saks [Sa, Fact (i) on pp. 80–81] (building also on ideas of Bernstein and Ginsburg) will play a fundamental role in the present note. We shall assume that λ is regular, so that we do not need the assumption that sequences are faithfully indexed. See Caicedo [Ca, Section 3] for a variation for the case when λ is singular.

Proposition 2. [Sa] If λ is regular, then X is $[\lambda, \lambda]$ -compact if and only if, for every sequence $(x_{\alpha})_{\alpha \in \lambda}$ of elements of X, there is an ultrafilter D uniform over λ such that $(x_{\alpha})_{\alpha \in \lambda}$ D-converges to some $x \in X$.

Theorem 3. If λ and $(\mu_{\gamma})_{\gamma \in \kappa}$ are regular cardinals, then $\prod_{\gamma \in \kappa} \mu_{\gamma}$ is $[\lambda, \lambda]$ compact if and only if $\lambda \Rightarrow (\mu_{\gamma})_{\gamma \in \kappa}$.

Proof. Let $X = \prod_{\gamma \in \kappa} \mu_{\gamma}$, and, for $\gamma \in \kappa$, let $\pi_{\gamma} : X \to \mu_{\gamma}$ be the natural projection. A sequence of functions as in the first line of (*) can be naturally identified with a sequence $(x_{\alpha})_{\alpha \in \lambda}$ of elements of X, by posing $\pi_{\gamma}(x_{\alpha}) = f_{\gamma}(\alpha)$. By Proposition 2, X is $[\lambda, \lambda]$ -compact if and only if, for every sequence $(x_{\alpha})_{\alpha \in \lambda}$ of elements of X, there is an ultrafilter D uniform over λ such that $(x_{\alpha})_{\alpha \in \lambda}$ D-converges in X. As well known, this happens if and only if, for each $\gamma \in \kappa$, $(\pi_{\gamma}(x_{\alpha}))_{\alpha \in \lambda}$ D-converges in μ_{γ} , and this happens if and only if, for each $\gamma \in \kappa$, there is $\delta_{\gamma} \in \mu_{\gamma}$ such that $\{\alpha \in \lambda \mid \pi_{\gamma}(x_{\alpha}) < \delta_{\gamma}\} \in D$. Under the mentioned identification, and since every μ_{γ} is regular, this means exactly that each $f_{\gamma}(D)$ fails to be uniform over μ_{γ} .

We now consider models of the form $\mathfrak{A} = \langle \lambda, \langle \alpha, \ldots \rangle_{\alpha \in \lambda}$ (here, by abuse of notation, we do not distinguish between a symbol and its interpretation). If $\mathfrak{B} \equiv \mathfrak{A}$ (that is, \mathfrak{B} is *elementarily equivalent* to \mathfrak{A}), we say that $b \in B$ is λ -nonstandard if $\alpha < b$ holds in \mathfrak{B} , for every $\alpha \in \lambda$. Similarly, for $\mu < \lambda$, we say that $c \in B$ is μ -nonstandard if $c < \mu$ and $\beta < c$ hold in \mathfrak{B} , for every $\beta \in \mu$. Of course, in the case $\lambda = \omega$, we get the usual notion of a nonstandard element. The importance of λ -nonstandard elements in Model Theory has been stressed by C. C. Chang and H. J. Keisler; see [Ch, pp. 115–118]. (About the terminology: a μ -nonstandard element c in the above sense is said to *realize* μ in [Ch], and to *bound* μ in [Li1].)

Theorem 4. If $\mu \leq \lambda$ are regular cardinals and $\kappa \geq \lambda$, then $\lambda \stackrel{\sim}{\Rightarrow} \mu$ if and only if, for every expansion \mathfrak{A} of $\langle \lambda, <, \alpha \rangle_{\alpha \in \lambda}$ with at most κ new symbols (equivalently, symbols and sorts), there is $\mathfrak{B} \equiv \mathfrak{A}$ such that \mathfrak{B} has a λ nonstandard element but no μ -nonstandard element.

Proof. Suppose $\lambda \stackrel{\kappa}{\Rightarrow} \mu$ and let \mathfrak{A} be an expansion of $\langle \lambda, \langle, \alpha \rangle_{\alpha \in \lambda}$ with at most κ new symbols and sorts. Without loss of generality, we can assume that \mathfrak{A} has Skolem functions, since this adds at most $\kappa \geq \lambda$ new symbols. Enumerate as $(f_{\gamma})_{\gamma \in \kappa}$ all the functions from λ to μ which are definable in \mathfrak{A} (repeat occurrences, if necessary), and let D be the ultrafilter given by $\lambda \stackrel{\kappa}{\Rightarrow} \mu$. Let \mathfrak{C} be the ultrapower $\prod_D \mathfrak{A}$. Since D is uniform over $\lambda, b = [Id]_D$, the D-class of the identity on λ , is a λ -nonstandard element in \mathfrak{C} . Let \mathfrak{B} be the Skolem hull of $\{b\}$ in \mathfrak{C} ; thus $\mathfrak{B} \equiv \mathfrak{C} \equiv A$, and b is a λ -nonstandard element of \mathfrak{B} . Had \mathfrak{B} a μ -nonstandard element c, there would be $\gamma \in \kappa$ such that $c = f_{\gamma}(b)$, by the definition of \mathfrak{B} . Thus $c = f_{\gamma}([Id]_D) = [f_{\gamma}]_D$, but this would imply that $f_{\gamma}(D)$ is uniform over μ (since μ is regular), contradicting the choice of D.

For the converse, suppose that $(f_{\gamma})_{\gamma \in \kappa}$ is a sequence of functions from λ to μ . Let \mathfrak{A} be the expansion of $\langle \lambda, <, \alpha \rangle_{\alpha \in \lambda}$ obtained by adding the f_{γ} 's as unary functions. By assumption, there is $\mathfrak{B} \equiv \mathfrak{A}$ with a λ -nonstandard element b but without μ -nonstandard elements. For every formula $\varphi(y)$ in the similarity type of \mathfrak{A} and with exactly one free variable y, let $Z_{\varphi} = \{\alpha \in \lambda \mid \varphi(\alpha) \text{ holds in } \mathfrak{A}\}$. Put $E = \{Z_{\varphi} \mid \varphi$ is as above, and $\varphi(b)$ holds in $\mathfrak{B}\}$. E has trivially the finite intersection property, thus it can be extended to some ultrafilter D over λ . Since λ is regular and, for every $\alpha \in \lambda$, $(\alpha, \lambda) \in E \subseteq D$, we get that D is uniform. Let $\gamma \in \kappa$. Since \mathfrak{B} has no μ -nonstandard element, there is $\beta < \mu$ such that $f_{\gamma}(b) < \beta$ holds in \mathfrak{B} . Letting $\varphi(y)$ be $f_{\gamma}(y) < \beta$, we get that $Z_{\varphi} = \{\alpha \in \lambda \mid f_{\gamma}(\alpha) < \beta\} \in E \subseteq D$, proving that $f_{\gamma}(D)$ is not uniform over μ .

If Σ and Γ are sets of sentences of $\mathcal{L}_{\omega_1,\omega}$, we say that Γ is λ -satisfiable relative to Σ if $\Sigma \cup \Gamma'$ is satisfiable, for every $\Gamma' \subseteq \Gamma$ of cardinality $< \lambda$. We say that $\mathcal{L}_{\omega_1,\omega}$ is κ - (λ, λ) -compact if $\Sigma \cup \Gamma$ is satisfiable, whenever $|\Sigma| \leq \kappa$, $|\Gamma| \leq \lambda$, and Γ is λ -satisfiable relative to Σ . The above notion has been introduced in [Li1] for arbitrary logics, extending notions by Chang, Keisler, Makowsky, Shelah and Tarski and others. Clearly, if $\kappa \leq \lambda$, then κ - (λ, λ) compactness reduces to (λ, λ) -compactness.

Theorem 5. If $\kappa \ge \lambda$ and λ is regular, the following conditions are equivalent.

- (1) ω^{κ} is $[\lambda, \lambda]$ -compact.
- (2) The language $\mathcal{L}_{\omega_1,\omega}$ is κ - (λ, λ) -compact.
- (3) $\lambda \stackrel{\kappa}{\Rightarrow} \omega$.

In particular, if λ is regular, then ω^{λ} is finally λ -compact if and only if $\mathcal{L}_{\omega_{1},\omega}$ is (λ, λ) -compact.

Proof. The equivalence of (1) and (3) is the particular case of Theorem 3 when all μ_{γ} 's equal ω . In view of Theorem 4, it is enough to prove that (2) is equivalent to the necessary and sufficient condition given there for $\lambda \stackrel{\kappa}{\Rightarrow} \omega$. This is Theorem 3.12 in [Li1] and, anyway, it is a standard argument. We sketch a proof for the non trivial direction. So, suppose that the condition in Theorem 4 holds. For models without ω -nonstandard elements, a formula of $\mathcal{L}_{\omega_{1},\omega}$ of the form $\bigwedge_{n\in\omega} \varphi_{n}(\bar{x})$ is equivalent to $\forall y < \omega R(y,\bar{x})$, for a newly introduced relation R such that $R(n,\bar{x}) \Leftrightarrow \varphi_{n}(\bar{x})$, for every $n \in \omega$. Thus, working within such models, and appropriately extending the vocabulary, we may assume that Σ and Γ are sets of first order sentences. If $|\Sigma| \leq \kappa$, and $\Gamma = \{\gamma_{\alpha} \mid \alpha \in \lambda\}$ is λ -satisfiable relative to Σ , construct a model \mathfrak{A} which contains $\langle \lambda, <, \alpha \rangle_{\alpha \in \lambda}$, and with a relation S such that, for every $\beta < \lambda$, $\{z \in A \mid S(\beta, z)\}$ models $\Sigma \cup \{\gamma_{\alpha} \mid \alpha < \beta\}$. This is possible, since Γ is λ -satisfiable relative to Σ . If $\mathfrak{B} \equiv \mathfrak{A}$ is given by $\lambda \stackrel{\kappa}{\Rightarrow} \omega$, and $b \in B$ is λ -nonstandard, then $\{z \in B \mid S(b, z)\}$ models $\Sigma \cup \Gamma$.

The last statement follows from the trivial fact that ω^{λ} is finally λ^+ compact, since it has a base of cardinality λ ; hence ω^{λ} is finally λ -compact
if and only if it is $[\lambda, \lambda]$ -compact.

The assumption that λ is regular in Theorem 5 is only for simplicity: we can devise a modified principle, call it $(\lambda, \lambda) \stackrel{\kappa}{\Rightarrow} \omega$, which involves (λ, λ) regular ultrafilters [Li2], and functions $f_{\gamma} : [\lambda]^{<\lambda} \to \omega$. All the arguments carry over to get a result corresponding to Theorem 5. In particular, the equivalence of (1) and (2) holds with no assumption on λ . To keep this note within the limits of a reasonable length, we shall present details elsewhere.

A remark is in order here, about the principle $\lambda \stackrel{\kappa}{\Rightarrow} \mu$. Since there are μ^{λ} functions from λ to μ , we get that if $\kappa, \kappa' \geq \mu^{\lambda}$, then $\lambda \stackrel{\kappa}{\Rightarrow} \mu$ is equivalent to $\lambda \stackrel{\kappa'}{\Rightarrow} \mu$, and it is also equivalent to the statement "there is some ultrafilter D uniform over λ such that for no function $f : \lambda \to \mu$, f(D) is uniform over μ ". This property has been widely studied by set theorists, generally under the terminology "D over λ is μ -indecomposable". In this sense, the particular case $\mu = \omega$ considered in Theorem 5 incorporates some simple results involving measurable and related cardinals. For example, if λ is regular, all powers of ω are $[\lambda, \lambda]$ -compact if and only if $\omega^{2^{\lambda}}$ is $[\lambda, \lambda]$ -compact, if and only if λ carries some ω_1 -complete uniform ultrafilter. In particular, we get a classical result by Loś [Lo], asserting that $\omega^{2^{\lambda}}$ is not finally λ -compact, provided that λ is regular and there is no measurable cardinal $\leq \lambda$. Moreover, we get that, for λ regular, all powers of ω are finally λ -compact if and only if every $\lambda' \geq \lambda$ carries an ω_1 -complete uniform ultrafilter (in particular, this holds if λ is strongly compact).

Many results about μ -indecomposable ultrafilters over λ generalize to properties of $\lambda \stackrel{\kappa}{\Rightarrow} \mu$, for $\kappa < \mu^{\lambda}$, usually with more involved proofs. We initiated this project in [Li1, Li2]. Applications to powers of ω are presented in the next two corollaries. Notice that in [Li1] the definition of $\lambda \stackrel{\kappa}{\Rightarrow} \omega$ is given directly by means of the condition in Theorem 4. The two definitions do not necessarily coincide for $\kappa < \lambda$; however, here $\kappa \ge \lambda$ is always assumed.

Corollary 6. Let κ be given, and suppose that there is some $\lambda \leq \kappa$ such that ω^{κ} is $[\lambda, \lambda]$ -compact. If λ is the first such cardinal, then $\mathcal{L}_{\lambda,\omega}$ is κ - (λ, λ) -compact; in particular, λ is weakly inaccessible (actually, very high in the

weak Mahlo hierarchy). If, in addition, $2^{<\lambda} \leq \kappa$, then λ is weakly compact; and if $2^{\lambda} \leq \kappa$, then λ is measurable.

Proof. From Theorem 5 and Theorem 3.9 in [Li1], applied in the particular case of $\mathcal{L}_{\omega_1,\omega}$.

As a consequence of Corollary 6, if there is no measurable cardinal and the Generalized Continuum Hypothesis holds, then ω^{λ} is finally λ -compact if and only if λ is weakly compact; moreover, ω^{κ} is never $[\lambda, \lambda]$ -compact, for $\kappa > \lambda$ (only special consequences of GCH are needed in the above statements: respectively, that every weakly Mahlo cardinal is inaccessible, and that GCH holds at weakly Mahlo cardinals). The assumptions are necessary: as we mentioned, if λ is measurable, then all powers of ω are $[\lambda, \lambda]$ -compact. Moreover, if μ is μ^+ -compact, then there is an ω_1 -complete ultrafilter uniform over μ^+ , hence, by a previous remark, all powers of ω are $[\mu^+, \mu^+]$ compact; however, μ^+ is not weakly compact. With less stringent large cardinal assumptions, Boos [Bo], extending results by Kunen, Solovay and others, constructed models in which GCH fails and $\mathcal{L}_{\lambda,\omega}$ (hence also $\mathcal{L}_{\omega_1,\omega}$) are (λ, λ) -compact but λ is not weakly compact, not even inaccessible.

For μ , λ regular cardinals, the principle E_{λ}^{μ} asserts that λ has a nonreflecting stationary set consisting of ordinals of cofinality μ . The next corollary applies not only to powers of ω , but also to powers of regular cardinals (always endowed with the order topology).

Corollary 7. If $\mu < \lambda$ are regular, and E_{λ}^{μ} , then μ^{λ} is not $[\lambda, \lambda]$ -compact. If \Box_{λ} , then $\mu^{\lambda^{+}}$ is not $[\lambda^{+}, \lambda^{+}]$ -compact, for every regular $\mu \leq \lambda$.

Proof. By [Li1, Theorem 4.1], in the present notation, $\lambda \stackrel{\lambda}{\Rightarrow} \mu$ (this was denoted by $\lambda \Rightarrow \mu$ in [Li1], a notation not consistent with the present one). The first statement is immediate from Theorem 3. The second statement follows from the well known fact that \Box_{λ} implies $E_{\lambda^+}^{\mu}$, for every regular $\mu < \lambda$. (We need not bother with the case $\lambda = \omega$, since $E_{\omega_1}^{\omega}$ is a theorem in ZFC.)

Mycielski [My] has also considered the property that ω^{κ} contains a closed discrete subset of cardinality κ . Clearly, if this is the case, then ω^{κ} is not κ finally compact, not even $[\kappa, \kappa]$ -compact, and not $[\kappa', \kappa']$ -compact, for every $\kappa' \leq \kappa$. A variation on the methods of the present note can be used to show that if $\lambda' \leq \kappa$, then ω^{κ} contains a closed discrete subset of cardinality λ' if and only if there is no $\lambda \leq \lambda'$ such that $\mathcal{L}_{\omega_{1},\omega}$ is κ - (λ, λ) -compact, if and only if (by Corollary 6) there is no $\lambda \leq \lambda'$ such that $\mathcal{L}_{\lambda,\omega}$ is κ - (λ, λ) -compact, if and only if (by Theorem 5) for no $\lambda \leq \lambda' \omega^{\kappa}$ is $[\lambda, \lambda]$ -compact.

Proposition 8. For given λ and κ , the following conditions are equivalent.

- (1) ω^{κ} is not $[\lambda, \lambda]$ -compact.
- (2) For every product $X = \prod_{i \in I} X_j$ of T_1 topological spaces, if X is $[\lambda, \lambda]$ -compact, then $|\{i \in I \mid X_i \text{ is not countably compact}\}| < \kappa$.

Proof. (2) \Rightarrow (1) is trivial. For the converse, notice that if a T_1 topological spaces is not countably compact, then it contains a countable discrete closed subset, that is, a closed copy of ω .

References

- [Bo] W. Boos, Infinitary compactness without strong inaccessibility, J. Symbolic Logic 41 (1976), 33–38.
- [Ca] X. Caicedo, The abstract compactness theorem revisited, in: Logic and foundations of mathematics, A. Cantini et al. (eds.), Synthese Library 280, Kluwer, Dordrecht, 1999, 131–141.
- [Ch] C. C. Chang, Descendingly incomplete ultrafilters, Trans. Amer. Math. Soc. 126 (1967), 108–118.
- [Cu] D. V. Cudnovskiĭ, Topological properties of products of discrete spaces, and set theory, Dokl. Akad. Nauk SSSR 204 (1972), 298–301 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 661-665.
- [Li1] P. Lipparini, The compactness spectrum of abstract logics. large cardinals and combinatorial principles, Boll. Un. Ital. В (7)4, 875-903 (1990);also available Mat. at http://art.torvergata.it/bitstream/2108/73247/1/UmiComSpec019mod.pdf.
- [Li2] P. Lipparini, Ultrafilter translations. I. (λ, λ) -compactness of logics with a cardinality quantifier, Arch. Math. Logic 35 (1996), 63–87.
- [Lo] J. Loś, Linear equations and pure subgroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 13–18.
- [Mr1] S. Mrówka, On E-compact spaces. II., Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 597–605.
- [Mr2] S. Mrówka, Some strengthenings of the Ulam nonmeasurability condition, Proc. Amer. Math. Soc. 25 (1970), 704-711.
- [My] J. Mycielski, α -incompactness of N^{α} , Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 437–438.
- [Sa] V. Saks, Ultrafilter invariants in topological spaces, Trans. Amer. Math. Soc. 241 (1978), 79–97.

DIMARTIPENTO DI MATEMATICA, VIALE DELLA RICERCA SCIENTIFICA, II UNI-VERSITÀ DI ROMA (TOR VERGATA), I-00133 ROME ITALY URL: http://www.mat.uniroma2.it/~lipparin E-mail address: lipparin@axp.mat.uniroma2.it