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Abstract. It is known that m-permutable varieties satisfy non-
trivial lattice identities; however, the identities discovered so far
are rather artificial and seem to have little intrinsic interest.

We show here that every m-permutable variety satisfies the well
known and well studied lattice identity αβh = αγh. By the way, in
Section 2, we get a new condition equivalent to m-permutability
(Proposition 2.4).

1. Introduction

It has been proved about ten years ago that every m-permutable
variety V satisfies a non-trivial lattice identity. Partial results were
known before: A. Day and J. B. Nation (see [J, Lemma 3.10]) showed
that if some algebra A is 2m-permutable, and has a semilattice oper-
ation then Con A satisfies the identity α(β + γ) ≤ αβ2m + αγ2m. As
usual, βn and γn are defined as follows:

β0 = γ0 = 0

βn+1 = β + αγn γn+1 = γ + αβn

G. Czédli [C] weakened to meet semidistributivity the assumption
of the existence of a semilattice operation: he showed that an m-
permutable variety V is congruence meet semidistributive if and only
if, for some n, V satisfies the congruence identity α(β + γ) = βn. He
also proved the dual result.

D. Hobby and R. McKenzie [HMK, Theorem 9.19] showed that for
every locally finite m-permutable variety V there is a non-trivial lattice
identity satisfied in V . Finally, the assumption that V is locally finite
has been removed in [L1]; moreover, the identity found in [L1] depends
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only on m and does not depend on V . More identities have been found
in [L2]. However, the identities obtained in [L1, L2] are ad hoc and
rather weak. For the most part, such identities simply state that a
certain small interval in the congruence lattice is modular; they say
almost nothing about the global shape of the congruence lattice.

In the present paper we show that every m-permutable variety sat-
isfies a lattice identity similar to the identities found by A. Day, J. B.
Nation and G. Czédli and mentioned at the beginning. It is not the
case that all m-permutable varieties satisfy, say, α(β + γ) = βn, since
there are non semidistributive m-permutable varieties. However, we
show here that every m-permutable variety satisfies the related identity
αγh = αβh, for an appropriate h depending only on m (Theorem 3.5).
Notice that the three identities αγh ≤ βh, αγh = αβh and βh = βh+1

are lattice theoretically equivalent.
The terms βn and γn are well known and have been frequently used

in lattice theory and universal algebra. B. Jónsson and I. Rival [JR]
proved that a variety of lattices is (both meet and join) semidistributive
if and only if for some n it satisfies α(β + γ) = αβn = αγn, as well as
the dual identity. The term βn played a fundamental role in D. Hobby
and R. McKenzie’s deep analysis of finite algebras and locally finite
varieties (see [HMK, Chapter 9]). For example, they proved that a
locally finite variety of algebras is congruence meet semidistributive if
and only if it satisfies α(β ◦ γ) ⊆ βn for some n.

In [L3] we showed that every congruence variety satisfying αγh = αβh
satisfies more identities, which do not follow from it lattice-theoretically.
This appears to be the first example of a non trivial congruence im-
plication involving identities weaker than modularity, and, together
with the results presented here, confirms the importance of the identity
αγh = αβh. Furthermore, we have results suggesting that varieties sat-
isfying αγh = αβh satisfy many of the good properties of m-permutable
varieties (see also Problem 3.6). Notice that αγ2 = αβ2 is an identity
equivalent to modularity, thus αγh = αβh can be seen as a generaliza-
tion of modularity.

Let us mention that the dual identity αγh = αβh, too, has proven
particularly important. K. Kearnes [K1] showed that a locally finite
variety V satisfies some non trivial lattice identity if and only if there
is k such that V satisfies αγk = αβk. Thus, locally finite m-permutable
varieties satisfy also αγk = αβk, for some k, by the results proved here,
or simply by [HMK, Theorem 9.19]. The k given by the proof seems
to depend on V , not just on m. The result we prove is stronger, since
there are varieties which for some k satisfy αγk = αβk, but for no n
satisfy αγn = αβn (see [K1, p. 385], [L3, p. 606]). Let us also recall
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that, in the meantime, many results proved under the assumption of
local finiteness have been proved without such an assumption.

Our proof of Theorem 3.5 splits into two neatly separated parts. In
the first step, in Section 2, we get an identity similar to αβh = αγh,
except that the lattice operation + is replaced by ◦3 (see below for
definitions). Theorem 3.5 is then obtained by a quite straightforward
application of the commutator theory developed in [L1, L4]. Notice
that Section 2 is commutator-free. At the end of each Section some
problems are stated.

Here are the notations we use. α, β denote congruences on some
algebra A. Join and meet in the lattice Con A of all congruences of A
are denoted, respectively, by + and juxtaposition. We use juxtaposition
also to denote intersection.

Relational product is denoted by ◦, and α ◦n β is a shorthand for
α◦β ◦α◦β ◦ . . . , with n+1 occurrences of ◦. Two congruences α, β are
said to m-permute if and only if α ◦m β = β ◦m α (thus, in particular,
α+β = α◦mβ). An algebra A is m-permutable if and only if every pair
of congruences in A m-permute. A variety V is m-permutable if and
only if every algebra in V is m-permutable. 2-permutability is simply
called permutability.

2. A nice property of m-permutable varieties

In this section we shall prove that every m-permutable variety sat-
isfies the identity introduced in the following definition.

Definition 2.1. If α, β, γ, δ are congruences on some algebra, and m
is a natural number, we shall denote by (Xm) the following identity.

α(β ◦ α(γ ◦ α(β ◦ . . . α(γ• ◦ α(β• ◦ αδ ◦ β•) ◦ γ•) . . . ◦ β) ◦ γ) ◦ β) =

α(γ ◦ α(β ◦ α(γ ◦ . . . α(β• ◦ α(γ• ◦ αδ ◦ γ•) ◦ β•) . . . ◦ γ) ◦ β) ◦ γ)

with exactly m open brackets (and exactly m closed brackets) on each
side, where β• = β, γ• = γ if m is odd, and β• = γ, γ• = β if m is
even.

If (a0, b0) belongs to the left-hand side of (Xm) then a0αb0, and
there are elements a1, b1 such that a0βa1, b1βb0 and (a1, b1) ∈ α(γ ◦
α(β ◦ . . . α(γ• ◦ α(β• ◦ αδ ◦ β•) ◦ γ•) . . . ◦ β) ◦ γ), with m − 1 open
brackets. Repeating this argument m times, we get that (a0, b0) belongs
to the left-hand side of (Xm) if and only if there are further elements
a1, a2, . . . , am and b1, b2, . . . , bm such that
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aiαbi, for i = 0, . . . ,m,

amδbm,

aiβai+1, biβbi+1, for i even, 0 ≤ i ≤ m− 1,

aiγai+1, biγbi+1, for i odd, 0 ≤ i ≤ m− 1.

The conditions asserting that (a0, b0) belongs to the right-hand side of
(Xm) are similar, with β and γ interchanged.

The situation is better represented by a diagram:

a0

α
−−−− b0 a0

α
−−−− b0

β

∣∣∣ ∣∣∣β γ

∣∣∣ ∣∣∣γ
a1

α
−−−− b1 c1

α
−−−− d1

γ

∣∣∣ ∣∣∣γ β

∣∣∣ ∣∣∣β
a2

α
−−−− b2 c2

α
−−−− d2

β

∣∣∣ ∣∣∣β ⇔ γ

∣∣∣ ∣∣∣γ
. . . . . .

γ•
∣∣∣ ∣∣∣γ• β•

∣∣∣ ∣∣∣β•
am−1

α
−−−− bm−1 cm−1

α
−−−− dm−1

β•
∣∣∣ ∣∣∣β• γ•

∣∣∣ ∣∣∣γ•
am

αδ
−−−− bm cm

αδ
−−−− dm

where, as above, β• = β, γ• = γ if m is odd, and β• = γ, γ• = β
if m is even. (Xm) asserts that the pair (a0, b0) can be extended to a
sequence (ai, bi) (0 ≤ i ≤ m) satisfying the conditions represented in
the left-hand side of the above diagram if and only if (a0, b0) can be
extended to a sequence as in the right-hand side.

We say that the algebra A satisfies (Xm) if and only if (Xm) holds for
every congruences α, β, γ, δ of A, and we say that a variety V satisfies
(Xm) if and only if every algebra in V satisfies (Xm). Notice that (Xm)
is not a lattice identity, due to the occurrence of composition in it.

Theorem 2.2. If every subalgebra of A2 is m-permutable then A sat-
isfies (Xm).
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Proof. Suppose that every subalgebra of A2 is m-permutable, and
α, β, γ, δ ∈ Con A.

Suppose that a0, b0 ∈ A, and that (a0, b0) belongs to the left-hand
side of (Xm). It is enough to show that (a0, b0) belongs to the right-
hand side. The reverse inclusion is obtained by symmetry.

Since (a0, b0) belongs to the left-hand side of (Xm) we have elements
a1, a2, . . . , am and b1, b2, . . . , bm ∈ A as in the left-hand side of the
diagram in Definition 2.1. We want to obtain elements c1, c2, . . . , cm
and d1, d2, . . . , dm as in the right-hand side.

Let B be the congruence α, considered as a subalgebra of A2, that is,
B = {(a, b)|a, b ∈ A, and aαb}. Notice that the pairs (a0, b0), (a1, b1),
. . . ,(am, bm) belong to B. Moreover, working in B,

(
(ai, bi), (ai+1, bi+1)

)
∈

(β × β)|B for i even, 0 ≤ i < m, and
(
(ai, bi), (ai+1, bi+1)

)
∈ (γ × γ)|B

for i odd, 0 ≤ i < m. Thus,
(
(a0, b0), (am, bm)

)
∈ (β × β)|B ◦m

(γ × γ)|B. Since, by the assumption, B is m-permutable, we have(
(a0, b0), (am, bm)

)
∈ (γ × γ)|B ◦m (β × β)|B. This means that in B

there are pairs (c0, d0) = (a0, b0), (c1, d1), (c2, d2), . . . , (cm−1, dm−1),
(cm, dm) = (am, bm), such that

(
(ci, di), (ci+1, di+1)

)
∈ (γ × γ)|B for i

even, and
(
(ci, di), (ci+1, di+1)

)
∈ (β × β)|B for i odd, 0 ≤ i < m.

Translating the above relations in the algebra A we get that ciγci+1

and diγdi+1 for i even, as well as ciβci+1 and diβdi+1 for i odd. More-
over, ciαdi for 0 ≤ i ≤ m, by the definition of B, and since (ci, di) ∈ B.
Finally, c0 = a0, d0 = b0, and cm = amδbm = dm, thus the elements ci,
di satisfy the desired relations. �

The above proof gives slightly more.

Theorem 2.3. (i) If every congruence of A, thought of as a subalgebra
of A2, is m-permutable then A satisfies (Xm).

(ii) If every subalgebra of A2 generated by m + 1 elements is m-
permutable then A satisfies (Xm); actually, A satisfies the stronger
version of (Xm) in which α is only supposed to be a compatible relation
on A, and δ is any relation on A.

Proof. The first statement is immediate from the proof of Theorem 2.2.
The second statement is proved in the same way by taking B to be

the subalgebra of A2 generated by (a0, b0), (a1, b1) . . . (am, bm). Since
a0αb0, . . . , amαβm, and since α is compatible, we have that cαd, when-
ever (c, d) ∈ B. �

If we do not care about the value assumed by the index, Property
(Xm) characterizes m-permutability.
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Proposition 2.4. For every variety V, the following are equivalent:
(i) V is n-permutable for some n, and
(ii) V satisfies (Xm) for some m.

Proof. By Theorem 2.2, if V is n-permutable then V satisfies (Xn), thus
(i)⇒(ii) is proved.

For (ii)⇒(i), notice that every algebra satisfying (Xm) is 2m − 1-
permutable: just take α = 1 and δ = 0 in (Xm). �

Problem 2.5. Is the relationship between n and m given by the above
proof optimal?

As far as small values of m and n are concerned, we know that for
no m (Xm) is equivalent to permutability. Moreover, (X2) is equivalent
to 3-permutability.

Our original proof of Theorem 2.2 used Hagemann and Mitschke’s
terms [HM] and was valid only for varieties. The present proof is
simpler and provides a result which holds locally. However, our original
proof provided a stronger inclusion, which holds for arbitrary relations,
not only for congruences. We state it here in the hope for further
applications. See [L5] for a proof.

Proposition 2.6. If A belongs to an m-permutable variety, R0, . . . , Rm

are relations, S1, . . . , Sm, T1, . . . , Tm are reflexive relations on A, then

R0(S1 ◦R1(S2 ◦R2(S3 ◦ . . . Rm−1(Sm ◦Rm ◦ Tm) · · · ◦ T3) ◦ T2) ◦ T1) ⊆
R0(S ′1 ◦R′1(S ′2 ◦R′2(S ′3 ◦ . . . R′m−1(S ′m ◦Rm ◦ T ′m) . . . ◦ T ′3) ◦ T ′2) ◦ T ′1)

where we put ( X denoting the least compatible relation containing X):

R′i = Ri−1 ∪Ri ∪Ri+1, for i = 1, . . . ,m− 1,

S ′1 = S2, T ′1 = T2, S ′m = Sm−1, T ′m = Tm−1,

S ′i = Si−1 ◦ Si+1, T ′i = Ti+1 ◦ Ti−1, for i = 2, . . . ,m− 1,

3. Applying commutator theory

We first recall the definitions of some commutators from [L1]. The
actual definitions shall not be used in the present paper: we shall use
only the properties stated in Theorem 3.2 below, as well as the trivial
properties of

(monotonicity) α ≤ α ′ and β ≤ β ′ imply [α, β] ≤ [α ′, β ′]

(submultiplicativity) [α, β] ≤ αβ
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Definition 3.1. Let A be any algebra, and let α, β, γ ∈ Con(A).
M(α, β) is the set of all matrices of the form∣∣∣∣ t(a, b) t(a, b ′)

t(a ′, b) t(a ′, b ′)

∣∣∣∣
where a, a ′ ∈ An, b, b ′ ∈ Am, for some m,n ≥ 0, t is an m+n-ary term
operation of A, and aαa ′, bβb ′. Further, we set

K(α, β; γ) =

{
(z, w)|

∣∣∣∣x y
z w

∣∣∣∣ ∈M(α, β), for some xγy

}
,

[α, β|0] = 0A, [α, β|n+ 1] = Cg(K(α, β; [α, β|n])),

where Cg means “the congruence generated by”.

In the results that follow, [m−1
2

] denotes the integer part of m−1
2

.

Theorem 3.2. (i) If β, γ m-permute then for every n [β + γ, α|n] ≤
αβmn.

(ii) If V is an m-permutable variety then there is a ternary term d
such that

d(b, b, a) ≡ a ≡ d(a, b, b) (mod [α, α|n])

for every algebra A ∈ V, every congruence α ∈ Con A and elements
aαb ∈ A, and where n = [m−1

2
].

Clause (i) in Theorem 3.2 is from [L1, Lemma 1(i)]. Condition (ii)
is an easy corollary of the proof of [T, Theorem 2], as noticed in [L1,
Lemma 2, and Remark (c) on p. 162]. Full details are given in the
proof of [L2, Theorem 1.2(c)]. Replace n, s, t, m there by, respectively,
m− 2, [m−2

2
], [m−1

2
], 1.

Proposition 3.3. Let m ≥ 3 and V be an m-permutable variety, and
put k = m[m−1

2
]. Then for all j ≥ k − 1 all algebras in V satisfy

βj+1 = βk ◦ αγj ◦ βk

Proof. By Theorem 3.2(ii) and by [L4, Lemma 3.1(iii)] with F (δ) =
[δ, δ|n], and n = [m−1

2
], we get

(*) δ + ε =
(
[δ, δ|n] + [ε, ε|n]

)
◦ δ ◦ ε ◦

(
[δ, δ|n] + [ε, ε|n]

)
for every pair of congruences δ and ε in every algebra in V .

By Theorem 3.2(i), [β + γ, α|n] ≤ αβmn. Hence, by monotonic-
ity, and since, for all j, αγj ≤ α(β + γ), we have [αγj, αγj|n] ≤
[α(β + γ), α(β + γ)|n] ≤ [β + γ, α|n] ≤ αβk ≤ βk, for all j.
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Thus, by submultiplicativity and (∗) above,

βj+1 = β+αγj =
(
[β, β|n]+[αγj, αγj|n]

)
◦β◦αγj◦

(
[β, β|n]+[αγj, αγj|n]

)
⊆
(
β+[αγj, αγj|n]

)
◦αγj◦

(
β+[αγj, αγj|n]

)
⊆ (β+βk)◦αγj◦(β+βk) =

(β + β + αγk−1) ◦ αγj ◦ (β + β + αγk−1) = βk ◦ αγj ◦ βk

For the reverse inclusion, notice that, trivially, βj+1 ≥ αγj, and βj+1 ≥
βk, since j ≥ k − 1, thus βj+1 ≥ βk + αγj ⊇ βk ◦ αγj ◦ βk. �

Proposition 3.4. Let m ≥ 3 and V be an m-permutable variety, and
put k = m[m−1

2
]. Then for all n > 0 all algebras in V satisfy

βk+n = βk ◦α(γk ◦α(βk ◦ . . . α(γ•k ◦α(β•k ◦αγ•k ◦β•k)◦γ•k) . . .◦βk)◦γk)◦βk

with exactly n − 1 open brackets and where β•k = βk, γ•k = γk if n is
odd, and β•k = γk, γ•k = βk if n is even.

Proof. By Proposition 3.3 with j = k, we get αβk+1 = α(βk ◦ αγk ◦ βk)
and, by symmetry, αγk+1 = α(γk ◦ αβk ◦ γk).

By the above identity, and by taking j = k + 1 in Proposition 3.3
we have βk+2 = βk ◦ αγk+1 ◦ βk = βk ◦ α(γk ◦ αβk ◦ γk) ◦ βk, and
αβk+2 = α(βk ◦ α(γk ◦ αβk ◦ γk) ◦ βk), as well as the symmetrical
identities.

The proposition is obtained by iterating the above arguments. �

Notice that, so far, we have not used the results of Section 2.

Theorem 3.5. For m ≥ 3, every m-permutable variety satisfies the
congruence identity αβh = αγh, for h = m[m+1

2
]− 1

Proof. First notice that if k = m[m−1
2

] then h = m[m+1
2

]−1 = m[m−1
2

]+
m− 1 = k +m− 1. By Proposition 3.4 with n = m, and by Theorem
2.2 with βk, γk and γ•k in place of, respectively, β, γ and δ, we have

αβh = αβk+m−1 ≤ αβk+m =

α(βk ◦α(γk ◦α(βk ◦ . . . α(γ•k ◦α(β•k ◦αγ•k ◦β•k)◦γ•k) . . . ◦βk)◦γk)◦βk) =

α(γk ◦α(βk ◦α(γk ◦ . . . α(β•k ◦α(γ•k ◦αγ•k ◦γ•k)◦β•k) . . . ◦γk)◦βk)◦γk) =

α(γk ◦α(βk ◦α(γk ◦ . . . α(β•k ◦ αγ•k ◦ β•k) . . . ◦γk)◦βk)◦γk) =

αγk+m−1 = αγh

since the last two lines are equal because of Proposition 3.4 with n =
m− 1 and γ in place of β.

Thus, we have proved that αβh ≤ αγh. By symmetry αγh ≤ αβh,
from which we reach the conclusion. �
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In the particular case of locally finite m-permutable varieties, the
value n = [m−1

2
] in Theorem 3.2(ii) can be improved to n = 1, because

of [HMK, Theorems 9.8 and 9.14], and of the result stated in the last
line of [L1, p. 163]. K. Kearnes [K2] has communicated us results which
imply that Theorem 3.2(ii) holds with n = 1 for every m-permutable
variety. Thus, modulo the above results, Theorem 3.5 holds for h =
2m− 1.

Can h be improved further?
Considering small values of m suggests that h can be actually im-

proved. Permutable and 3-permutable varieties are congruence mod-
ular, hence they satisfy αβ2 = αγ2. We know that an m-permutable
variety V satisfies αβm = αγm if at least one of the following conditions
is satisfied: (a) m = 4 or m = 5 (no use of commutator theory); (b) V
is semidistributive [K2]; (c) V has a difference term for [α, α|1] (that
is, a term satisfying condition (ii) in Theorem 3.2 with n = 1 and with
one “≡” replaced by “=”).

The proof of Theorem 3.5 applies to a more general context. First,
notice that, in the proof of 3.5, in place of (Xm), it is enough to assume
the following weaker property (Xm)∗:

α(β ◦ α(γ ◦ α(β ◦ . . . α(γ• ◦ α(β• ◦ αδ ◦ β•) ◦ γ•) . . . ◦ β) ◦ γ) ◦ β) ⊆(
α(γ ◦ α(β ◦ α(γ ◦ . . . α(β• ◦ α(γ• ◦ αδ ◦ γ•) ◦ β•) . . . ◦ γ) ◦ β) ◦ γ)

)∗
with m normal-sized open parenthesis on each side, where ∗ denotes
transitive closure.

We have a long technical proof showing that if a variety satisfies
(Xm)∗ then for some n and k the commutator [α, β|n] satisfies [β +
γ, α|n] ≤ αβk, and there exists a term d as in condition (ii) in Theorem
3.2. Thus we get: If a variety V satisfies (Xm)∗ for some m then there
is some h (depending on V) such that V satisfies αβh = αγh.

Is the converse true?

Problem 3.6. Is it true that if V satisfies αβh = αγh for some h then
V satisfies (Xm)∗ for some m?
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Università di Roma (Rot Vergata), I-00133 ROME ITALY

E-mail address: lipparin@axp.mat.uniroma2.it
URL: http://www.mat.uniroma2.it/~lipparin


