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We present instances of the following phenomenon: if a
product of topological spaces satisfies some given compact-
ness property then the factors satisfy a stronger compactness
property, except possibly for a small number of factors.

The first known result of this kind, a consequence of a
theorem by A. H. Stone, asserts that if a product is regu-
lar and Lindelöf then all but at most countably many factors
are compact. We generalize this result to various forms of fi-
nal compactness, and extend it to two-cardinal compactness.
In addition, our results need no separation axiom.

1. Introduction

By Tychonoff Theorem, any product of compact topological spaces is com-
pact. The converse is trivial: if a product of topological spaces is compact
then all factors are compact.

The situation changes when weaker forms of compactness are taken into
account. In order to present an example, recall that a topological space is
said to be Lindelöf if and only if every open cover has a countable subcover.
A product of Lindelöf spaces is not necessarily Lindelöf; actually, the square
of a Lindelöf space need not be Lindelöf (see [Go]).

For the converse, it is trivial that if a product of topological spaces is
Lindelöf then each factor is Lindelöf. What is relevant to the present paper
is that if a product is Lindelöf then we can say much more about the factors:
the following theorem is an immediate consequence of a classical result by
A. H. Stone (see Subsection 1.1 for some history).

Theorem 1.1. If a product of topological spaces is Lindelöf then all but at
most a countable number of factors are compact.

The classical argument seems to require some separation axiom: a mi-
nor contribution of the present paper is to provide a proof which uses no
separation axiom.
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2 COMPACT FACTORS IN PRODUCTS

More importantly, we extend Theorem 1.1 to final κ-compactness. If
κ is an infinite cardinal, then a topological space is said to be finally κ-
compact if and only if every open cover has a subcover by < κ sets. Thus,
Lindelöf is the same as finally ℵ1-compact. When expressed in terms of final
κ-compactness, our main result reads:

Theorem 1.2. If a product of topological spaces is finally ℵn+1-compact,
then all but at most ℵn factors are compact.

Moreover, we generalize Theorem 1.1 to linearly Lindelöf spaces: a topo-
logical space is linearly Lindelöf if and only if every open cover which is
linearly ordered by inclusion has a countable subcover (some authors use
the term chain-Lindelöf). See [AB], [K] and [KL] for further information
and references about linearly Lindelöf spaces. It is well-known that a space
is linearly Lindelöf if and only if every uncountable subset of regular cardi-
nality has a complete accumulation point.

There are examples of linearly Lindelöf not Lindelöf topological spaces,
thus the next theorem is a proper generalization of Theorem 1.1.

Theorem 1.3. If a product of topological spaces is linearly Lindelöf, then
all but at most countably many factors are compact.

In fact, a simultaneous generalization of Theorems 1.2 and 1.3 holds: see
Theorem 7.4.

Theorems 1.2 and 1.3 have immediate consequences for powers.

Corollary 1.4. If the ℵn+1-th power of the topological space X is finally
ℵn+1-compact then X is compact.

If the ℵ1-th power of the topological space X is linearly Lindelöf then X
is compact.

We have also a version of Theorem 1.2 for larger cardinals. A topological
space is countably compact if and only if every countable open cover has a
finite subcover.

Theorem 1.5. If a product of topological spaces is finally ℵω-compact, then
either

(a) all factors are countably compact, or
(b) all factors are compact, except possibly for a set having cardinality less

than ℵω.

Actually, our results are even stronger, when expressed in terms of finer
notions of compactness. A topological space is said to be initially κ-compact
if and only if every open cover by at most κ sets has a finite subcover.

If κ, λ are infinite cardinals, a topological space is said to be [κ, λ]-compact
if and only if every open cover by at most λ sets has a subcover by less than
κ sets.

With the above terminology, we have:
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Theorem 1.6. If a product of topological spaces is [ℵn+1,ℵn+1]-compact,
then all but at most ℵn factors are initially ℵn+1-compact.

Theorem 1.7. If a product of topological spaces is [ℵω,ℵω]-compact, then
either

(a) all factors are countably compact, or
(b) all factors are initially ℵω-compact, except possibly for a set of cardi-

nality less than ℵω.

Notice that the notion of [κ, λ]-compactness encompasses both the notion
of final κ-compactness and the notion of initial κ-compactness. Indeed, final
κ-compactness is the same as [κ, λ]-compactness for all λ, and initial κ-
compactness is the same as [ω, κ]-compactness. Moreover, it appears that
[κ, λ]-compactness is a particularly nice way of “splitting compactness into
pieces”: see Section 3.

The results we have stated in this section will be proved in Section 7.
Actually, some more general versions will be given there.

In detail, the paper is divided as follows. After Section 2, devoted to pre-
liminaries, in Section 3 we recall some basic properties of [κ, λ]-compactness.
Section 4 contains the construction of a matrix very similar to the classical
Ulam matrix, as well as a further construction we shall need. In Section 5
we deal with [λ+, λ+]-compact products in the case when λ is a regular car-
dinal, while in Section 6 we treat [λ, λ]-compact products in the case when
λ is singular. We sum up our results in Section 7. In Section 8 we add some
further remarks, and state some problems.

The results and proofs in the first part of Section 6 do not depend on
Sections 4 and 5, while the proofs of Theorems 1.2 and 1.3 do not rely on
Section 6.

1.1. A short historical note. A. H. Stone [Sto] showed that the product
of uncountably many copies of N (the space of the natural numbers with
the discrete topology) is not normal. As a corollary, Stone obtained that if
a product of T1 spaces is normal then all but a countable number of factors
are countably compact.

Since T3 Lindelöf spaces are normal, and since countably compact Lindelöf
spaces are compact (see [Go]), one immediately gets that if a product of T3

spaces is Lindelöf, then all but a countable number of factors are compact
(see [V1]).

Apparently, the above arguments need separation axioms in an essential
way.

Apparently, Theorem 1.3 cannot be obtained by the above arguments,
since there are examples of linearly Lindelöf T3 spaces which are not Lin-
delöf (see Section 4 of [AB]). In passing, let us mention that it is not
known whether there exists a normal linearly Lindelöf not Lindelöf topolog-
ical space.
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Recently, X. Caicedo, using deep logical and set theoretical methods,
proved results similar to Theorem 1.1 with no need of separation axioms,
but only for products with arbitrarily large numbers of factors. For example,
Caicedo proved that if all powers of a space X are Lindelöf then X is com-
pact. More generally, he proved that if all powers of X are [λ+, λ+]-compact
then X is [λ, λ]-compact (cf. Theorem 5.2), and similar results are obtained
for families of topological spaces. The above results are explicitly stated in
[C1], and follow easily from the results proved in [C2].

In [L1] we showed that the use of technical set-theoretical tools (in par-
ticular, regularity properties of ultrafilters) is essential in [C1] and [C2],
and that the methods of [C1] and [C2] lead to set-theoretical assumptions
which go beyond the commonly accepted axioms for set theory.

The methods of the present paper not only provide generalizations and
strengthenings of the above mentioned results, but have the advantage of
elementary proofs which need no special set-theoretical tool. We only rely
on some combinatorial properties of certain matrices of sets introduced by
S. Ulam already in the 30’s [U]. In Lemma 4.2 we construct a new matrix
from a version of Ulam’s one.

2. Preliminaries

Our notation is fairly standard.
Space is always used as an abbreviation for topological space. No separa-

tion axiom is needed to prove the results of the present paper. In particular,
Lindelöf means exactly that every open cover has a countable subcover (some
authors incorporate some separation axiom directly in the definition of Lin-
delöfness).

A product of topological spaces is always endowed with the Tychonoff
topology, the smallest topology under which the canonical projections are
continue maps. The λ-th power of a topological space X is the product∏
α∈λXα, where Xα = X for all α ∈ λ.
α, β, γ . . . denote ordinals. We assume throughout the Axiom of Choice,

hence any set X is equinumerous with some ordinal. The smallest such
ordinal is the cardinality of X, and is denoted by |X|. A cardinal is identified
with the set of smaller ordinals (hence, for example, α ∈ λ and α < λ have
exactly the same meaning).

Infinite cardinals are denoted by λ, µ, ν, κ . . . The smallest infinite cardinal
is denoted by ω . When convenient, we denote infinite cardinals using the ℵ
notation: ℵ0 = ω is the smallest infinite cardinal, ℵ1 is the smallest cardinal
larger than ℵ0, and so on. ℵω is the smallest cardinal larger than all ℵn’s (n
a natural number). Countable means finite or denumerable, that is, having
cardinality ≤ ℵ0.
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The smallest cardinal larger than λ is called the successor of λ, and is
denoted λ+. Thus, if λ = ℵα, then λ+ = ℵα+1. ℵα+ω is the smallest
cardinal larger than all ℵα+n’s (n a natural number).

A cardinal λ is singular if and only if λ can be obtained as a union
λ =

⋃
i∈I λi for some set I with |I| < λ and where λi < λ, for all i ∈ I.

The smallest cardinality of an I as above is called the cofinality of λ, and is
denoted cfλ. Thus, if λ is a singular cardinal, then λ = supα∈cfλ λα, for an
appropriate choice of the λα’s, with λα < λ, for α ∈ cfλ.

A cardinal λ is regular if and only if it is not singular. The cofinality of
a singular cardinal is always a regular cardinal. All finite cardinals and all
successor cardinals are regular.
⊆ denotes inclusion, and ⊂ denotes strict inclusion. The minus operation

between sets is denoted by \: X \ Y = {x ∈ X|x 6∈ Y }.

3. Properties of [κ, λ]-compactness

In this section we list the properties of [κ, λ]-compactness needed in the
present paper. Most of the results in this section are due, in some form or
another, to [AU]. We present proofs for sake of completeness.

[κ, λ]-compactness has been studied (in various forms and with varying
terminology and notations) by many authors. See, e.g., [Sm], [Ga], [V1],
[V2], [Ste], [C2], [L1] for further results, further references, and historical
notes.

The next proposition shows that [κ, λ]-compactness could have been de-
fined in terms of [µ, µ]-compactness alone, that is, we can split [κ, λ]-compactness
into instances of [µ, µ]-compactness. If we want to show that a space is [κ, λ]-
compact, it is enough to show that it is [µ, µ]-compact for every cardinal µ
with κ ≤ µ ≤ λ.

Proposition 3.1. For every pair of infinite cardinals κ, λ, and every topo-
logical space X, the following are equivalent:

(i) X is [κ, λ]-compact;
(ii) X is [µ, µ]-compact for every cardinal µ with κ ≤ µ ≤ λ.

Proof. (i) ⇒ (ii) is trivial.
Suppose that (ii) holds. We show by transfinite induction on ν, with

κ ≤ ν ≤ λ, that X is [κ, ν]-compact.
By taking µ = κ in (ii) we get that X is [κ, κ]-compact, that is, the

induction basis ν = κ.
For the induction step, suppose that ν < λ, and that X is [κ, ν ′]-compact,

for all ν ′ < ν : we have to show that X is [κ, ν]-compact. Let O be an open
covering of X with |O| ≤ ν. By taking µ = ν in (ii), X is [ν, ν]-compact,
hence O has a subcover O′ with |O′| < ν. If |O′| < κ, then there is nothing
to prove. If |O′| ≥ κ, let ν ′ = |O′|: by [κ, ν ′]-compactness O′ has a subcover
O′′ with |O′′| < κ.
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Thus every open covering of X of cardinality at most ν has a subcover of
cardinality < κ, that is X is [κ, ν]-compact. This completes the induction
step, and the proposition is proved. �

We shall make good use of Proposition 3.1 at several points in the present
paper. For example, though the statement of Theorem 1.2 mentions final
ℵn+1-compactness only, we know just one reasonable way to prove it, that
is, by splitting finally ℵn+1-compactness into pieces of [λ, λ]-compactness,
as given by Proposition 3.1: see Corollary 3.3(i). Cf. also the proofs of
Theorems 7.1 and 7.5.

Proposition 3.2. If κ is a singular cardinal, and a topological space X is
[cfκ, cfκ]-compact then X is [κ, κ]-compact.

Proof. Let (Uα)α∈κ be an open cover of X. Let (κβ)β∈cfκ be a sequence such
that supβ∈cfκ κβ = κ, and κβ < κ for β ∈ cfκ.

For β ∈ cfκ, define Vβ =
⋃
α<κβ

Uα. (Vβ)β∈cfκ is an open cover of X by
cfκ-many sets, hence there is I ⊆ cfκ such that |I| < cfκ, and (Vi)i∈I is a
cover of X.

Since cfκ is a regular cardinal, there is γ < cfκ such that sup I < γ.
Hence, (Vβ)β<γ is a cover of X. By the definition of the Vβ ’s then (Uα)α<κγ
is a cover of X by less than κ sets. �

Corollary 3.3. (i) A topological space is finally κ-compact if and only if it
is [µ, µ]-compact for all µ ≥ κ.

(ii) A topological space is initially κ-compact if and only if it is [µ, µ]-
compact for all infinite µ ≤ κ, if and only if it is [µ, µ]-compact for all
infinite regular µ ≤ κ.

(iii) A topological space is compact if and only if it is [µ, µ]-compact for
all infinite µ, if and only if it is [µ, µ]-compact for all regular infinite µ.

Proof. Immediate from Propositions 3.1 and 3.2. �

In the particular case when κ is a regular cardinal, there are many in-
teresting and useful characterizations of [κ, κ]-compactness. We list below
some of them.

Recall that if Y is an infinite subset of the topological space X and x ∈ X
then x is said to be a complete accumulation point of Y (in X) if and only
if |U ∩ Y | = |Y |, for every neighbourhood U (in X) of x.

Proposition 3.4. For every infinite regular cardinal κ and every topological
space X, the following are equivalent.

(i) X is [κ, κ]-compact.
(ii) Whenever (Uα)α<κ is a sequence of open sets of X, such that Uα ⊆ Uα′

for every α < α′, and such that
⋃
α<κ Uα = X, then there is an α < κ such

that Uα = X.
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(iii) Whenever (Cα)α<κ is a sequence of closed sets of X, such that Cα ⊇
Cα′ for every α < α′, and such that

⋂
α<κCα = ∅, then there is an α < κ

such that Cα = ∅.
(iv) For every sequence (xα)α<κ of elements of X, there exists x ∈ X

such that |{α < κ|xα ∈ U}| = κ for every neighbourhood U of x.
(v) (CAPκ) Every subset Y ⊆ X with |Y | = κ has a complete accumula-

tion point.

Proof. (i) ⇒ (ii) follows from the assumption that κ is regular.
(ii) ⇒ (i) is similar to the proof of Proposition 3.2. If (Uα)α∈κ is an open

cover of X, and β ∈ κ define Vβ =
⋃
α<β Uα. Since (Uα)α∈κ is a cover of X,

then (Vβ)β∈κ is a cover of X and, moreover, Vβ ⊆ Vβ′ for β ≤ β′. By (ii),
there is β ∈ κ such that Vβ = X. Since Vβ =

⋃
α<β Uα, we get that (Uα)α<β

is a subcover of (Uα)α∈κ of cardinality < κ.
The equivalence of (ii) and (iii) is immediate, by taking complements.
(iii) ⇒ (iv). Let (xα)α<κ be a sequence of elements of X.
For β < κ, define Cβ to be the closure of the set {xα|α > β}. Cβ ⊇ Cβ′

for every β < β′, and Cβ 6= ∅ for every β < κ, since xβ+1 ∈ Cβ.
Hence, by (iii),

⋂
β<κCβ 6= ∅, say x ∈

⋂
β<κCβ.

We claim that x satisfies the property stated in (iv). If not, there is
an open set U containing x and such that |{α < κ|xα ∈ U}| < κ. Let
A = {α < κ|xα ∈ U}. Since κ is regular, supA < κ; hence xα 6∈ U , for every
α > supA.

But this contradicts x ∈ CsupA, since CsupA is the closure of {xα|α >
supA}.

(iv) ⇒ (iii). Suppose that (iv) holds, and suppose by contradiction that
(Cα)α<κ is a sequence of closed sets of X, such that Cα ⊇ Cα′ for every
α < α′,

⋂
α<κCα = ∅, but Cα 6= ∅, for every α < κ.

For every α < κ, choose xα ∈ Cα. By (iv), there exists x ∈ X such
that |{α < κ|xα ∈ U}| = κ for every neighbourhood U of x. Thus, for
every neighbourhood U of x and for every α < κ there is α′ > α such that
xα′ ∈ U .

Since Cα ⊇ Cα′ for every α < α′, every neighbourhood U of x intersects
every Cα, that is, x belongs to every Cα, since they are closed sets. Thus,
x ∈

⋂
α<κCα, a contradiction.

(iv) ⇒ (v) is trivial: just arrange the elements of Y into a sequence of
length κ.

Conversely, suppose that (v) holds, and that (xα)α<κ is a sequence of
elements of X.

If there exists β < κ such that |{α < κ|xα = xβ}| = κ, then x = xβ
satisfies the conclusion of (iv) (with no use of (v)).

Otherwise, for every β < κ, |{α < κ|xα = xβ}| < κ. Hence, the set
Y = {xα|α < κ} has cardinality κ, since κ is a regular cardinal.
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By applying (v) to Y , one easily gets (iv). �

Of course, there is a more general version of Proposition 3.4 which deals
with [κ, λ]-compactness: just combine Proposition 3.4 and Proposition 3.1;
however, here we shall not need the more general version.

The assumption that κ is regular is necessary in Proposition 3.4: see [V2]
for various counterexamples.

Using the methods in the proofs of Propositions 3.4 and 3.2 one can easily
show that a space X is linearly Lindelöf if and only if X is [κ, κ]-compact
for every regular infinite cardinal κ > ω, if and only if every subset of X of
regular uncountable cardinality has a complete accumulation point.

The following is trivial (but useful!).

Proposition 3.5. If f : X → Y is surjective and continuous, and X is
[κ, λ]-compact, then Y is [κ, λ]-compact, too.

In particular, if
∏
i∈I Xi is [κ, λ]-compact, and J ⊆ I, then

∏
i∈J Xi is

[κ, λ]-compact.
In particular, all factors of a [κ, λ]-compact product are themselves [κ, λ]-

compact.

4. Two Ulam-like matrices

The next Lemma is a variation on a classical result by S. Ulam, as employed
by K. Prikri, and G.V. Čhudnovskǐı and D. V. Čhudnovskǐı: see Lemmata
8.33 and 8.34 of [CN]. We give the proof for the reader’s convenience. See
[EU] and [CN] for historical notes.

Lemma 4.1. For every infinite cardinal λ there is a family (Aα,β)α<λ,β<λ+

of subsets of λ+ such that:
(i) For every β < λ+, |λ+ \

⋃
α<λAα,β | ≤ λ;

(ii) For every β < λ+ and α ≤ α′ < λ, Aα,β ⊆ Aα′,β;
(iii) Whenever α < λ and C ⊆ λ+ is such that |C| > |α| then

⋂
β∈C Aα,β =

∅.

Proof. For every γ < λ+, |γ| ≤ λ, hence we can choose an injective function
φγ : γ → λ.

Define Aα,β = {γ < λ+|β < γ and φγ(β) < α}.
(i) is easy, since λ+ \

⋃
α<λAα,β ⊆ β ∪ {β}

(ii) is trivial.
Let α,C be as in the hypothesis of (iii). Suppose by contradiction that

there is γ ∈
⋂
β∈C Aα,β : then, by the definition of Aα,β , φγ(β) < α, for every

β ∈ C, thus φγ , restricted to C, would be injective from C to α, and this
contradicts |C| > |α|. �

It is convenient to visualize (Aα,β)α<λ,β<λ+ as an infinite matrix with λ

rows and λ+ columns: each column is an increasing sequence of subsets of λ+
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whose union is the whole of λ+, except perhaps for a subset of cardinality λ;
Condition (iii) in Lemma 4.1 asserts that if we take more than |α| elements
from the αth row, then their intersection is empty. Actually, in what follows,
we shall need only the particular case |C| = λ of Condition (iii) in Lemma
4.1.

From the matrix given by 4.1 we shall construct another matrix, the
one which shall be used in order to obtain our results on compact factors in
products. This matrix, too, has λ rows and λ+ columns; it satisfies property
(ii) of Lemma 4.1, and a property stronger than (i), but the main point is
that property (iii) is changed to: for every possible choice of one element
from each column, there is a pair of the chosen elements whose intersection
has cardinality ≤ λ. We know no reference for this consequence of Ulam’s
construction.

Lemma 4.2. If λ is an infinite regular cardinal, there is a set H with
|H| = λ+, and there is a family (Bα,h)α<λ,h∈H of subsets of λ+ such that:

(i) For every h ∈ H,
⋃
α<λBα,h = λ+;

(ii) For every h ∈ H and α ≤ α′ < λ, Bα,h ⊆ Bα′,h;
(iii) For every function f : H → λ there exists a subset F ⊆ H with

|F | = 2 and such that |
⋂
h∈F Bf(h),h| ≤ λ.

Proof. Let H = λ+ ∪ {(γ, β)|γ < λ, β < λ+, |β| = λ}. Clearly, |H| = λ+.
For every β < λ+ with |β| = λ, fix a bijection ψβ : λ→ β.

Suppose that we have a family of matrices (Aα,β)α<λ,β<λ+ as given by
Lemma 4.1.

Let α < λ. We now define Bα,h for h ∈ H. We need to consider the two
cases h ∈ λ+ and h 6∈ λ+.

Suppose that h ∈ H, and h ∈ λ+, thus h = β, for some β < λ+; then let
Bα,h = Aα,β ∪

(
λ+ \

⋃
γ<λAγ,β

)
.

Suppose that h ∈ H and h 6∈ λ+, that is h = (γ, β), for some γ < λ, β <
λ+, with |β| = λ. In this case, put Bα,h = λ+ \

⋃
α<ε<λAγ,ψβ(ε).

Condition (i) trivially holds when h ∈ λ+. Hence suppose h 6∈ λ+, say
h = (γ, β). We want to show that

⋃
α<λBα,h = λ+, so let δ be any element of

λ+. We have to show that there is α < λ such that δ ∈ Bα,h. Consider the set
C = {ε < λ|δ ∈ Aγ,ψβ(ε)}. Thus, δ ∈

⋂
ε∈C Aγ,ψβ(ε), hence

⋂
ε∈C Aγ,ψβ(ε) 6=

∅. Since ψβ is injective, Condition (iii) in Lemma 4.1 implies that |C| ≤ |γ|,
thus |C| ≤ |γ| < λ. Choose α such that λ > α ≥ supC (this is possible,
since λ is supposed to be a regular cardinal, and since |C| < λ). By the very
definition of C, for every ε > α, δ 6∈ Aγ,ψβ(ε), that is, δ 6∈

⋃
α<ε<λAγ,ψβ(ε),

that is, δ ∈ Bα,h = λ+ \
⋃
α<ε<λAγ,ψβ(ε). We have showed that Condition

(i) holds.
In the case h 6∈ λ+, Condition (ii) is trivial. In the case h ∈ λ+, Condition

(ii) follows immediately from Condition (ii) in Lemma 4.1.
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Let us now show that Condition (iii) holds, so let f : H → λ. There is
γ < λ such that |{β < λ+|f(β) = γ}| = λ+, since otherwise λ+ would be the
union of λ sets each of cardinality ≤ λ. Choose such a γ, and choose β < λ+

in such a way that |{β′ < β|f(β′) = γ}| = λ. Notice that necessarily |β| = λ.
Consider h = (γ, β), and choose some β′ < β such that f(β′) = γ and
β′ 6∈ {ψβ(ε)|ε ≤ f(h)}. Such a β′ exists, since the latter set has cardinality
< λ (since f(h) < λ, hence |f(h)| < λ), while |{β′ < β|f(β′) = γ}| has been
chosen to have cardinality λ. Since ψβ is surjective, β′ = ψβ(ε), for some
ε > f(h).

We claim that F = {β′, h} is a subset of H which satisfies the conclusion
of Condition (iii). Indeed,

Bf(h),h = λ+ \
⋃

f(h)<ε<λ

Aγ,ψβ(ε) =
⋂

f(h)<ε<λ

(λ+ \Aγ,ψβ(ε))

Since β′ = ψβ(ε), for some ε > f(h), we get Bf(h),h ∩Aγ,β′ = ∅.
Since Bγ,β′ = Aγ,β′ ∪

(
λ+ \

⋃
α<λAα,β′

)
, we get

Bf(h),h ∩Bγ,β′ = Bf(h),h ∩

(
Aγ,β′ ∪

(
λ+ \

⋃
α<λ

Aα,β′

))
=

(
Bf(h),h ∩Aγ,β′

)
∪

(
Bf(h),h ∩

(
λ+ \

⋃
α<λ

Aα,β′

))
=(

Bf(h),h ∩

(
λ+ \

⋃
α<λ

Aα,β′

))
⊆

(
λ+ \

⋃
α<λ

Aα,β′

)
By Condition (i) in Lemma 4.1, the last set in the above chain of inclusions
has cardinality ≤ λ, hence we have |Bf(h),h∩Bγ,β′ | ≤ λ, which is the desired
conclusion, since γ = f(β′). �

5. [λ, λ]-compact factors in [λ+, λ+]-compact products

Proposition 5.1. Suppose that λ is an infinite regular cardinal. If X =∏
j∈J Xj, |J | = λ+, and no Xj is [λ, λ]-compact, then X is not [λ+, λ+]-

compact.

Proof. Let X, (Xj)j∈J be as in the statement of the proposition. Suppose
that (Bα,h)α<λ,h∈H is a set of matrices as given by Lemma 4.2. Since |H| =
|J |, by fixing a bijection from I onto H, we can rearrange the indices in such
a way that X =

∏
h∈H Xh.

Since no Xh is [λ, λ]-compact, and since λ is regular, by Condition (iv) in
Proposition 3.4, for every h ∈ H there is a sequence {xα,h|α < λ} such that
every x ∈ Xh has a neighbourhood U in Xh such that |{α < λ|xα,h ∈ U}| <
λ.
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We shall define a sequence (yβ)β<λ+ of elements of X such that for every
y ∈ X there is a neighbourhood U in X of y such that |{β < λ+|yβ ∈ U}| <
λ+, thus X is not [λ+, λ+]-compact, again by Condition (iv) in Proposition
3.4, and since successor cardinals are always regular.

For β < λ+, let yβ = ((yβ)h)h∈H ∈
∏
h∈H Xh be defined by: (yβ)h = xα,h,

where α is the first ordinal such that β ∈ Bα,h (such an ordinal exists by
Condition (i) in Lemma 4.2).

Suppose by contradiction that there is y ∈ X such that for every neigh-
bourhood U in X of y |{β < λ+|yβ ∈ U}| = λ+.

Consider the components (yh)h∈H of y ∈ X =
∏
h∈H Xh. Because of the

way we have chosen the xα,h’s, for each h ∈ H, yh has a neighbourhood Uh
in Xh such that |{α|xα,h ∈ Uh}| < λ. For every h ∈ H, fix some Uh as above.
For each h ∈ H, choose f(h) in such a way that λ > f(h) > sup{α|xα,h ∈
Uh} (this is possible since λ is regular, and |{α|xα,h ∈ Uh}| < λ).

By Condition (iii) in Lemma 4.2, there is F ⊆ H such that |F | = 2 and
|
⋂
h∈F Bf(h),h| ≤ λ. Let V =

∏
h∈H Vh, where Vh = Xh if h 6∈ F , and

Vh = Uh if h ∈ F . V is a neighbourhood of y in X, since F is finite.
For every β < λ+ and h ∈ H, by definition, (yβ)h = xα,h, for some α such

that β ∈ Bα,h. By the definition of f , if (yβ)h = xα,h ∈ Uh then f(h) > α,
thus β ∈ Bα,h ⊆ Bf(h),h, by Condition (ii) in Lemma 4.2. We have proved
that, for every h ∈ H, {β < λ+|(yβ)h ∈ Uh} ⊆ Bf(h),h.

Thus, by the definition of V , we have {β < λ+|yβ ∈ V } =
⋂
h∈F {β <

λ+|(yβ)h ∈ Uh} ⊆
⋂
h∈F Bf(h),h. Hence |{β < λ+|yβ ∈ V }| ≤ |

⋂
h∈F Bf(h),h| ≤

λ. This is a contradiction, since we have supposed that |{β < λ+|yβ ∈ V }| =
λ+, for every neighbourhood V of y. �

Notice that, in the proof of Proposition 5.1, we only used the fact that F ,
as given by Lemma 4.2, is finite: we made no particular use of the stronger
conclusion |F | = 2.

Theorem 5.2. Suppose that λ is an infinite regular cardinal. If a product
of topological spaces is [λ+, λ+]-compact then all but at most λ factors are
[λ, λ]-compact.

Proof. Suppose by contradiction that some product
∏
i∈I Xi is [λ+, λ+]-

compact, but there are λ+ factors which are not [λ, λ]-compact. Say, there
is J ⊆ I with |J | = λ+ and such that for all i ∈ J Xi is not [λ, λ]-compact.

Then Proposition 5.1 implies that
∏
i∈J Xi is not [λ+, λ+]-compact.∏

i∈I Xi is [λ+, λ+]-compact by hypothesis, hence, by Proposition 3.5,∏
i∈J Xi is [λ+, λ+]-compact, a contradiction. �

We can iterate a finite number of times the arguments in the proof of
Proposition 5.1.
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Proposition 5.3. Suppose that ℵα is a regular cardinal, and n is a natural
number. If X =

∏
j∈J Xj, |J | = ℵα+n, and no Xj is [ℵα,ℵα]-compact, then

X is not [ℵα+n,ℵα+n]-compact.

Proof. By induction on n. The case n = 0 is trivial (Proposition 3.5).
Suppose n > 0, and that the proposition is true for n−1, for all topological

spaces. Let X be as in the statement. Since ℵα+n · ℵα+n−1 = ℵα+n, by
standard cardinal arithmetic, and since |J | = ℵα+n, we can partition J into
ℵα+n-many subsets, each of cardinality ℵα+n−1. Say, J =

⋃
k∈K Jk, where

|K| = ℵα+n and |Jk| = ℵα+n−1, for every k ∈ K, and, moreover, Jk∩Jk′ = ∅,
for k 6= k′.

Thus, X =
∏
j∈J Xj is (omeomorphic to)

∏
k∈K

∏
j∈Jk Xj . By the induc-

tive hypothesis, for each k ∈ K,
∏
j∈Jk Xj is not [ℵα+n−1,ℵα+n−1]-compact,

since |Jk| = ℵα+n−1, and no Xj is [ℵα,ℵα]-compact. Then, by Proposition
5.1, with ℵα+n−1 in place of λ, K in place of J , and the

∏
j∈Jk Xj ’s in

place of the Xj ’s, we get that X =
∏
k∈K(

∏
j∈Jk Xj) is not [ℵα+n,ℵα+n]-

compact. �

Thus, we can generalize Theorem 5.2.

Theorem 5.4. Suppose that ℵα is a regular cardinal, and n is a natural
number. If a product of topological spaces is [ℵα+n+1,ℵα+n+1]-compact, then
all but at most ℵα+n factors are [ℵα,ℵα]-compact.

Proof. Same as the proof of Theorem 5.2, by using Proposition 5.3 in place
of Proposition 5.1. �

6. Compact factors in [λ, λ]-compact products (λ singular)

We have a version of our results for singular cardinals.
The proofs of Proposition 6.1 and of Theorem 6.2 below do not rely on

Sections 4 and 5.

Proposition 6.1. Suppose that λ is a singular cardinal, and λ = sup{λα|α ∈
cfλ}, where λα < λ for all α ∈ cfλ. If X = Y ×

∏
α∈cfλ Yα is [λ, λ]-compact,

then either Y is [cfλ, cfλ]-compact, or there is some α ∈ cfλ such that Yα is
[λα, λ]-compact.

Proof. Suppose by contradiction that λ, (λα)α∈cfλ and X give a a coun-
terexample. Thus there is a family (Uγ)γ∈cfλ which is a counterexample
to the [cfλ, cfλ]-compactness of Y , and, by Condition (ii) in Proposition
3.4, we can suppose that Uα ⊆ Uβ, for α < β ∈ cfλ. Moreover, for every
α ∈ cfλ there is a family Vα = (Vαβ)β∈λ which is a counterexample to the
[λα, λ]-compactness of Yα.

Since the order in which the product is taken is not relevant, we can
rearrange the indices in such a way that λα ≤ λα′ , for α ≤ α′.
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Consider the family F = {Wδβγ |β ∈ λ, γ < δ ∈ cfλ}, where Wδβγ is
defined as follows: Wδβγ = Uγ ×

∏
α∈cfλ Zα, where Zα = Vαβ if α = δ, and

Zα = Yα if α 6= δ. Notice that all the Wδβγ ’s are open sets of X.
We claim that F is an open cover of X by λ sets. Indeed, let x ∈ X =

Y ×
∏
α∈cfλ Yα, say x = (y, (yα)α∈cfλ). Since (Uγ)γ∈cfλ is a cover of Y ,

there is γ ∈ cfλ such that y ∈ Uγ . Choose any δ ∈ cfλ with δ > γ. Since
Vδ = (Vδβ)β∈λ is a cover of Yδ, there is a β ∈ λ such that yδ ∈ Vδβ. With
this choice of γ, δ, β we have that x = (y, (yα)α∈cfλ) ∈ Wδβγ (since if α 6= δ
then yα ∈ Zα = Yα).

If we show that no subfamily F ′ of F with < λ sets covers X, then we
contradict the [λ, λ]-compactness of X, hence the theorem is proved.

So, let F ′ be a subfamily of F with < λ sets. Thus, there is some
ε < cfλ such that F ′ has < λε sets. Without loss of generality, we can
choose ε in such a way that λε > cfλ. For every δ > ε let V ′δ = {Vδβ ∈
Vδ|β is such that there is γ < δ such that Wδβγ belongs to F ′}. For every
δ > ε, V ′δ contains at most |δ| · |F ′| ≤ cfλ · |F ′| < λε sets, hence is not
a cover of Yδ, since λδ ≥ λε, and Vδ = (Vδβ)β∈λ was supposed to be a
counterexample to the [λδ, λ]-compactness of Yδ.

By taking α in place of δ in the above argument, we get that for every
α > ε there is yα ∈ Yα such that for no Vαβ ∈ V ′α it happens that yα ∈ Vαβ .
Choose such an yα for every α > ε, and choose yα arbitrarily if α ≤ ε.

Choose y ∈ Y such that y 6∈ Uε. This is possible since Uε ⊂ Y (strict
inclusion), because (Uγ)γ∈cfλ was supposed to be a counterexample to the
[cfλ, cfλ]-compactness of Y .

We show that x = (y, (yα)α∈cfλ) belongs to no element of F ′, where y and
the yα’s are chosen as above. Suppose, to the contrary, that x ∈ Wδβγ for
some δ, β, γ such that Wδβγ ∈ F ′, and recall that Wδβγ = Uγ ×

∏
α∈cfλ Zα.

We consider the two cases δ > ε and δ ≤ ε, and derive a contradiction in
each case.

If δ > ε then x 6∈ Wδβγ since yδ 6∈ Zδ = Vδβ, because of the way we have
chosen yδ.

If δ ≤ ε, and x ∈ Wδβγ then y ∈ Uγ , and this implies γ > ε, since we
have assumed that Uα ⊆ Uβ , for α < β, and since, by the construction of y,
y 6∈ Uε. But this implies γ > ε ≥ δ, a contradiction, since Wδβγ is defined
only for γ < δ.

Thus, F ′ is not a cover of X, and this contradicts our hypothesis that X
is [λ, λ]-compact. �

Theorem 6.2. Suppose that λ is a singular cardinal. If a product X =∏
i∈I Xi of topological spaces is [λ, λ]-compact then either:
(i) all factors are [cfλ, cfλ]-compact, or
(ii) there is λ′ < λ such that |{i ∈ I|Xi is not [λ′, λ]-compact }| < cfλ.



14 COMPACT FACTORS IN PRODUCTS

Proof. Suppose to the contrary that there is ī ∈ I such that Xī is not
[cfλ, cfλ]-compact, and that for every λ′ < λ there are at least cfλ-many
factors which are not [λ′, λ]-compact.

Fix any sequence of cardinals (λα)α<cfλ such that λ = sup{λα|α < cfλ},
and λα < λ for α ∈ cfλ. Construct a sequence (iα)α<cfλ of distinct elements
of I as follows.

Choose i0 ∈ I, i0 6= ī in such a way that Xi0 is not [λ0, λ]-compact.
Suppose that α < cfλ, and suppose that we have already chosen iβ for

all β < α. Then choose iα ∈ I in such a way that Xiα is not [λα, λ]-
compact, iα 6= ī and, for every β < α, iα 6= iβ. This is possible, since
there are at least cfλ many i’s such that Xi is not [λα, λ]-compact, while
|{iβ|β < α}| = |α| < cfλ.

Now, set Y = Xī, and Yα = Xiα , for α < cfλ. By Proposition 6.1,
Y ×

∏
α∈cfλ Yα is not [λ, λ]-compact.

If X =
∏
i∈I Xi is [λ, λ]-compact, then Poposition 3.5 implies that Y ×∏

α∈cfλ Yα is [λ, λ]-compact (since ī and the iα’s are all distinct elements of
I). Thus, we have reached a contradiction. �

We can put together the methods of proof of Theorem 6.2 and of Propo-
sition 5.3.

Proposition 6.3. Suppose that ℵβ is a regular cardinal. If X = Y ×∏
j∈J Xj, |J | = ℵβ+ω, Y is not countably compact, and no Xj is [ℵβ,ℵβ]-

compact, then X is not [ℵβ+ω,ℵβ+ω]-compact.

Proof. The proof is somewhat similar to (and relies on) the proof of Propo-
sition 5.3.

Since |J | = ℵβ+ω, we can write J =
⋃
n∈ω Jn, where Jn ∩ Jm = ∅, for all

n 6= m, and |Jn| = ℵβ+n+1 for all natural numbers n.
Hence, X = Y ×

∏
j∈J Xj is (omeomorphic to) Y ×

∏
n∈ω

∏
j∈Jn Xj . If

we put Yn =
∏
j∈Jn Xj , then X = Y ×

∏
n∈ω Yn.

For every n, by Proposition 5.3, Yn is not [ℵβ+n+1,ℵβ+n+1]-compact, since
|Jn| = ℵβ+n+1, Yn =

∏
j∈Jn Xj , and no Xj is [ℵβ,ℵβ ]-compact.

By Proposition 3.1, for every n, Yn is not [ℵβ+n+1,ℵβ+ω]-compact.
By Proposition 6.1, X = Y ×

∏
n∈ω Yn is not [ℵβ+ω,ℵβ+ω]-compact (notice

that cfℵβ+ω = ω). �

Theorem 6.4. Suppose that ℵβ is a regular cardinal. If X =
∏
i∈I Xi is

[ℵβ+ω,ℵβ+ω]-compact, then either
(i) all factors are countably compact, or
(ii) |{i ∈ I|Xi is not [ℵβ ,ℵβ]-compact }| < ℵβ+ω.

Proof. Similar to the proof of Theorem 5.2, using Proposition 6.3 in place
of Proposition 5.1. �
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7. Proofs of the results stated in the introduction (and more)

By applying Proposition 3.1, we can improve Theorem 5.4 to [ℵα,ℵα+n+1]-
compactness.

Theorem 7.1. Suppose that ℵα is a regular cardinal, and n is a natural
number. If a product of topological spaces is [ℵα+n+1,ℵα+n+1]-compact, then
all but at most ℵα+n factors are [ℵα,ℵα+n+1]-compact.

Proof. For every i with 0 ≤ i ≤ n, let us apply Theorem 5.4 with ℵα+i in
place of ℵα, and n− i in place of n, noticing that ℵ(α+i)+(n−i)+1 = ℵα+n+1.

We get that, for each i (0 ≤ i ≤ n ), all but at most ℵα+i+n−i = ℵα+n

factors are [ℵα+i,ℵα+i]-compact. Discard all such factors: since a finite
union of sets having cardinality ≤ ℵα+n has cardinality ≤ ℵα+n, we have
discarded at most ℵα+n factors. In conclusion, all but at most ℵα+n factors
are simultaneously [ℵα+i,ℵα+i]-compact for all i, 0 ≤ i ≤ n.

Trivially, all factors are [ℵα+n+1,ℵα+n+1]-compact, e.g. by Proposition
3.5.

By Proposition 3.1, all but at most ℵα+n factors are [ℵα,ℵα+n+1]-compact.
�

Theorem 1.6 is the particular case α = 0 of Theorem 7.1 (since ℵ0 is a
regular cardinal).

Corollary 7.2. If the ℵn+1-th power of the topological space X is [ℵn+1,ℵn+1]-
compact, then X is initially ℵn+1-compact.

More generally, if ℵα is a regular cardinal, n is a natural number, and
the ℵα+n+1-th power of the topological space X is [ℵα+n+1,ℵα+n+1]-compact,
then X is [ℵα,ℵα+n+1]-compact.

Theorem 7.3. Suppose that ℵα is a regular cardinal. If a product of topo-
logical spaces is finally ℵα+n+1-compact, then all but at most ℵα+n factors
are finally ℵα-compact.

Proof. Let X be a product which is finally ℵα+n+1-compact. By the trivial
direction in Corollary 3.3(i), X is [ℵα+n+1,ℵα+n+1]-compact. By Theorem
7.1, all but at most ℵα+n factors are [ℵα,ℵα+n+1]-compact.

Since the product is finally ℵα+n+1-compact, all factors are finally ℵα+n+1-
compact by Proposition 3.5.

In conclusion, all but at most ℵα+n factors are finally ℵα-compact, since it
is trivial that, for every λ ≥ µ, final λ-compactness and [µ, λ]-compactness
imply final µ-compactness (here, λ = ℵα+n+1 and µ = ℵα). Otherwise,
apply Proposition 3.1 and Corollary 3.3(i). �

Theorem 1.2 is the particular case α = 0 of Theorem 7.3.
In the introduction we promised a common generalization of Theorems

1.2 and 1.3. Let us say that a topological space is finally κ-linearly Lindelöf
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if and only if every open cover which is linearly ordered by inclusion has a
subcover of cardinality less than κ. Thus, linear Lindelöfness is the same as
final ℵ1-linear Lindelöfness.

The methods in the proofs of Propositions 3.4 and 3.2 show that a space X
is finally κ-linearly Lindelöf if and only if X is [λ, λ]-compact for all regular
cardinals λ ≥ κ (if and only if every subset of X of regular cardinality ≥ κ
has a complete accumulation point). In particular, if κ is singular, final
κ-linear Lindelöfness coincides with final κ+-linear Lindelöfness

By Corollary 3.3(i), every finally κ-compact space is finally κ-linearly Lin-
delöf, hence the next theorem encompasses both Theorem 1.2 and Theorem
1.3.

Theorem 7.4. If a product of topological spaces is finally ℵα+n+1-linearly
Lindelöf (that is, [κ, κ]-compact for all regular cardinals κ ≥ ℵα+n+1), then
all but at most ℵα+n factors are finally ℵα-linearly Lindelöf.

If a product of topological spaces is finally ℵn+1-linearly Lindelöf, then all
but at most ℵn factors are compact.

Proof. First, suppose that ℵα is regular. Since the product is [ℵα+n+1,ℵα+n+1]-
compact, then by Theorem 7.1, all but at most ℵα+n factors are [ℵα,ℵα+n+1]-
compact, that is, by the trivial direction in Proposition 3.1, [ℵα+i,ℵα+i]-
compact for all i with 0 ≤ i ≤ n+ 1.

We have proved that all but at most ℵα+n factors are [κ, κ]-compact for all
cardinals κ with ℵα ≤ κ ≤ ℵα+n+1. Moreover, all factors are [κ, κ]-compact
for all regular cardinals κ ≥ ℵα+n+1, by hypothesis and Proposition 3.5.

In conclusion, all but at most ℵα+n factors are [κ, κ]-compact for all reg-
ular cardinals κ ≥ ℵα, that is, finally ℵα-linearly Lindelöf.

If ℵα is singular, the above arguments show that the product is finally
ℵα+1-linearly Lindelöf. But, since ℵα is singular, final ℵα+1-linear Lin-
delöfness is the same as final ℵα-linear Lindelöfness, as we remarked before
the statement of the theorem.

The second statement is the particular case α = 0 of the first statement,
since final ℵ0-linear Lindelöfness is the same as compactness, by Corollary
3.3(iii). �

Theorem 1.3 is the particular case n = 0 of the second statement in
Theorem 7.4.

Notice that, so far, in the present section we have not used the results
proved in Section 6.

Theorem 7.5. If ℵα is a regular cardinal, and a product of topological spaces
is [ℵα+ω,ℵα+ω]-compact, then either

(a) all factors are countably compact, or
(b) all factors are [ℵα,ℵα+ω]-compact except possibly for a set having car-

dinality less than ℵα+ω.
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Proof. Let λ = ℵα+ω, and suppose that (a) fails. By Theorem 6.2, and since
cfℵα+ω = ω, there is λ′ < λ such that |{i ∈ I|Xi is not [λ′, λ]-compact
}| < cfλ = ω.

If λ′ ≤ ℵα, the theorem is proved; otherwise, λ′ = ℵα+n, for some natural
number n, since ℵα < λ′ < λ, and λ = ℵα+ω. Hence we have that all factors
are [ℵα+n, λ]-compact, except perhaps for a finite set of factors.

Now we proceed as in the proof of Theorem 7.1, by applying Theorem
6.4: for each i < n, we can apply Theorem 6.4, with ℵα+i in place of ℵβ,
in order to get that all factors are [ℵα+i,ℵα+i]-compact, except for a set of
cardinality < ℵα+i+ω = ℵα+ω, since we are supposing that (a) fails.

Since the union of a finite number of sets of cardinality < ℵα+ω has still
cardinality < ℵα+ω, we get that all factors are simultaneously [ℵα+i,ℵα+i]-
compact for all i < n, except possibly for a set of factors having cardinality
< ℵα+ω.

Applying Proposition 3.1, we get that all factors are [ℵα,ℵα+ω]-compact,
except for a set of cardinality < ℵα+ω. �

Theorem 1.7 is the particular case α = 0 of Theorem 7.5.

Corollary 7.6. If ℵα is a regular cardinal, and a product of topological
spaces is finally ℵα+ω-compact, then either

(a) all factors are countably compact, or
(b) all factors are finally ℵα-compact, except possibly for a set having

cardinality less than ℵα+ω.

Proof. Same as the proof of Theorem 7.3, by using Theorem 7.5 in place of
Theorem 7.1. �

Theorem 1.5 is the particular case α = 0 of Corollary 7.6.

Corollary 7.7. If the ℵω-th power of the topological space X is [ℵω,ℵω]-
compact, then X is countably compact.

More generally, if ℵα is a regular cardinal and the ℵα+ω-th power of the
topological space X is [ℵα+ω,ℵα+ω]-compact, then X is either countably com-
pact, or [ℵα,ℵα+ω]-compact.

Corollary 7.7 is an immediate consequence of Theorem 7.5.

8. Additional remarks

The proof of Lemma 4.2, and hence the proofs of most results in Sections 5
and 7, make an essential use of the assumption that λ (ℵα, ℵβ , respectively)
is a regular cardinal. It is an open problem whether the assumption that λ
(ℵα, ℵβ, respectively) is regular can be removed from Proposition 5.1 (hence,
say, from Theorems 5.2, 5.4, 6.4, 7.1, 7.3 and 7.5 ).
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However, we have partial results. The proofs of the next two theorems
make use of variations both on the methods of [L2], [C2] and on the con-
structions performed in Section 4. We shall present proofs elsewhere.

Theorem 8.1. Suppose that λ is a singular cardinal. If a product of topo-
logical spaces is [λ+, λ+]-compact then all factors are [λ, λ]-compact, except
possibly for a set of cardinality less than 2λ.

We say that a topological space X is almost [κ, λ]-compact if it satisfies
the following property: whenever |I| = λ, and (Ui)i∈I is an open cover of
X such that (Ui)i∈J is still a cover of X whenever J ⊆ I and |J | = λ, then
(Ui)i∈I has a subcover by less than κ sets.

Theorem 8.2. Suppose that λ is a singular cardinal. If a product of topo-
logical spaces is [λ+, λ+]-compact then all but at most λ factors are almost
[λ, λ]-compact.

Clearly, [κ, λ]-compactness implies almost [κ, λ]-compactness.
If κ is a regular cardinal, then [κ, κ]-compactness and almost [κ, κ]-compactness

are equivalent, since almost [κ, κ]-compactness implies Condition (ii) in
Proposition 3.4. We do not know what happens when κ is a singular cardi-
nal.

Problem 8.3. Is it true that if
∏
i∈I Xi is [λ+, λ+]-compact then there

exists J ⊆ I such that |I \ J | ≤ λ and
∏
i∈J Xi is [λ, λ]-compact?

A version of Problem 8.3 has an affirmative answer.

Corollary 8.4. If
∏
i∈I Xi is finally ℵn+1-compact, then there is J ⊆ I such

that |I \ J | ≤ ℵn, and
∏
i∈J Xi is compact.

Proof. By Theorem 1.2, all but at most ℵn factors are compact. Let J be
the set of compact factors. Then |I \ J | ≤ ℵn, and, by Tychonoff Theorem,∏
i∈J Xi is compact. �

A sequence (xα)α∈λ of elements of a topological space X converges to
x ∈ X if and only if for every neighbourhood U of x in X there is β ∈ λ
such that xα ∈ U for every α ≥ β.

A topological space X is sequentially λ-compact (or λ-chain compact) if
and only if every sequence (xα)α∈λ has a converging subsequence.

Problem 8.5. Is it true that, if λ is regular and a product is sequentially
λ+-compact then all but at most λ factors are sequentially λ-compact?
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