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Abstract. We show, under a weak assumption on the term p, that a va-
riety of general algebras satisfies the congruence identity p(α1, . . . , αn) ⊆
q(α1, . . . , αn) if and only if it satisfies the tolerance identity p(Θ1, . . . , Θn) ⊆
q(Θ1, . . . , Θn), provided we restrict ourselves to tolerances representable
as R ◦ R−. Varieties in which every tolerance is representable include
all congruence permutable varieties and all varieties of lattices.

For arbitrary tolerances, the congruence identity p(α1, . . . , αn) ⊆
q(α1, . . . , αn) is equivalent to the identity p(Θ1 ◦ Θ1, . . . , Θn ◦ Θn) ⊆
q(Θ1 ◦Θ1, . . . , Θn ◦Θn). See Theorems 3.1, 3.2 and 3.3.

Our arguments essentially deal with labeled graphs, rather than terms;
we try to clarify the role of graphs in the study of Mal’cev conditions
(see especially Proposition 7.6 and Theorem 7.7).

1. Introduction

Tolerance identities play an increasingly important role in Universal Al-
gebra. One of the first applications of tolerance identities appears in H. P.
Gumm’s important monograph [G]. He discovered the Shifting Principle
replacing a congruence by a tolerance in the Shifting Lemma, thus getting a
great deal of consequences which otherwise could not be obtained; in partic-
ular, he simplified and extended commutator theory for congruence modular
varieties.

More recently, a stronger tolerance identity, called TIP, has proven par-
ticularly useful in the study of congruence modular varieties, and has been
applied in order to prove deep new theorems with relatively simple meth-
ods: see [CH1, CH2, CHL, CHR]. For example, TIP has been used to show
that every congruence identity implying congruence modularity is equiva-
lent to a Mal’cev condition. Moreover, TIP has been used to provide a
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simple proof of a result by R. Freese and B. Jónsson [FJ] asserting that ev-
ery congruence modular variety is congruence arguesian. In fact, the proof
using TIP provides the new result in which the conclusion is strengthened
to higher arguesian in the sense of Haiman [H2]. Variations on TIP have
been introduced in [L2, L5].

[KK1] deals with another interesting tolerance identity, the Triangular
principle, which is connected with join semidistributivity. See [KK1] for
the history of the Triangular principle, and for further references. By the
way, more conditions equivalent to the Triangular principle are given in the
preliminary notes [L3] (cf. [L3, Part II, Theorem 3]).

Tolerances play a prominent role in [KK2], which extends a large part of
D. Hobby and R. McKenzie’s classification [HMK] of locally finite varieties to
arbitrary varieties. Many results from [KK2] are new even in the particular
case of locally finite varieties, and provide novel interesting insights. As the
title says, the main emphasis in [KK2] is about congruence lattices, however,
most theorems and proofs involve tolerances. In particular, [KK2] studies
many different kinds of centralizer relations both for congruences and for
tolerances. It frequently turns out that, for some given centralizer notion,
the omission of abelian tolerances is equivalent to the omission of abelian
congruences.

Our results parallel the above results from [KK2] in a different context.
In the present work we shall describe a result of a completely general nature
which connects congruence identities and tolerance identities. Our main
argument Theorem 3.1 deals with terms p and q for the language {◦,∩}
(for short, {◦,∩}-terms), where variables are usually understood to be ei-
ther congruences α, β, . . . or tolerances Θ, Ψ, . . . . We interpret ◦ and ∩
as (relational) composition and intersection, the latter usually denoted by
juxtaposition. We are able to show that, in many cases, if a variety V of
algebras satisfies a congruence identity p(α) ⊆ q(α), then V satisfies the
tolerance identity p(Θ) ⊆ q(Θ). Here, as usual, we say that a variety V
satisfies a congruence identity p(α) ⊆ q(α) if and only if p(α) ⊆ q(α) holds
for every algebra A ∈ V and n-tuple of congruences α on A. The meaning
of “V satisfies a tolerance identity” is similar.

In order to avoid possible misunderstandings, notice that, in the case
when only ◦ and ∩ are allowed in p and q, then p ⊆ q is not able to express
lattice identities. Of course, α + β, the join in the lattice of congruences,
equals

⋃
n α ◦ β ◦ α . . .︸ ︷︷ ︸

n factors

, so that we can approximate α + β by a sequence

of terms pn(α, β) = α ◦ β ◦ α . . . (n factors). However, when dealing with
tolerances, already p3(Θ,Ψ) = Θ ◦ Ψ ◦ Θ is generally larger than the join
of Θ and Ψ in the lattice of tolerances. In other words, we can transfer
identities in ◦ and ∩ from congruences to tolerances, but such a transfer
is not generally possible for lattice identities. However, the above remarks
suggest that there is a version of our results in which p and q are allowed
to contain the symbol +. In such a version, Θ + Ψ has to be interpreted as
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n Θ ◦Ψ ◦Θ . . . , rather than the join of Θ and Ψ in the lattice of tolerances

(see Theorems 3.2 and 3.3).
Our methods rely deeply on the theory of (strong) Mal’cev conditions

associated with the congruence identity p(α) ⊆ q(α). Though, in princi-
ple, the paper is self contained, the reader with a previous knowledge of
Mal’cev conditions will probably feel much more comfortable. The general
connection between congruence identities and Mal’cev conditions has been
developed by R. Wille [Wi] and A. Pixley [P2]. They extended to an ab-
stract setting the particular cases discovered before by Mal’cev itself [M],
A. Pixley [P1], B. Jónsson [J1], A. Day [D] and others (see [J2, Section 2]
and [CHL] for further references). The reader not familiar with Mal’cev
conditions is advised to consider such particular cases first (as found, e.g.,
in [J2]), since the general theory is better understood by examples. Good
introductions to the Wille and Pixley algorithm can be found, e.g., in [HC],
or [FMK, Chapter XIII]. Alternative ways to Wille and Pixley’s theorem
are given in [J2, Ta].

The approach to Mal’cev conditions used in the present paper is by means
of labeled graphs associated with terms. This approach is due to G. Czédli,
who first employed it in the particular case of congruence join semidistribu-
tivity [Cz1]; the general method is then described in [Cz2, Cz3]. Formally,
[Cz3] deals only with ternary terms, but the definitions on p. 104-105 are
fully general and can be applied to terms of arbitrary arity. The method is
also described in [CD], which in fact obtains results more general than the
original Wille Pixley theorem. Notice that the graph-theoretical approach
is much more than an expository aid. Our core argument essentially deals
with labeled graphs, rather than with terms (see Theorem 7.7). As another
example, the evaluation of the ki’s in the comment after Proposition 7.6 can
be conceivably understood only by means of graphs.

The paper is divided as follows. In Section 2 we recall the definition of the
labeled graph associated with a term and we define the notions of a regular
term and of a representable and a weakly representable tolerance. In Section
3 we state our main results. Theorem 3.1 deals with {◦,∩} terms, while in
Theorem 3.2 terms are allowed to contain +. Theorem 3.3, whose proof
relies deeply on [CHL], shows that the assumption that tolerances are rep-
resentable is not needed in the case of congruence modular varieties, when q
is a {∩,+}-term. In Section 3 we also present an example which illustrates
our two main modifications of the Wille and Pixley argument. Section 4
contains complete proofs of Theorems 3.1 and 3.2. In Section 5 we give im-
mediate applications which deal with congruence identities only. In Section
6 we study the central notions of representable and weakly representable
tolerances. We show that the variety of sets, all varieties of lattices and all
congruence permutable varieties have the property that every tolerance is
weakly representable. On the other side, we construct many examples of
algebras in which there exists a non-representable tolerance, among them
a set, a semilattice and an algebras with a majority operation. Finally, we
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show that the property that all tolerances in a variety are representable is
not equivalent to a Mal’cev condition. Section 7 contains additional remarks,
and some generalizations. We show that the assumption that p is a regular
term is necessary in Theorem 3.1; however, we give a version in which this
assumption is not needed (Proposition 7.6). Finally, we show that our ar-
guments actually deal with graphs rather than terms; this setting appears
to be more general (Theorem 7.7).

2. Preliminaries

In order to state our results we need some definitions. If p is a term for
the language {◦,∩}, let us define inductively as follows the sets Lp resp. Rp

of variables on the left resp. right side of p.
(i) If p = Xi is a variable then Lp = {Xi} and Rp = {Xi}.
(ii) If p = q ◦ r then Lp = Lq and Rp = Rr.
(iii) If p = q ∩ r then Lp = Lq ∪ Lr and Rp = Rq ∪Rr.
We will be mainly concerned with regular terms. We define the class of

regular terms to be the smallest class of terms which
(a) contains all variables;
(b) contains p = q◦r whenever q and r are regular terms and Rq∩Lr = ∅;
(c) contains p = q ∩ r whenever q and r are regular terms, Lq ∩ Lr = ∅

and Rq ∩Rr = ∅.
Thus, for example, X ∩ (Y ◦ Z) and X ∩ (Y ◦ (Z ∩ (X ◦ Z ◦ Y ))) are

regular, while X ◦X and (X ◦Y )∩ (Z ◦Y ) are not regular. Notice that most
terms which have found applications in universal algebra are in fact regular
terms. The above definitions, as well as some further remarks, are better
understood by means of the notion of the labeled graph associated with a
term. See e.g. [Cz1, Cz2, Cz3, Cz4, Cz5, CD, H1] for further information
and references on graphs associated with terms.

If p is a term for the language {◦,∩}, the labeled graph Gp associated with
p has a left distinguished vertex, a right distinguished vertex and each of its
edges has a label. Gp is defined inductively as follows.

(i) If p = Xi is a variable, then Gp consists of two vertices (which are the
distinguished ones) connected by one edge labeled by Xi.

(ii) If p = q ◦ r then Gp is obtained by putting a copy of Gq on the left, a
copy of Gr on the right, and by attaching the two graphs by joining together
the right distinguished vertex of Gq with the left distinguished vertex of Gr

(the above vertices join into one). The left distinguished vertex of Gp is the
left distinguished vertex of Gq, and the right distinguished vertex of Gp is
the right distinguished vertex of Gr.

(iii) If p = q ∩ r then Gp is obtained by putting a copy of Gq above a
copy of Gr and by attaching the two graphs by joining together the right
distinguished vertices, as well as by joining together the left distinguished
vertices. The new vertices obtained by such unions are the distinguished
vertices of Gp.
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The reader is advised to draw pictures or look, for example, at [Cz2, p.
47, Figure 1] or [Cz3, p. 105]. Graph theoretically, a term p is regular if and
only if in the graph Gp no vertex has two distinct adjacent edges labeled by
the same name. In the present context the importance of the notion of the
labeled graph associated with a term arises from the following observation,
coming from [Cz3, Claim 1] (see also [CD, Proposition 3.1]). Here we deal
with a simpler version, due to the fact that + is not allowed in the terms
p and q. However, our version deals with symmetric relations, rather than
congruences. For sake of notational simplicity, if R is a binary relation, we
shall sometimes write aR b in place of (a, b) ∈ R.

Proposition 2.1. Suppose that R1, . . . , Rn are symmetric relations on some
set A and p(X1, . . . , Xn) is a term for the language {◦,∩}. Let Gp be the
labeled graph associated with p. Let V denote the set of vertices of Gp and
let v` and vr be its distinguished left and right vertices.

If a, b ∈ A, then (a, b) ∈ p(R1, . . . , Rn) if and only if there exists some
function c : V → A sending v ∈ V to cv ∈ A such that (i) a = cv`

and
cvr = b and (ii) whenever two vertices v, w ∈ V are connected by an edge
labeled by Xi, then cv Ri cw.

Following [Cz3, p. 106], we say that a and b can be connected by the graph
Gp, if the situation in the statement of Proposition 2.1 occurs.

We now introduce a key definition for our results.

Definition 2.2. A tolerance Θ of some algebra A is representable if and
only if there exists a compatible and reflexive relation R on A such that
Θ = R ◦R− (here, R− denotes the converse of R).

A tolerance Θ of some algebra A is weakly representable if and only if
there exists a set K (possibly infinite) and there are compatible and reflexive
relations Rk (k ∈ K) on A such that Θ =

⋂
k∈K(Rk ◦R−

k ).

Notice that if R is a compatible and reflexive relation, then R ◦ R− is
always a tolerance. Thus a tolerance is weakly representable if and only if
it is the intersection of some family of representable tolerances.

3. Statement of the main theorems and an illustrative example

Theorem 3.1. Suppose that V is a variety and that p and q are terms of
the same arity for the language {◦,∩}. If p is regular, then the following are
equivalent.

(i) V satisfies the congruence identity p(α1, . . . , αn) ⊆ q(α1, . . . , αn).
(ii) V satisfies the strong Mal’cev condition M(p ⊆ q) (see Definition 4.1

below).
(iii) The tolerance identity p(Θ1, . . . ,Θn) ⊆ q(Θ1, . . . ,Θn) holds for every

algebra A in V and for all representable tolerances Θ1, . . . ,Θn of A.
(iii)′ The tolerance identity p(Θ1, . . . ,Θn) ⊆ q(Θ1, . . . ,Θn) holds for every

algebra A in V and for all weakly representable tolerances Θ1, . . . ,Θn of A.
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(iv) V satisfies the tolerance identity p(Θ1 ◦ Θ1, . . . ,Θn ◦ Θn) ⊆ q(Θ1 ◦
Θ1, . . . ,Θn ◦Θn).

The word identity in the statement of Theorem 3.1 is justified since the
inclusion p ⊆ q is equivalent to the identity p = pq (recall that juxtaposition
denotes intersection).

In the following theorem we consider terms which can contain the oper-
ation +. Here + is always interpreted to be the operation on reflexive and
admissible relations on some algebra defined by: R + S is the smallest tran-
sitive relation containing both R and S. Thus R + S =

⋃
m R ◦m S, where

R ◦m S denotes R ◦ S ◦R . . .︸ ︷︷ ︸
m factors

. Notice that if α and β are congruences, then

α + β is the join of α and β in the lattice of congruences, while if Θ and Φ
are tolerances, then Θ + Φ is much larger than the join of Θ and Φ in the
lattice of tolerances. In fact Θ + Φ turns out to be the smallest congruence
containing both Θ and Φ.

If p is a {◦,∩,+}-term and n is an integer, let us denote by pn the {◦,∩}-
term obtained from p by substituting every occurrence of + with ◦n (see
[CHL] for more details).

Theorem 3.2. Suppose that p and q are {◦,∩,+}-terms. If either p3 or
p4 is regular, then Conditions (i), (iii), (iii)′ and (iv) in Theorem 3.1 are
equivalent (provided + is interpreted in the above sense).

In the particular case when p is a {◦,∩}-term then ph coincides with p,
and we obtain back Theorem 3.1. When p and q are ◦-free then we are
dealing with a lattice identity (in the congruence lattice); notice that the
majority of important lattice identities belong to the scope of Theorem 3.2.
However recall that, as we mentioned, Theorems 3.1 and 3.2 do not deal
with lattice identities in tolerance lattices.

In congruence modular varieties there is a version of Theorems 3.1 and 3.2
in which the assumption of representability of tolerances is not necessary.
In what follows ∗ denotes transitive closure.

Theorem 3.3. Suppose that V is a congruence modular variety, p is a
{◦,∩,+}-term and q is a {∩,+}-term. Then the following are equivalent.

(i) V satisfies the congruence identity p(α1, . . . , αn) ⊆ q(α1, . . . , αn).
(ii) V satisfies the congruence identity p2(α1, . . . , αn) ⊆ q(α1, . . . , αn).
(iii) V satisfies the tolerance identity p(Θ1, . . . ,Θn) ⊆ (q(Θ1, . . . ,Θn))∗.
(iv) V satisfies the tolerance identity p2(Θ1, . . . ,Θn) ⊆ (q(Θ1, . . . ,Θn))∗.

Proof. (i) ⇔ (ii) is proved in [CHL, Theorem 3].
(iii) ⇒ (i) and (iv) ⇒ (ii) are trivial, since q(α1, . . . , αn) is a congruence,

hence (q(α1, . . . , αn))∗ = q(α1, . . . , αn).
In order to prove (i) ⇒ (iii) recall that congruence modular varieties

satisfy the following tolerance identity TIP (Θ∩Φ)∗ = Θ∗ ∩Φ∗. Using TIP
it is easy to see by induction that (q(Θ1, . . . ,Θn))∗ = q(Θ∗

1, . . . ,Θ
∗
n) (cf., for

example, the proof of [CHL, Lemma 1]). Since Θ∗
1, . . . ,Θ

∗
n are congruences,
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we have, by (i) and the above remark, p(Θ1, . . . ,Θn) ⊆ p(Θ∗
1, . . . ,Θ

∗
n) ⊆

q(Θ∗
1, . . . ,Θ

∗
n) = q(Θ1, . . . ,Θn)∗.

The proof of (ii) ⇒ (iv) is identical to (i) ⇒ (iii). �

The main result of [CH1] asserts that 3.3 (i) ⇔ (iii) holds for two partic-
ular identities. Notice however that [CH1] cannot be obtained as a corollary
of Theorem 3.3, since the proof of 3.3 relies on [CHL], which in turn relies
on the methods discovered in [CH1]. Notice also that the proof of 3.3 does
not rely on other results proved here.

We now sketch the new main ideas in the proof of Theorem 3.1. The
equivalence (i) ⇔ (ii) in Theorem 3.1 is a classical result by Wille and
Pixley [Wi, P2] (and does not need the assumption that p is regular). Our
proof of 3.1 (ii) ⇒ (iii) is modeled after the original Wille and Pixley proof
of 3.1 (ii) ⇒ (i) with two new ideas added. Suppose that (a, b) belongs to
p(Θ1, . . . ,Θn). We have to show that (a, b) belongs to q(Θ1, . . . ,Θn). By
Proposition 2.1, that (a, b) belongs to p(Θ1, . . . ,Θn) is witnessed by elements
cv ∈ A, where v varies among the vertices of the graph Gp associated with p.
Let us enumerate the cv’s as c1, . . . , cm. The strong Mal’cev condition M(p ⊆
q) provides certain terms tw (w ∈ W ), which satisfy certain identities. Notice
that we use p and q to denote terms whose variables range over congruences
or tolerances, while the tw’s are terms of V, and variables of tw range over
elements belonging to some algebra in V. The Wille Pixley proof goes on by
using the terms tw and the identities they satisfy in order to show that the
elements tw(c1, . . . , cm) (w ∈ W ) witness that (a, b) belongs to q(α1, . . . , αn).
This is accomplished as follows. Suppose, for sake of simplicity, to have the
following identity

(∗) tw(x, y, z, z, u, u, v) = tw′(x, y, z, z, u, u, v),

and suppose that c3 α c4 and c5 α c6. Then

tw(c1, c2, c3, c4, c5, c6, c7) α tw(c1, c2, c3, c3, c5, c5, c7) =

tw′(c1, c2, c3, c3, c5, c5, c7) α tw′(c1, c2, c3, c4, c5, c6, c7),

thus
tw(c1, c2, c3, c4, c5, c6, c7) α tw′(c1, c2, c3, c4, c5, c6, c7).

In this way, from each identity of a form similar to (∗) (intended to be
satisfied in V), one gets a relation of the form tw(c1, . . . , cm) αi tw′(c1, . . . , cm)
which holds in our fixed algebra A. Putting together the above relations,
one gets that (a, b) belongs to q(α1, . . . , αn), using again Proposition 2.1
(applied to the graph Gq).

If in the above argument α is replaced by a tolerance Θ, the argument
breaks, since we only get

tw(c1, c2, c3, c4, c5, c6, c7) Θ ◦Θ tw′(c1, c2, c3, c4, c5, c6, c7).

Here is our key modification of the argument, which uses the assumption
that Θ is representable. Suppose, as above, that the identity (∗) holds in
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V, and suppose that c3 Θ c4 and c5 Θ c6, for some representable tolerance
Θ = R ◦ R−. Thus there are elements b′ and b′′ such that c3 R b′ R− c4 and
c5 R b′′ R− c6. Then, since R is reflexive and compatible,

tw(c1, c2, c3, c4, c5, c6, c7)R tw(c1, c2, b
′, b′, b′′, b′′, c7) =

tw′(c1, c2, b
′, b′, b′′, b′′, c7)R− tw′(c1, c2, c3, c4, c5, c6, c7).

That is,

tw(c1, c2, c3, c4, c5, c6, c7)R ◦R− tw′(c1, c2, c3, c4, c5, c6, c7),

hence
tw(c1, c2, c3, c4, c5, c6, c7) Θ tw′(c1, c2, c3, c4, c5, c6, c7),

since Θ = R ◦R−, by assumption.
The reason why we can perform the above procedure is that the variable

z appears only two times on each side in the identity tw(x, y, z, z, u, u, v) =
tw′(x, y, z, z, u, u, v), and similarly the variable u appears only two times on
each side, while the other variables appear just one time. Were we dealing
with identities of the form tw(x, z, z, z) = tw′(x, z, z, z), we could not have
performed the above trick. Here is where the assumption that p is regular
comes into play: such an assumption implies that each variable appears at
most twice on each side of the identities given by the Mal’cev condition
M(p ⊆ q), so that we can actually proceed as above.

4. Proofs of Theorems 3.1 and 3.2

In the present section we develop the above arguments in a more detailed
way.

Definition 4.1. Suppose that p and q are terms in n variables α1, . . . , αn

for the language {◦,∩}. Let us consider the labeled graphs Gp and Gq

associated with p and q. Let V resp. W denote the set of vertices of Gp

resp. Gq. Let v` and w` denote the distinguished left vertices of Gp and
Gq, and let vr and wr denote the distinguished right vertices.

For each i with 1 ≤ i ≤ n, let ∼i be the least equivalence relation on V
such that v ∼i v′ whenever v and v′ are vertices of V which are connected by
some edge labeled by αi. For each i with 1 ≤ i ≤ n, fix πi to be any function
from V to an arbitrary set of variables with the property that kerπi =∼i.

The strong Mal’cev condition M(p ⊆ q) associated with the inclusion
p ⊆ q involves operations tw (w ∈ W ) depending on |V | variables (in fact,
we shall identify the variables of tw with the vertices of Gp). Given a fixed
arbitrary enumeration v1, . . . , vm of V , the identities of M(p ⊆ q) are the
following:

(`) v` = tw`
(v1, v2, . . . , vm)

(r) twr(v1, v2, . . . , vm) = vr



FROM CONGRUENCE IDENTITIES TO TOLERANCE IDENTITIES 9

plus all the identities:

(mw,w′,i) tw(πi(v1), πi(v2), . . . , πi(vm)) = tw′(πi(v1), πi(v2), . . . , πi(vm)),

whenever w and w′ are vertices of Gq connected by an edge labeled αi.

Having defined M(p ⊆ q), we proceed to give the proof of Theorem 3.1.

Proof of Theorem 3.1. As we mentioned, (i) ⇒ (ii) is due to Wille and Pix-
ley.

We now prove (ii) ⇒ (iii). We suppose that V has terms satisfying all the
identities given by M(p ⊆ q) and that, in some algebra A ∈ V, (a, b) belongs
to p(Θ1, . . . ,Θn). We want to show that (a, b) belongs to q(Θ1, . . . ,Θn).
That (a, b) belongs to p(Θ1, . . . ,Θn) is witnessed by elements cv (v ∈ V )
satisfying Proposition 2.1. Let us write cj in place of cvj . We shall show
that the elements tw(c1, . . . , cm) (w ∈ W ) witness that (a, b) belongs to
q(Θ1, . . . ,Θn). For this it is enough to show that the function d which assigns
w ∈ W to dw = tw(c1, . . . , cm) ∈ A satisfies the conditions in Proposition
2.1 applied to the graph Gq, with the labels αi substituted for Θi.

The conditions a = dw`
and dwr = b follow immediately from the identities

(`) and (r), since a = cv`
and b = cvr by Proposition 2.1. It is thus enough to

show that if the vertices w,w′ ∈ W of Gq are connected by an edge labeled
by αi, then dw Θi dw′ . If we had to show only (ii) ⇒ (i) (that is, in the case
all Θi = αi are congruences) then this would follow easily from the identities
(mw,w′,i), as in the original Wille Pixley proof. Since we have to show (iii),
we have to use the additional arguments we have indicated in the preceding
section.

First observe that if p is a regular term then, for every 1 ≤ i ≤ n,
all equivalence classes of ∼i have cardinality ≤ 2. Thus, for every i and
vj , vh ∈ V , it happens that πi(vj) = πi(vh) if and only if either vj = vh

or vj and vh are connected by an edge labeled by αi. For every i, define
φi : {c1, . . . , cm} → A as follows. If {cj} is a ∼i-equivalence class, let
φi(cj) = cj . If {cj , ch} is a ∼i-equivalence class, then cj Θi ch. Since, by
assumption, Θi is representable as Θi = Ri ◦R−

i , there is some bijh ∈ A such
that cj Ri bijh R−

i ch, hence ch Ri bijh. In this case, define φi(cj) = φi(ch) =
bijh. Thus if w,w′ ∈ W are connected by an edge labeled by αi, then, by
the definition of φi, and since Ri is compatible and reflexive

tw(c1, . . . , cm)Ri tw(φi(c1), . . . , φi(cm)).

Moreover,

tw(φi(c1), . . . , φi(cm)) = tw′(φi(c1), . . . , φi(cm)),

by identity (mw,w′,i) above, and since if πi(vj) = πi(vh) then vj ∼i vh, which
implies φi(cj) = φi(ch). Again by the definition of φi

tw′(φi(c1), . . . , φi(cm))R−
i tw′(c1, . . . , cm).

Putting the last three identities together, we get

dw = tw(c1, . . . , cm)Ri ◦R−
i tw′(c1, . . . , cm) = dw′ ,
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that is, our desired relation dw Θi dw′ .
The proof of (ii) ⇒ (iii)′ is entirely similar to (ii) ⇒ (iii). If cj ∼i ch and

Θ =
⋂

k∈Ki
(Rk ◦ R−

k ), let us define as above φik(cj) = φik(ch) = bijhk for
some bijhk such that cj Rk bijhk R−

k ch. Then, for every pair (w,w′), apply
identity (mw,w′,i) |Ki|-many times.

The implication (iii)′ ⇒ (iii) is trivial.
We now prove (iii) ⇒ (iv). If Θ is a tolerance, then Θ ◦Θ is a tolerance,

too; moreover, Θ ◦ Θ is representable (take R = Θ, and observe that R =
Θ = Θ− = R−). Thus (iv) is obtained by applying (iii) to the tolerances
Θ1 ◦Θ1, . . . , Θn ◦Θn in place of the tolerances Θ1, . . . ,Θn.

The implication (iv) ⇒ (i) is trivial, since every congruence α is also a
tolerance, and α = α ◦ α.

The proof of Theorem 3.1 is thus complete. �

Proof of Theorem 3.2. It is easy to check that if p4 is regular then all ph’s
with h even are regular and that if p3 is regular then all ph’s with h odd are
regular. The general theory of Mal’cev conditions shows that if V satisfies
the congruence identity p(α) ⊆ q(α), then for every h ≥ 2 there exists
k ≥ 2 such that V satisfies the {◦,∩}-congruence identity ph(α) ⊆ qk(α)
(see [CHL] for references). For all odd resp. even integers h > 2, Theorem
3.1 (i) ⇒ (iii) implies that the tolerance identity ph(Θ) ⊆ qk(Θ) holds in V
for all representable tolerances. Since, for every h, ph ⊆ ph+1, we have that
for every h ≥ 2 there exists k′ ≥ 2 such that V satisfies ph(Θ) ⊆ qk′(Θ) for
representable tolerances. Because of the interpretation we have chosen for +,
this easily implies that V satisfies p(Θ) ⊆ q(Θ) for representable tolerances.
Thus we have proved (i) ⇒ (iii).

The implication (i) ⇒ (iii)′ is similar, and relies on the corresponding im-
plication in Theorem 3.1. All other implications are trivial, and are obtained
as the corresponding ones in Theorem 3.1. �

Notice that if p = γ(α+β)+αδ, then p2 is regular, but for every i > 2 pi

is not regular. However, in the above situation, we can equivalently consider
the term p′ = γ(β +α)+αδ. In this case, Theorem 3.2 can be applied, since
p′3 is regular.

5. Applications.

Though dealing with tolerances, Theorem 3.1 has an immediate applica-
tion to congruence identities. Recall that R◦m S = R◦S ◦R◦ . . . with m−1
occurrences of ◦.

Corollary 5.1. Suppose that V is a variety and that p and q are terms for
the language {◦,∩}. If p is regular then the following are equivalent.

(i) V satisfies the congruence identity p(α1, . . . , αn) ⊆ q(α1, . . . , αn).
(ii) V satisfies the congruence identity p(β1 ◦ γ1 ◦ β1, . . . , βn ◦ γn ◦ βn) ⊆

q(β1 ◦ γ1 ◦ β1, . . . , βn ◦ γn ◦ βn).
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(iii) For every (equivalently, some) odd m ≥ 1, V satisfies the congruence
identity p(β1 ◦m γ1, . . . , βn ◦m γn) ⊆ q(β1 ◦m γ1, . . . , βn ◦m γn).

Proof. If m is odd and βi and γi are congruences then Θi = βi ◦m γi is a
representable tolerance, since Θi = Ri ◦R−

i , for R = βi ◦h γi, with h = m+1
2 .

Thus, by Theorem 3.1 (i) ⇒ (iii), (i) implies that (iii) holds for every odd
m.

On the other side, if (iii) holds for some odd m ≥ 1, we get (i) by applying
(iii) in the particular case βi = αi, γi = 0.

(ii) is just a particular case of (iii). �

Corollary 5.1 may be seen as a generalization of A. Day’s characterization
of congruence modular varieties.

Corollary 5.2. [D] A variety V is congruence modular if and only if there
exists some integer k such that V satisfies the congruence identity α(β ◦αγ ◦
β) ⊆ αβ ◦k αγ.

Proof. In order to prove the nontrivial inclusion, suppose that V satisfies
α(β ◦ αγ ◦ β) ⊆ αβ ◦k αγ. By Corollary 5.1 (i) ⇒ (iii), for every odd
m ≥ 1, V satisfies the congruence identity α((β′ ◦m β′′) ◦ αγ ◦ (β′ ◦m β′′)) ⊆
α(β′ ◦m β′′) ◦k αγ. By taking β′ = β and β′′ = αγ, we have α(β ◦2m+1 αγ) =
α((β ◦m αγ) ◦αγ ◦ (β ◦m αγ)) ⊆ α(β ◦m αγ) ◦k αγ, for odd m ≥ 1. It is now
easy to show by induction on m that α(β ◦m αγ) ⊆ αβ + αγ, for every m.
Hence α(β + αγ) ≤ αβ + αγ. �

6. Representability of tolerances

In this section we study the notion of a (weakly) representable tolerance
in more detail. In particular, we shall give examples of representable and not
representable tolerances. Notice that examples of representable tolerances
abound: every congruence α is trivially representable, since α = α◦α. More
generally, if Θ is a tolerance, then the tolerance Θ◦Θ is representable. Since
in a variety V all tolerances are congruences if and only if V is congruence
permutable (Proposition 6.5), our main result Theorem 3.1 can be seen as a
generalization to the class of all varieties of some results valid in permutable
varieties. However, there are non-congruence permutable varieties in which
every tolerance is representable, for example, any variety of lattices (Propo-
sition 6.3). We shall also show that a Mal’cev condition implies that every
tolerance is representable if and only if it implies congruence permutabil-
ity (Corollary 6.6). We first show that all tolerances in algebras without
operations are weakly representable.

Proposition 6.1. If A is an algebra belonging to the variety of sets (that
is, an algebra without operations) then every tolerance of A is weakly repre-
sentable.

Proof. Let A be an algebra without operations. For every pair of distinct
elements a, b ∈ A let Θab be the reflexive and symmetric relation defined by
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(x, y) ∈ Θab if and only if {x, y} 6= {a, b}. Θab is representable: define R by
xR y if and only if either x = y = a, or x = y = b, or x 6∈ {a, b}. R is clearly
reflexive, and is compatible since A has no operation. It is easy to see that
Θab = R ◦ R−. If Θ is any tolerance of A then Θ is weakly representable,
since Θ =

⋂
(a,b) 6∈Θ Θab. �

In contrast to Proposition 6.1, in algebras without operations there can
be non-representable tolerances. Such tolerances remain non-representable
when we add a certain kind of operations. Recall that a majority operation
is a ternary operation f satisfying x = f(x, x, y) = f(x, y, x) = f(y, x, x).

Proposition 6.2. (i) In the 5-element algebra without operations there is
a non-representable tolerance.

(ii) There exists a 7-element semilattice with a non-representable toler-
ance.

(iii) There exists a 7-element algebra with a majority operation and with
a non-representable tolerance.

Proof. (i) Let a, b1, b2, b3 and c denote the elements of the 5-element algebra
without operations. Let Θ be the smallest reflexive and symmetric relation
such that aΘ bi and bi Θ c for i = 1, 2, 3. Θ is a tolerance since the algebra
has no operation. It is easy to see that Θ is not representable. Indeed,
suppose by contradiction that R is reflexive and Θ = R ◦R−. Then R ⊆ Θ
and R− ⊆ Θ, hence either aR b1 or b1 R a. Suppose that aR b1 (the case
b1 R a is similar). If cR b1 then aR ◦R− c, that is, aΘ c. This is false, hence
necessarily b1 R c. Continuing in the same way we obtain cR b2 and cR b3.
Going further, we get both b2 R a and b3 R a, which imply b2 R ◦R− b3, hence
b2 Θ b3, contradiction.

(ii) Consider the join semilattice S with 6 minimal elements a, b1, b2, b3, b4, c
and with a largest element 1. Let Θ be the smallest reflexive and symmetric
relation such that 1 is Θ-related to all elements of S and such that aΘ bi

and bi Θ c for i = 1, 2, 3, 4. It is easy to check that Θ is a tolerance. Suppose
by contradiction that Θ is representable as R ◦R−. If x and y are minimal
elements of S and both xR 1 and y R 1, then xR ◦R− y, hence xΘ y. Thus
|{x ∈ S|x is minimal and xR 1}| ≤ 2, since in S there do not exist 3 pair-
wise Θ-connected minimal elements. We can now repeat the arguments in
(i) restricting ourselves to minimal elements x such that not xR 1.

(iii) Consider the lattice 〈L,+, ·〉 with 6 atoms a, b1, b2, b3, b4, c and with
a largest element 1 and a smallest element 0. If f is the ternary operation
defined by f(x, y, z) = (x + y)(x + z)(y + z) then 〈L \ {0}, f〉 is an algebra,
since L \ {0} is closed under f . We have that f is a majority operation and
the same tolerance as in (ii) is not representable. �

Even if we have showed that a majority term does not necessarily imply
representability, we can show that lattices have representable tolerances.

Proposition 6.3. Suppose that the algebra A has binary terms ∨ and ∧
such that ∨ defines a join-semilattice operation. Suppose further that the
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identities a ∧ (a ∨ b) = a and (a ∨ b) ∧ b = b are satisfied for all elements
a, b ∈ A and that the semilattice order ≤ induced by ∨ is a compatible relation
on A. Then all tolerances of A are representable.

In particular, all tolerances in a lattice are representable.

Proof. If Θ is a tolerance of A let R = Θ∩ ≤. R is compatible since both
Θ and ≤ are compatible. If aΘ b then a = a ∨ aΘ a ∨ b and a ≤ a ∨ b, thus
aR a ∨ b. Similarly bR a ∨ b, that is, a ∨ bR− b, thus Θ ⊆ R ◦R−.

Conversely, if (a, b) ∈ R ◦ R−, say aR cR− b, then a ≤ c, thus c = a ∨ c,
hence a = a∧ (a∨c) = a∧c. Similarly, c∧b = b. Hence a = a∧cΘ c∧b = b,
since both R ⊆ Θ and R− ⊆ Θ. Thus aΘ b. We have proved R◦R− ⊆ Θ. �

We now proceed to show that if A has a tolerance Θ which is not a congru-
ence, then we can add operations to A in such a way that, in the expanded
algebra, Θ remains a tolerance, but Θ is not even weakly representable. As
a consequence, for every Mal’cev condition M, M implies that every tol-
erance is representable if and only if M implies congruence permutability
(Corollary 6.6).

Proposition 6.4. Let A be any algebra and let Θ be a tolerance of A. Then
there is an expansion A+ of A by unary operations such that Θ is a tolerance
of A+ and any nontrivial reflexive compatible relation of A+ contains Θ. If
in addition Θ is not a congruence of A then Θ is not weakly representable
in A+.

Proof. Let A+ be obtained from A by adding, for every a, b ∈ A such that
aΘ b and for every function f : A → {a, b}, a new unary operation which
represents the function. Since we are considering only pairs (a, b) such that
aΘ b, we have that Θ is a tolerance of A+. If R is a nontrivial reflexive
compatible relation of A+ there exist c 6= d ∈ A such that cR d. For
every aΘ b there is a function f such that f(c) = a and f(d) = b. Thus
a = f(c)R f(d) = b, since R is compatible in A+. This proves that R ⊇ Θ.
Finally, if Θ is not transitive, then Θ ⊂ Θ ◦Θ ⊆ R ◦R− yields that Θ is not
weakly representable. �

Part (b) in the following Proposition is stated as Theorem 1 in [Ch]. We
sketch a proof for the reader’s convenience.

Proposition 6.5. (a) If A is an algebra and every tolerance of A is a
congruence then all congruences of A permute.

(b) A variety V is congruence permutable if and only if every tolerance of
every algebra in V is a congruence.

Proof. (a) If α and β are congruences of A, let α ∪ β denote the small-
est tolerance containing α and β, which is the smallest admissible relation
containing α ∪ β. Notice that α ∪ β ⊆ β ◦ α. By assumption, α ∪ β is a
congruence. Then α ◦ β ⊆ α ∪ β ◦ α ∪ β = α ∪ β ⊆ β ◦ α.

(b) is immediate from (a) and the well known result that in permutable
varieties every reflexive and admissible relation is a congruence [We]. �
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Trivially every congruence α is representable, since α = α ◦α. By Propo-
sition 6.5(b), congruence permutability, for varieties, implies that every tol-
erance is representable. The next result shows that if a Mal’cev condition
M implies that every tolerance is representable, then M implies congruence
permutability.

Corollary 6.6. Let M be either a Mal’cev condition, or a weak Mal’cev
condition, or a strong Mal’cev condition. The following are equivalent.

(i) M implies congruence permutability.
(ii) M implies that every tolerance is representable.
(iii) M implies that every tolerance is weakly representable.

Proof. (i) ⇒ (ii). Suppose that (i) holds. If V satisfies M then by Propo-
sition 6.5(b) every tolerance in every algebra in V is a congruence, hence is
representable. Thus (ii) holds.

(ii) ⇒ (iii) is trivial.
We shall prove (iii) ⇒ (i) by contradiction. Suppose that (i) fails. Then

there exists some variety V which satisfies M but which is not congruence
permutable. By Proposition 6.5(b) there is an algebra A ∈ V with a toler-
ance Θ which is not a congruence. By Corollary 6.4 A can be expanded to
an algebra A+ in which Θ is a tolerance which is not weakly representable.
By well known properties of Mal’cev conditions, the variety generated by
A+ still satisfies M and this contradicts (iii). �

Corollary 6.7. The class of varieties V such that every tolerance in every
algebra in V is representable (resp. weakly representable) cannot be charac-
terized by a weak Mal’cev condition.

Proof. If any of those classes could be characterized by some weak Mal’cev
condition M then by Corollary 6.6 M would imply permutability. This
is a contradiction, since Propositions 6.1 and 6.3 provide examples of non-
permutable varieties in which every tolerance is (weakly) representable. �

7. Further remarks and generalizations

Remark 7.1. The assumption that p is regular is necessary in Theorem
3.1. Indeed, every algebra in every variety satisfies the congruence identity
α◦α ⊆ α, while a tolerance satisfying Θ◦Θ ⊆ Θ is necessarily a congruence.
Notice that there are representable tolerances which are not congruences
(e. g., by Proposition 6.3).

Remark 7.2. The proof of Theorem 3.1 gives slightly more. Let us call an
edge of Gq an outer edge in case it is adjacent to one of the distinguished
vertices v` and vr. Let us call an occurrence of αi or Θi in q an outer
occurrence if it corresponds to an outer edge. In condition 3.1(iii) we do not
need the assumption that the tolerance Θi is representable, for the outer
occurrences of Θi in q. More precisely, if V satisfies the congruence identity
p(α1, . . . , αn) ⊆ q(α1, . . . , αn), then V satisfies p(Θ1, . . . ,Θn) ⊆ q′, where
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q′ is obtained from q by substituting every occurrence of αi for Θi in case
either Θi is representable, or the occurrence of αi is an outer occurrence.
Otherwise, the occurrence of αi should be substituted for Θi ◦Θi.

Indeed, for outer edges, we simply use identities (`) and (r) and we do not
need the main trick in the proof of 3.1 (i) ⇒ (iii), where representability is
used. In more detail, everything goes as in the proof of 3.1 except when we
deal with outer edges. If, say, the vertex w is adjacent to the vertex vr and
they are connected by an edge labeled by αi, let us define φi : {c1, . . . , cm} →
{c1, . . . , cm} as follows: if {cj} is a ∼i-equivalence class, let φi(cj) = cj . If
{cj , ch} is a ∼i-equivalence class, then choose one element c belonging to
{cj , ch}, and let let φi(cj) = φi(ch) = c. The choice of c is arbitrary, except
for the case when one of the vertices cj and ch is cvr . In this case we should
choose c = cvr . Thus, by identities (mw,wr,i) and (r), we get

tw(c1, . . . , cm) Θi tw(φi(c1), . . . , φi(cm)) = twr(φi(c1), . . . , φi(cm)) = φi(cvr) = cvr

Notice that, in most cases and for appropriate choices of the c’s, in the
above argument we do not even use the symmetry of Θ, it is enough to deal
with a reflexive compatible relation.

The remark is better illustrated by an example. If V satisfies the congru-
ence identity α(β ◦ γ) ⊆ αβ ◦ αγ ◦ αβ then the above remark implies that
V satisfies the tolerance identity Γ(Φ ◦ Ψ) ⊆ ΓΦ ◦ (Γ ◦ Γ)(Ψ ◦ Ψ) ◦ ΓΦ. If,
in addition, say, Γ is representable, then Γ(Φ ◦ Ψ) ⊆ ΓΦ ◦ Γ(Ψ ◦ Ψ) ◦ ΓΦ.
Moreover V satisfies the identity R(S ◦ T ) ⊆ RS ◦ (R ◦ R−)(T ◦ T−) ◦ RS,
where R,S, T are intended to be variables for reflexive and compatible rela-
tions. Notice that the proof of [CH1, Theorem 1] shows that V satisfies also
the tolerance identity Γ(Φ ◦Ψ) ⊆ ΓΦ ◦ ΓΨ ◦ ΓΨ ◦ ΓΦ.

Remark 7.3. In the particular case of the simpler identity α(β◦γ) ⊆ αβ◦αγ
the above remark (and the proof of [CH1, Theorem 1] as well) show that if
a variety V satisfies the identity for congruences then V satisfies the same
identity for tolerances. We expect that the arguments from [CH1], as well
as the above remarks, can be extended further, but we have not worked out
details.

Theorem 3.1, Proposition 6.3 and Remark 7.3 lead to the following prob-
lem.

Problem 7.4. Characterize those identities ε such that, for every variety
V, V satisfies ε for congruences if and only if V satisfies ε for tolerances.

Remark 7.5. Without any particular change, the classical proof of Wille
and Pixley’s Theorem 3.1 (i) ⇔ (ii) can be used to show the following. If p
is regular then a variety V satisfies the congruence identity p(α1, . . . , αn) ⊆
q(α1, . . . , αn) if and only if all algebras in V satisfy p(R1, . . . , Rn) ⊆ q(R1 ◦
R−

1 , . . . , Rn ◦ R−
n ), where the Ri’s range among reflexive and compatible

relations. However, Theorem 3.1 is more general, since Condition 3.1 (iii),
applied to the representable tolerances Ri ◦R−

i , gives the stronger inclusion
p(R1 ◦R−

1 , . . . , Rn ◦R−
n ) ⊆ q(R1 ◦R−

1 , . . . , Rn ◦R−
n ).
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However, the Wille Pixley argument gives the following (the assumption
that p is regular is unnecessary here).

Proposition 7.6. For every variety V and for every pair of terms p and q
for the language {◦,∩} the following are equivalent.

(i) V satisfies the congruence identity p(α1, . . . , αn) ⊆ q(α1, . . . , αn).
(ii) There exist integers ki (depending only on p) such that V satisfies the

tolerance identity p(Θ1, . . . ,Θn) ⊆ q(Θk1
1 , . . . ,Θkn

n ).

In the above proposition Θk denotes Θ ◦Θ ◦ · · · ◦Θ with k occurrences of
Θ. For each i, the integer ki is equal to 2k′i, where k′i is the smallest integer
such that, for every equivalence class X of ∼i in the graph Gp, there is an
element x ∈ X such that every other element of X can be connected to x
by a path of length ≤ ki contained in X.

In particular, Proposition 7.6 implies that every congruence identity is
equivalent to some tolerance identity. The main point in Theorem 3.1 is
that from a congruence identity we obtain the very same tolerance identity.

Theorem 3.1 can be generalized further.
Let G be a graph with h distinguished vertices, h > 1, and with edges la-

beled by the set of labels {X1, ..., Xn}. For reflexive, symmetric and compat-
ible relations R1, ..., Rn on some algebra A one can naturally define an h-ary
(compatible) relation G(R1, ..., Rn) by declaring a1, . . . , ah ∈ G(R1, ..., Rn)
if and only if a situation analogue to the last sentence in Proposition 2.1
occurs. In particular, for every {◦,∩}-term p, (a1, a2) ∈ p(R1, ..., Rn) if and
only if (a1, a2) ∈ Gp(R1, ..., Rn). If G′ is another graph of the same type
then it makes sense to say that G(R1, ..., Rn) ⊆ G′(R1, ..., Rn) for certain
symmetric relations R1, ..., Rn of A and that G ⊆ G′ holds for congruences
(tolerances) of A. The Mal’cev condition M(G ⊆ G′) and the equivalence
relation ∼i are defined as in Definition 4.1 (see [CD, L4] for more details).
We say that G is regular if and only if for every 1 ≤ i ≤ n all equivalence
classes of ∼i have cardinality ≤ 2. The methods we have used so far imply
the following statement.

Theorem 7.7. Theorem 3.1, Corollary 5.1, Remark 7.2 and Proposition
7.6 remain valid if we replace the terms p and q by the graphs G and G′.

Remarks 7.8. (a) We cannot expect to generalize Theorem 3.1 to the
effect that from a congruence identity we get the same identity in which
congruences are replaced by reflexive admissible relations.

For example, Polin’s variety satisfies the congruence identity α(β ◦ γ) ⊆
αβ◦α(γ◦β)◦αγ ([L1, p. 167]; see also [DF], [J2, p. 383]). On the other hand,
Polin’s variety does not even satisfy the identity α(β◦R) ⊆ αβ◦α(R◦β)◦αR.
Indeed, by taking R to be the admissible reflexive relation αγ ◦β, we obtain
from the above inclusion: α(β ◦ αγ ◦ β) ⊆ αβ ◦ α(αγ ◦ β ◦ β) ◦ α(αγ ◦
β) = αβ ◦ αγ ◦ αβ ◦ αγ ◦ αβ, which implies congruence modularity. Hence
α(β ◦R) ⊆ αβ ◦ α(R ◦ β) ◦ αR does not hold in Polin’s variety, which is not
congruence modular.
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See also [J2, Ts] concerning the relationship between congruence identities
and identities involving arbitrary admissible reflexive relations.

(b) We know further applications (still unpublished) of the main trick
used in the proof of Theorem 3.1 (ii) ⇒ (iii).

(c) The assumption of representability in Theorem 3.1(iii) can be some-
what relaxed. It is enough to assume that, for every i and for every pair of
vertices w,w′ ∈ W connected by an edge labeled αi, there exists a relation
Ri such that Θi = Ri ◦R−

i and Ri is compatible in the algebra 〈A, tw, tw′〉.
Moreover, when dealing with varieties, it is enough that the above weaker
property holds in free algebras, and just for tolerances generated by a finite
sets of disjoint pairs of variables.

It is likely that the above remarks can be used in order to obtain many
instances of identities satisfying the condition in Problem 7.4.
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